Способ объемной обработки алюминиевого литейного сплава

Изобретение относится к металлургии и может быть использовано для получения материалов с заданным уровнем физико-механических характеристик. Способ включает разгон легирующего порошка энергией взрыва зарядом бризантного взрывчатого вещества. Формируют кумулятивную струю из легирующего порошка, состоящего из порошка карбида кремния и порошка цинка, и вводят ее в объем литейного алюминиево-кремниевого сплава. После введения легирующего порошка обрабатываемые изделия подвергают электрохимическому травлению в течение 14-70 минут. Способ позволяет проводить эффективное модифицирование макрообъемов алюминий-кремниевого литейного сплава, дробление и активацию упрочняющих кремниевых игл и локальное легирование. Способ позволяет производить цельнометаллический композиционный материал из сплава алюминий-кремний с заданными зонами высокой пластичности и обеспечивает зональное повышение пластичности, расширяет технологические возможности, позволяет выполнять высокопроизводительную обработку деталей сложной формы. 2 табл., 3 ил.

 

Изобретение относится к металлургии и может быть использовано для получения материалов с заданным уровнем физико-механических характеристик.

Известен способ получения легирующих покрытий на поверхности металлического материала путем обработки поверхности металлического материала компрессионными плазменными потоками в среде рабочего газа и нанесение слоев легирующих элементов вакуумно-дуговым осаждением, при этом обработку поверхности металлического материала и каждого слоя легирующего элемента осуществляют с плотностью энергии 5-60 Дж/см2 и длительностью разряда 50-250 мкс [1]. Однако известный способ является малопроизводительным, требует наличия дорогостоящего оборудования, позволяет получить небольшие глубины проникновения.

Известен способ объемного легирования стальных изделий, заключающийся во введении струй порошковых частиц, с размерами частиц 1-100 мкм, со скоростями 200-600 м/с при температуре 100-2000°C в металлический материал, например: смесью твердых и пластичных частиц с перестройкой структуры инструментальной стали, ее армирования каркасом из продуктов взаимодействия вводимых частиц и матричного материала [2]. Однако указанный способ предназначен только для обработки инструментальных сталей и не может использоваться для объемной обработки алюминиевых сплавов, например, для повышения локальной пластичности алюминиевых сплавов.

Наиболее близким к известному изобретению по технической сущности и достигаемому положительному эффекту является способ объемной перестройки литейных алюминиево-кремниевых сплавов, включающий введение легирующего порошка карбида кремния энергией взрыва заряда бризантного взрывчатого вещества (БВВ) и последующее электрохимическое травление [3].

Недостатком этого способа является то, что при введении порошка кремния происходит недостаточная активация алюминиевого сплава и для повышения пластичности требуется длительное время травления (до 1860 мин).

Целью изобретения, является расширение технологических возможностей обработки алюминиево-кремниевых литейных сплавов. Задача изобретения - повышение локальной пластичности алюминиево-кремниевого литейного сплава.

Поставленная задача достигается тем, что в способе объемной обработки, включающем введение в металлический материал легирующего порошка энергией взрыва заряда БВВ, формирование порошкового состава производится на основе смеси: порошка карбида кремния - 50-70 объемных % и порошка цинка - остальное, а после динамического легирования выполняется электрохимическая обработка. Время обработки составляет 14-70 минут.

Способ осуществляется следующим образом. Обрабатываемые изделия помещают во взрывную камеру и с помощью взрывного ускорителя, состоящего из металлического контейнера, заполненного внутри легирующим порошком, снаружи - зарядом БВВ, путем его обжатия энергией взрыва формируют порошковую струю, состоящую из легирующих частиц порошка карбида кремния - 50-70 объемных % и порошка цинка - остальное. За счет обжатия конусного контейнера с легирующим веществом и кумуляции энергии взрыва формируется струя порошкового материала, которая вводится в объем литейного алюминиево-кремниевого сплава, в локальных макрозонах возникают пульсирующие продольные и поперечные нагрузки, которые дробят кремниевые иглы и легируют. Такая обработка позволяет изменить микроструктуру заготовки из алюминиево-кремниевых сплавов, например АК12, на глубины до 180 мм (вплоть до аморфизации) и обеспечивает ее активацию и повышение пластичности. При дальнейшей электрохимической обработке в электролите в течение 14-70 минут происходит вытравливание твердой фазы и в объеме макрозоны цельнометаллического изделия резко повышается пластичность и механическая обрабатываемость, в зависимости от вводимого легирующего состава и времени травления.

На фигуре 1 представлена микроструктура композиционного материала на основе сплава Al+12%Si после сверхглубокого проникания: дробление иглы при соударении с частицей (канальным элементом) - длина цельного участка иглы 2,5-7 мкм (×4000).

На фигуре 2 приведена тонкая структура композиционного материала на основе сплава Al-12%Si: зона скольжения и поперечного дробления кремниевых игл (×60000).

На фигуре 3 приведена тонкая структура композиционного материала на основе сплава Al-12%Si: зона легирования сплава веществом микроударников (×40000).

При метании сгустков порошковых частиц в режиме сверхглубокого проникания происходит локализация кинетической энергии удара частиц в узких закрытых канальных зонах, формируемых в процессе внедрения. Вокруг канальных зон в алюминии и в его сплаве (Al-12%Si) формируются пульсирующие «солитоны» высокого давления 2-7 ГПа, в период времени воздействия сгустка частиц на заготовку 100-400 мкс. В таких условиях за счет разницы удельного веса по объему достигается дробление и активация упрочняющих кремниевых игл в поперечном сечении со сдвигом и без сдвиговой деформации. Одновременно наблюдается легирование за счет динамического массопереноса вводимых частиц. За счет легирования смесью карбида кремния и цинком увеличивается химический градиент в легированной зоне сплава и материал активируется. Поэтому за счет последующей электрохимической обработки происходит унос упрочняющей фазы.

Примеры

Исследуемый электролит был приготовлен следующим образом: 0,5 мл фтористоводородной кислоты марки "хч" разбавлялись дистиллированной водой до 100 мл.

Таблица 1
Изменение относительной пластичности в результате динамического легирования алюминиево-кремниевых сплавов смесью порошковых частиц SiC-Zn и электрохимического травления
№ п\п Вводимый порошковый состав, % Относительная пластичность Электрохимическая обработка Относительная пластичность
1 - 1 да 1
2 SiC-40%, Zn 60% 1,2 да 1,3
3 SiC-50%, Zn 50% 3,5 да 5,1
4 SiC-60%, Zn 40% 5,0 да 10,1
5 SiC-70%, Zn 30% 4,2 да 5,7
6 SiC-90%, Zn 10% 1,1 да 1,1

Дробление и активация алюминиево-кремниевых литейных сплавов позволяет за счет последующей электрохимической обработки дополнительно повысить пластичность обработанных зон.

Таблица 2
Влияние вводимого легирующего состава на пластичность в зависимости от времени последующей электрохимической обработки
№ п\п Вводимый порошковый состав, % Время электрохимической обработки, мин Относительная пластичность
1 - 1860 1
2 SiC 1860 9,6
3 SiC-60%, Zn 40% 10 4,1
4 SiC-60%, Zn 40% 14 8,2
5 SiC-60%, Zn 40% 42 10,1
6 SiC-60%, Zn 40% 70 9,3
7 SiC-60%, Zn 40% 90 4,2

Без введения в объем алюминиево-кремниевого сплава легирующих порошков пластичность, при последующей электрохимической обработке, не меняется. По сравнению с вариантом введения смеси порошков SiC-60%, Zn 40% вариант введения порошка SiC для достижения примерно одинакового уровня пластичности требует увеличения времени электрохимической обработки до 27 раз.

Пластичность обработанной зоны повышается в 5-10 раз. Материал обработанной зоны в дальнейшем прошивается, штампуется или подвергается другим видам пластической деформации.

Наличие таких зон в объеме алюминиевого сплава возможно только при взрывном легировании и качественно отличает его от аналогичного материала, полученного статической обработкой, что закономерно приводит к изменению физико-механических свойств и практическому их повышению.

Преимущество и положительный эффект способа:

- позволяет проводить модифицирование макрообъемов алюминий-кремниевого литейного сплава дроблением упрочняющих кремниевых игл на микро и наноуровнях (≈100 нм), локальное легирование, вводимым порошковым материалом, и избирательное удаление упрочняющей фазы;

- позволяет производить цельнометаллический композиционный материала из сплава алюминий-кремний с заданными макрозонами высокой пластичности;

- обеспечивает зональное повышение пластичности, расширяет технологические возможности, позволяет высокопроизводительную обработку деталей сложной формы.

Источники информации

1. RU 2394939 МПК С23С 14/58, С23С 14/04. Способ получения легирующих покрытий на поверхности металлического материала. Углов В.В., Черенда Н.Н., Асташинский В.М. и др. Дата патента 23.07.2008. Опубликовано 20.07.2010.

2. Usherenko S.M. Method of strengthening tool material by penetration of reinforcing particles. Patent №057,897,204 B2, date of Patent: Mar. 1, 2011.

3. Формирование новых материалов на основе литейного алюминиевого сплава. С.М.Ушеренко, Е.И. Марукович, Ю.С.Ушеренко и др. ИФЖ, 2011, том 84, №5, с.1095-1099.

Способ объемной обработки изделий из алюминиево-кремниевого литейного сплава, включающий разгон легирующего порошка энергией взрыва зарядом бризантного взрывчатого вещества, формирование кумулятивной струи из легирующего порошка и последующее введение ее в обрабатываемые изделия, отличающийся тем, что в качестве легирующего порошка используют смесь карбида кремния и цинка при следующем соотношении компонентов, об. %:

карбид кремния 50 - 70
цинк остальное,

при этом после введения легирующего порошка обрабатываемые изделия подвергают электрохимическому травлению в течение 14-70 минут.



 

Похожие патенты:
Изобретение относится к машиностроению, а именно к способам получения антифрикционных восстановительных покрытий методом газодинамического напыления на стальных изделиях, используемых в технологических процессах восстановления деталей в узлах машин и в авиационной технике.
Изобретение относится к машиностроению, в частности к покрытиям для восстановления и упрочнения запорной и регулирующей арматуры. Покрытие для нанесения на приводные элементы запорной и регулирующей арматуры представляет собой двухслойную систему, состоящую из подслоя и основного слоя.

Изобретение относится к машиностроению, а именно к чистовой упрочняющей безабразивной обработке поверхностей деталей из конструкционных сталей. На поверхности дорожки качения подшипника размещают порошок графита или дисульфида молибдена и через слой порошка к поверхности вращающейся детали прижимают индентор, совершающий ультразвуковые механические колебания.

Изобретение относится к способу получения магнитотвердого покрытия из сплава самария с кобальтом и может использоваться при изготовлении постоянных магнитов, используемых в конструкциях малогабаритных двигателей постоянного тока, бортовой измерительной аппаратуре, а также различных устройствах, предназначенных для исследования космического пространства.

Изобретение относится к области металлургии, в частности к способам получения теплозащитных износостойких покрытий на деталях из чугуна или стали. Проводят абразивно-струйную обработку карбидом кремния с размером частиц 1,5 мм, осуществляют плазменное напыление подслоя состава Co-Cr-Al-Y и последующее напыление керметной композиции из порошковой смеси, содержащей компоненты, при следующем соотношении, вес.%: нихром 10-20, диоксид циркония, стабилизированный оксидом иттрия, 30-20, никельалюминий 30-40, никельтитан 20-10, карбид хрома 5, карбид вольфрама 5.
Изобретение относится к способу получения адгезионно-прочных медных покрытий на керамической поверхности с использованием газодинамического напыления. Проводят предварительное напыление подслоя из оксида меди (1) с последующим напылением медного покрытия и термическую обработку покрытия.

Изобретение относится к устройству газодинамического нанесения покрытий на внешние цилиндрические поверхности изделий и может быть использовано в машиностроении и других областях хозяйства.

Изобретение относится к устройствам газодинамического нанесения покрытий на внутреннюю цилиндрическую поверхность изделий и может быть использовано в машиностроении, в автомобильной промышленности, энергетике, строительстве и нефтегазовой отрасли промышленности.

Изобретение относится к способам и устройствам напыления покрытий на поверхности изделий холодным газодинамическим напылением, в том числе на поверхности художественных изделий и объемных форм из натурального камня или из металлического материала.

Изобретение может быть использовано при изготовлении слоистых структур сложного профиля сваркой взрывом, например тонкостенных цилиндрических и эллиптических оболочек из биметаллов.
Изобретение может быть использовано при изготовлении сваркой взрывом деталей термического, химического оборудования, теплорегуляторов. Составляют трехслойный пакет с симметричным расположением титановой пластины относительно медных с заданным соотношением толщин слоев.

Изобретение может быть использовано при изготовлении с помощью энергии взрыва изделий с внутренними полостями, например деталей термического и химического оборудования, теплорегуляторов и т.п.

Изобретение может быть использовано при изготовлении с помощью энергии взрыва изделий с внутренними полостями, например деталей термического и химического оборудования, теплорегуляторов и т.п.

Изобретение может быть использовано для изготовления с помощью энергии взрыва изделий с внутренними полостями, например деталей термического и химического оборудования, теплорегуляторов и т.п.

Изобретение может быть использовано для получения композиционных материалов с высокими значениями предела прочности и модуля упругости. Производят пакетирование чередующихся слоев металла-основы и армирующего металла при соотношении площади слоев в пределах 1:(0,5-0,7).

Изобретение может быть использовано при диффузионной сварке металлических и неметаллических материалов. Между свариваемыми деталями, установленными в вакуумной камере, размещают металлическую прослойку.

Изобретение может быть использовано при изготовлении биметаллических заготовок и переходных элементов преимущественно из разнородных металлов для электротехники, электрометаллургии, машиностроения и судостроения.

Изобретение относится к технологии получения изделий с внутренними полостями с помощью энергии взрыва и может быть использовано при изготовлении, например, деталей термического и химического оборудования, теплорегуляторов и т.п.

Изобретение относится к технологии получения изделий с внутренними полостями с помощью энергии взрыва и может быть использовано при изготовлении, например, деталей термического и химического оборудования, теплорегуляторов и т.п., эксплуатируемых в окислительных газовых средах.
Изобретение может быть использовано для получения крупногабаритных многослойных материалов, используемых в атомной, нефтегазовой, химической отраслях промышленности, а также в судостроении. Для повышения прочности сцепления металлических плит из разнородных материалов применяют нанесение промежуточного слоя толщиной 30-40 мкм на поверхность неподвижной плиты методом холодного газодинамического напыления. Перед нанесением промежуточного слоя проводится предварительная подготовка поверхности плиты методом абразивной обработки. Состав промежуточного слоя выбирают в зависимости от материала соединяемых пластин из условия обеспечения взаимной диффузии металлов в месте контакта. В качестве металла свариваемых пластин используют Al, Zn, Сu, Ni, Ti, Co, Fe, Ag и сплавы на их основе. В качестве напыляемого металла используют Al, Zn, Сu, Ni, Ti, Co, Fe, Ag и сплавы на их основе, легированные редкоземельными металлами. Полученный многослойный материал с напыляемым слоем имеет сплошность соединения слоев, соответствующую 1 классу по ГОСТ 22727 и прочность соединения слоев 300-400 МПа, что примерно в 1,5 раза выше прочности биметаллов без напыляемого слоя. 5 з.п. ф-лы, 3 пр.
Наверх