Устройство для измерения температуры в скважине

Изобретение относится к нефтегазовой промышленности, а именно к устройствам для измерения температуры бурового раствора в процессе бурения. Техническим результатом является повышение надежности устройства и усовершенствование его конструкции. Устройство содержит механическую колебательную систему с укрепленными на ней постоянными магнитами и преобразователь механических колебаний в электрические. Механическая колебательная система выполнена в виде цилиндрической биметаллической спирали, один конец которой жестко закреплен, а второй - свободен, а преобразователь механических колебаний в электрические выполнен в виде системы взаимодействующих электромагнитных полей постоянных магнитов, жестко закрепленных на цилиндрической биметаллической спирали, и катушек привода и съема колебаний, обеспечивающих поперечные колебания цилиндрической биметаллической спирали. 2 ил.

 

Изобретение относится к нефтегазовой промышленности, а именно к устройствам для измерения температуры бурового раствора в процессе бурения.

Известно устройство для измерения температуры в скважинах (а.с. СССР №1298365, 1987), содержащее источник энергии, преобразователь температуры, выполненный в виде расположенного в корпусе струйного генератора, состоящего из струйного элемента, включающего сопло питания, приемное и выходное сопла, размещенные в углублении панели и связанные между собой коммутационными каналами. Недостатком этого устройства является трудность реализации источника питания и увеличенное время съема информации в связи с использованием инфранизкого диапазона частот.

Самым близким по технической сути является устройство для измерения температуры в скважинах (а.с. СССР №279520, 1971), которое содержит механическую колебательную систему с укрепленным на ней постоянным магнитом, преобразователь механических колебаний в электрические и заполненный ртутью термобаллон. Механическая колебательная система выполнена в виде полого баланса, закрепленного на трубке, связанной с термобаллоном, причем полости баланса, трубки и термобаллона сообщаются между собой. Измерение колебаний производится следующим образом. В систему привода и объема подается короткий импульс тока. Магнитное поле, созданное в катушке этим импульсом, взаимодействует с полем постоянного магнита, и баланс начинает колебаться. Съем колебаний производится той же катушкой. Недостатком этого устройства является низкая частота механической колебательной системы, которая снижает объем информации получаемой с устройства измерения температуры, то есть не в полной мере используется пропускная способность проводного канала связи.

Техническая задача - создание надежного и точного устройства для контроля температуры в скважине непосредственно в процессе бурения.

Технический результат - повышение надежности устройства и усовершенствование его конструкции. Он достигается тем, что в устройстве, содержащем механическую колебательную систему с укрепленными на ней постоянными магнитами и преобразователь механических колебаний в электрические, механическая колебательная система выполнена в виде цилиндрической биметаллической спирали, один конец которой жестко закреплен, а второй - свободен, а преобразователь механических колебаний в электрические выполнен в виде системы взаимодействующих электромагнитных полей постоянных магнитов, жестко закрепленных на цилиндрической биметаллической спирали, и катушек привода и съема колебаний, обеспечивающих поперечные колебания цилиндрической биметаллической спирали.

На фиг.1 изображено устройство для измерения температуры в скважине.

Устройство расположено в бурильной трубе, в корпусе, жестко закрепленное на забое скважины при помощи ребер. Оно содержит механическую колебательную систему 1, выполненную в виде цилиндрической биметаллической спирали, один конец которой жестко закреплен, а второй - свободен. Внутри корпуса имеется катушка привода 2, два постоянных магнита 3, катушка съема колебаний 4, связанные с линией связи 5.

Устройство работает следующим образом.

В систему привода 2 подается короткий импульс тока. Магнитное поле, созданное в катушке привода 2 этим импульсом, взаимодействует с полем постоянного магнита 3, и биметаллическая цилиндрическая спираль 1 начинает колебаться. Изменение температуры промывочной жидкости вызывает изменение частоты колебаний цилиндрической биметаллической спирали 1. Съем колебания производится катушкой съема 4.

Установлено, что существует зависимость между частотой вынужденных колебаний цилиндрической биметаллической спирали и температурой в скважине. График зависимости, полученный экспериментально, изображен на фиг.2. Таким образом, изменение частоты тока передается по линии связи на устье скважины и регистрируется приборами. Данная информация служит для осуществления управления процессом проводки скважины.

Частота импульсов цилиндрической биметаллической спирали определяется уравнением:

f 0 = 0 , 1615 e L 2 E γ

где f0 - частота колебаний, Гц;

Е - модуль упругости материала биметаллической цилиндрической спирали;

γ - плотность материала биметаллической цилиндрической спирали;

е и L - толщина и длина биметаллической цилиндрической спирали.

Параметры устройства хорошо согласуются с параметрами проводного канала связи забоя с устьем скважины.

Устройство позволяет увеличить точность измерения температуры промывочной жидкости в скважине в процессе бурения и повышает надежность конструкции.

Устройство для измерения температуры в скважине, содержащее механическую колебательную систему с укрепленными на ней постоянными магнитами и преобразователь механических колебаний в электрические, отличающееся тем, что механическая колебательная система выполнена в виде цилиндрической биметаллической спирали, один конец которой жестко закреплен, а второй - свободен, а преобразователь механических колебаний в электрические выполнен в виде системы взаимодействующих электромагнитных полей постоянных магнитов, жестко закрепленных на цилиндрической биметаллической спирали, и катушек привода и съема колебаний, обеспечивающих поперечные колебания цилиндрической биметаллической спирали.



 

Похожие патенты:

Изобретение относится к железнодорожному транспорту, а более конкретно к контактному термодатчику, устанавливаемому снаружи для контроля температуры на ответственных элементах подвижного состава железнодорожного транспорта, к примеру на буксовых узлах вагонов и локомотивов, различных редукторах и других устройствах, особенно на скоростных подвижных составах.

Изобретение относится к приборам автомобильного и тракторного электрооборудования, в частности к изготовлению датчиков, служащих приборами контроля и регулирования температуры.

Изобретение относится к измерениям характеристик окружающей среды и может быть использовано в составе цифровых системы сбора метеорологической информации или систем управления технологическими процессами, характер протекания которых зависит от температуры воздуха.

Изобретение относится к термометрии окружающей среды и может быть использовано в составе цифровых систем сбора метеорологической информации или систем управления технологическими процессами для измерения температуры воздуха.

Изобретение относится к термометрии и может быть использовано в составе цифровых систем сбора метеорологической информации для измерения температуры окружающей среды или систем управления технологическими процессами, характер протекания которых зависит от температуры воздуха.

Изобретение относится к области заканчивания и испытания скважин в нефтегазовой промышленности и предназначено для расчета параметров забоя и призабойной зоны скважины.

Группа изобретений относится к моделированию конструкции и эксплуатационных характеристик скважин, а также к мониторингу скважин. Способ оценки доли притока флюида из каждой продуктивной зоны многозонной эксплуатационной скважины включает определение давления на устье скважины.

Изобретение относится к области измерения технологических параметров в скважине и может быть использовано для передачи информации с забоя скважины на поверхность посредством акустической связи.
Изобретение относится к нефтяной промышленности и может быть использовано при определении интервалов скважины с заколонным движением жидкости. Технический результат направлен на повышение достоверности получаемых результатов при определении интервалов заколонного движения жидкости скважин, эксплуатируемых на залежах вязкой и сверхвязкой нефти.

Изобретение относится к области горного дела, в частности к измерению и регистрации физических параметров флюида в условно-горизонтальных скважинах, и может быть использовано при проведении геофизических исследований.

Изобретение относится к нефтегазодобывающей промышленности и может найти применение для месторождений, на которых достижение рентабельного дебита возможно только при снижении забойных давлений ниже давления насыщения.

Изобретение относится к способу оптимизирования эксплуатации скважины. Выбирают интервалы в наклонно-направленном стволе скважины и развертывают колонну испытаний и обработки скважины в стволе скважины.

Изобретение относится к нефтедобывающей промышленности и может быть использовано на нефтяных месторождениях для измерения забойного давления для контроля и управления процессом добычи нефти.

Группа изобретений относятся к исследованиям скважин и может быть использована для мониторинга внутрискважинных параметров. Техническим результатом является оптимизация, автоматизация, повышение эффективности процесса добычи нефти, в т.ч.

Изобретение относится к области геофизических исследований нефтяных и газовых скважин и может быть использовано, в частности, при определении профиля притока скважины и параметров околоскважинного пространства.

Изобретение относится к геофизическим исследованиям скважин и может найти применение для определения тепловых свойств пластов горных пород, окружающих скважины. Техническим результатом является возможность одновременного получения информации о свойствах относительно толстого (около 1 м) слоя пород вокруг скважины и информации о теплопроводности пород для всего цементируемого интервала глубин. Согласно способу в скважину опускают обсадную колонну с прикрепленными на ее наружную поверхность датчиками температуры и закачивают цемент в кольцевой зазор между обсадной колонной и стенками скважины. В процессе закачки и затвердевания цемента осуществляют измерения температуры и определяют теплопроводность окружающих скважину горных пород по измеренной зависимости температуры от времени. 2 з.п. ф-лы, 2 ил., 1 табл.
Наверх