Жидкостный ракетный двигатель

Изобретение относится к ракетно-космической технике и может быть использовано в конструкции жидкостного ракетного двигателя (ЖРД) с турбонасосной системой подачи топлива, выполненного по схеме без дожигания с радиационно-охлаждаемым насадком сопла камеры. ЖРД включает турбонасосный агрегат (ТНА) 1, газогенератор 2, выхлопной тракт турбины ТНА 3, камеру сгорания 4 с радиационно-охлаждаемым насадком сопла 5 и коллектором 6 на сопле камеры сгорания 4, сообщенным с выхлопным трактом 3, при этом вокруг радиационно-охлаждаемого насадка 5 выполнен кожух 7, коллектор 6 расположен в зоне стыка радиационно-охлаждаемого насадка 7 и регенеративно-охлаждаемой части сопла камеры 4 и сообщен с входом в кольцевую полость, образованную кожухом 7 и стенкой радиационно-охлаждаемого насадка 7, выход которой сообщен с расположенным вокруг радиационно-охлаждаемого насадка 7 кольцевым сверхзвуковым соплом 8. При этом в качестве материала кожуха 7 может быть использована плотная термостойкая ткань. Изобретение обеспечивает повышение надежности двигателя и увеличение удельного импульса. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к ракетно-космической технике (РКТ) и может быть использовано в конструкции жидкостного ракетного двигателя (ЖРД) с турбонасосной системой подачи топлив, выполненной по схеме без дожигания, в составе которого используется радиационно-охлаждаемый насадок сопла камеры.

ЖРД космического назначения относительно небольших тяг (от 0,4 тс до 4 тс) выполняются как правило, по схеме без дожигания, при которой рабочее тело турбины (газ, вырабатываемый газогенератором) после турбины отводится посредством выхлопных трактов-газоводов через индивидуальное выхлопное сопло, создающее дополнительную (к тяге камеры) тягу двигателя (см. кн.: Б.Ф. Гликман. «Автоматическое регулирование жидкостных ракетных двигателей», М., «Машиностроение», 1974 г., стр.11, рисунки 1,7). Такое сопло имеет существенно меньшую чем сопло камеры степень расширения, что, наряду с относительно низкой работоспособностью газа-рабочего тела на выходе турбины ТНА обуславливает низкое значение удельного импульса выхлопного сопла и приводит к значительным потерям удельного импульса (до ~10 с) двигателя в целом.

С другой стороны, при автономном, не связанном с подачей компонентов топлива в камеру, газовом тракте турбины ТНА ЖРД без дожигания возможно достижение более высокого давления в камере и, следовательно, более высокой степени расширения продуктов сгорания в сопле камеры, что может компенсировать потери, связанные с автономным выхлопом турбины ТНА. Данное обстоятельство определяет, в основном, преимущество схемы без дожигания при размерностях ЖРД (от 0,4 тс до 4 тс), характерных для двигательных установок (ДУ) ряда космических аппаратов (КА) таких, как «Луна», «Венера», «Марс», а также разгонных блоков (РБ) «Фрегат», «Бриз-М» и т.д.

Однако для ЖРД указанных размерностей характерен недостаток, препятствующий увеличению степени расширения сопла камеры и обусловленный проблемами регенеративного охлаждения камеры сгорания и сопла при больших степенях расширения, связанными с перегревом располагаемых охладителей (компонентов топлива камеры сгорания), которого можно избежать увеличением внутреннего охлаждения камеры сгорания за счет завесы, что, однако, приводит к уменьшению полноты сгорания компонентов топлива в камере и, следовательно, потерям удельного импульса камеры сгорания.

Проблему дефицита охлаждения камер сгорания с большими степенями расширения можно решить также введением радиационно-охлаждаемого насадка сопла (РОН). Однако, в условиях тесной компоновки, свойственной ДУ КА и РБ (например, РБ «Фрегат», РБ «Бриз-М») наличие РОН может привести к проблемам, связанным с возможностью перегрева элементов конструкции ДУ и КА за счет теплового излучения от внешней поверхности РОН, что обусловливает необходимость его экранирования или внешней теплоизоляции; при этом уменьшается эффективная площадь излучающей поверхности РОН и, следовательно, повышается его температура, которая может превысить допустимый для материала конструкции РОН предел (для освоенных в РКТ жаростойких сплавов - 1100°C).

Данное обстоятельство препятствует применению РОН для реализации возможных для ЖРД, выполненных по схеме без дожигания, степеней расширения сопла камеры и, следовательно, достижению более высоких значений удельного импульса камеры.

Известна, принятая за прототип предлагаемого изобретения конструкция двигателя, выполненного по схеме без дожигания, предусматривающая отвод рабочего тела турбины ТНА в сопло камеры через коллектор, выполненный на сопле. Такая конструкция реализована в двигателях F1 и J2 ракеты-носителя «Сатурн 5» (В.Е. Алемасов. Теория ракетных двигателей. - М.: Машиностроение, 1969, с.30).

При соответствующей организации ввода выхлопного газа турбины в сопло камеры с РОН указанная схема позволяет осуществлять частичное завесное охлаждение стенок РОН в виде пристеночного слоя относительно низкотемпературного (500°C…700°C) газа, омывающего часть РОН, примыкающего к коллектору и снижающего температуру стенок РОН и, следовательно, температуру излучения внешних поверхностей РОН в этой части, что улучшает тепловые условия работы РОН и окружающих его элементов конструкции ДУ и, следовательно, повышает надежность ДУ.

Недостаток конструкции прототипа обусловлен тем, что указанный низкотемпературный пристеночный слой размывается турболизированным при вводе выхлопного газа из коллектора в сопло потоком высокотемпературных продуктов сгорания, поступающих в сопло из камеры, смешиваясь с ними, вследствие чего по мере удаления от коллектора температура пристеночного слоя в РОН возрастает, достигая на относительно небольшом удалении от коллектора значений, приближающихся к температурам основного потока газа, поступающего из камеры. Соответственно по мере удаления от коллектора увеличивается температура стенки РОН, то есть проблемы, обусловленные температурным состоянием РОН при его экранировании, решаются лишь частично. Кроме того, ввод выхлопного газа турбины внутрь сопла камеры через коллектор нарушает структуру потока продуктов сгорания камеры, увеличивая потери в сопле, вследствие чего уменьшается удельный импульс камеры и, соответственно, двигателя.

Изобретение направлено на обеспечение приемлемого теплового режима РОН при условии его экранирования или теплоизоляции, что повышает надежность двигателя и ДУ КА в целом, а также - на увеличение удельного импульса двигателя.

Этот технический результат достигается тем, что в двигателе, выполненном по схеме без дожигания, включающем ТНА, газогенератор, выхлопной тракт турбины ТНА, камеру сгорания с радиационно-охлаждаемым насадком сопла и коллектор вокруг сопла камеры сгорания, сообщенный с выхлопным трактом, вокруг РОН выполнен кожух, коллектор расположен в зоне стыка РОН с регенеративно охлаждаемой частью сопла камеры и сообщен со входом в кольцевую полость, между кожухом и стенкой радиационно-охлаждаемого насадка, выход которой сообщен с расположенным вокруг радиационно-охлаждаемого насадка кольцевым сверхзвуковым соплом, при этом кожух может быть выполнен из плотной термостойкой (углеродной или кремнеземной) ткани.

Сущность предполагаемого изобретения иллюстрируется чертежом. В состав ЖРД входят турбонасосный агрегат 1, газогенератор 2, выхлопной тракт 3 турбины ТНА 1, камера сгорания 4 с радиационно-охлаждаемым насадком сопла 5, коллектор 6 вокруг сопла камеры 4, расположенный в зоне стыка РОН 5 и регенеративно охлаждаемой частью сопла камеры сгорания 4. Кольцевой выход коллектора 6 сообщен с кольцевой полостью, образованной стенками кожуха 7 и РОН 5 (полость кожуха 7), а выход из этой полости сообщен со входом в кольцевое сверхзвуковое сопло 8, выполненное вокруг РОН 5.

При работе ЖРД выхлопной, относительно низкотемпературный газ турбины ТНА 1 через выхлопной тракт (газовод) 3 поступает в коллектор 6 и, далее, из коллектора - в полость кожуха 7, охлаждая стенки РОН 5 и нагреваясь при этом. В случае выполнения кожуха 7 из термостойкой ткани кожух 7 под давлением поступившего в его полость газа раздувается, приобретая заданную форму; при этом формируется кольцевой канал с заданными геометрическими параметрами (размером кольцевой щели между РОН и кожухом и площадью ее проходного сечения) по длине РОН 5. С выхода кольцевого канала полости кожуха 7 подогретый в канале выхлопной газ турбины поступает в кольцевое сопло 8, откуда истекает, создавая дополнительную тягу выхлопа с повышенным, за счет подогрева, удельным импульсом.

Расчетные оценки, проведенные применительно к двигателю, выполненному по схеме без дожигания с тягой 400 кгс с РОН, показывают, что при охлаждении РОН выхлопным газом турбины с температурой 640°C и соотношением расходов выхлопного газа и продуктов сгорания камеры равном 0,04 максимальная температура экранированного РОН снижается с 1500°C (превышает допустимый для жаропрочной стали 7Х25Н16АГ предел) до 1100°C, что допускает использование указанного сплава в качестве материала конструкции РОН.

При этом выхлопной газ турбины нагревается с 640°C до 1020°C, что обеспечивает увеличение удельного импульса в канале выхлопа с 170 с до 220 с и повышение удельного импульса двигателя на ~2 с.

1. Жидкостный ракетный двигатель, выполненный по схеме без дожигания, включающий ТНА, газогенератор, выхлопной тракт турбины ТНА, камеру сгорания с радиационно-охлаждаемым насадком сопла, коллектор на сопле камеры сгорания, сообщенный с выхлопным трактом турбины, отличающийся тем, что вокруг радиационно-охлаждаемого насадка сопла выполнен кожух, коллектор расположен в зоне стыка радиационно-охлаждаемого насадка с регенеративно охлаждаемой частью сопла камеры и сообщен со входом в кольцевую полость между кожухом и стенкой радиационно-охлаждаемого насадка, выход которой сообщен с расположенной вокруг радиационно-охлаждаемого насадка кольцевым сверхзвуковым соплом.

2. ЖРД по п.1 отличается тем, что кожух выполнен из плотной термостойкой ткани.



 

Похожие патенты:

Изобретение относится к ракетной технике, а именно к способу изготовления сопла жидкостного ракетного двигателя оживальной формы. Сопло состоит из нескольких автономных трапецеидальных секторов оживальной формы, соединенных в осевом направлении.

Изобретение относится к средствам создания тяги и может быть использовано в реактивных двигателях (РД). Двигательное устройство содержит корпус, конусообразную камеру сгорания, выхлопную трубу, два пружинных клапана между выхлопной трубой и камерой сгорания, блок управления с гидравлическими выходами.

Изобретение относится к области ракетной техники. В сверхзвуковой части осесимметричного сопла ракетного двигателя установлена вставка, которая имеет длину, выходной диаметр и степень расширения, меньшие, чем соответствующие геометрические параметры стенки сверхзвуковой части сопла.

Изобретение относится к ракетной технике. Ракетный двигатель с раздвижным диффузором содержит сопло истечения газов, исходящих из камеры сгорания, причем сопло имеет продольную ось (ZZ') и содержит первую часть, определяющую критическое сечение сопла и первую неподвижную секцию (12) диффузора, по меньшей мере одну вторую выдвижную секцию (16) диффузора, сечение которой больше сечения первой неподвижной секции (12) диффузора, и механизм (18) выдвижения второй выдвижной секции (16) диффузора, расположенный снаружи от первой и второй секций (12, 16) диффузора.

Изобретение относится к области ракетных двигателей твердого топлива со стабилизацией тяги в условиях различных начальных температур окружающей среды и разброса параметров топлива.

Изобретение относится к ракетной технике и предназначено для использования в ракетных двигателях твердого топлива реактивных снарядов систем залпового огня. Герметизирующее-пусковое устройство ракетного двигателя содержит тарель, форсажную трубку, узел крепления и опору.

Изобретение относится к области ракетной техники и может быть использовано при разработке и изготовлении сопел камер сгорания жидкостных ракетных двигателей (ЖРД).

Изобретение относится к ракетной технике, в частности к ракетным двигателям с регулированием степени расширения сопла в полете. При работе двигателя в режиме первой ступени степень расширения продуктов сгорания компонентов топлива ограничивают диаметром подвижной внутренней цилиндрической оболочки с торцевой поверхностью, предпочтительно, профилированной, являющейся составной частью профиля сопла, которую размещают в неподвижной оболочке сопла, предпочтительно, в средней ее части, таким образом, что торцевая поверхность подвижной оболочки представляет собой часть профиля неподвижной оболочки.

Изобретение относится к области ракетной техники. Сопло камеры жидкостного ракетного двигателя содержит наружную и огневую оболочки с каналами охлаждения между ними, образованными двутавровыми проставками, на которых размещены турбулизаторы потока.

Изобретение относится к ракетно-космической технике и может быть использовано для охлаждения сверхзвуковой части сопла жидкостных ракетных двигателей. Задачей предлагаемого изобретения является создание работоспособного на переходных и стационарных режимах работы устройства охлаждения сверхзвуковой части сопла с низким уровнем давления охладителя (Рохл<<Рк), что должно обеспечить возможность создания высокоэкономичных ЖРД с повышенным давлением в камере, с одновременным упрощением изготовления сопел и повышением их надежности.

Изобретение относится к области ракетной твердотопливной техники и может быть использовано в конструкциях поворотных сопл из композиционных материалов. Корпус раструба поворотного сопла из композиционных материалов содержит оболочку в виде усеченного конуса с двумя присоединительными фланцами у большого и малого оснований, а также силовой шпангоут с закладными деталями для взаимодействия с механизмами поворота сопла. Оболочка в зоне установки шпангоута выполнена с кольцевым поясом с торцовой поверхностью, фиксирующей положение шпангоута в осевом направлении, и объединена со шпангоутом в неразъемную конструкцию с образованием кольцевого пространства между наружной поверхностью пояса и внутренней поверхностью шпангоута. В кольцевое пространство встроены закладные детали, взаимодействующие с механизмами поворота сопла. Боковая поверхность шпангоута со стороны большого основания оболочки выполнена с усиленным кольцевым ребром, образованным перегибом ткани вокруг введенного в его конструкцию жесткого диска из материала, совместимого с материалом шпангоута, и оформлена как фланец для встраивания корпуса в систему составных частей сопла. Изобретение позволяет повысить надежность раструба поворотного сопла, а также снизить его массу и трудоемкость изготовления. 1 з.п. ф-лы, 3 ил.

Изобретение относится к ракетной технике и предназначено для использования в ракетных двигателях твердого топлива реактивных снарядов систем залпового огня. Сопло ракетного двигателя содержит корпус, дозвуковую и сверхзвуковую части сопла, а также герметизирующее-пусковое устройство с форсажной трубкой и опорой. В форсажной трубке перпендикулярно ее оси на расстоянии от выходного сечения установлен на жестких установочных элементах плоский турбулизатор. Продольные оси установочных элементов расположены в плоскостях, проходящих через ось форсажной трубки. Плоский турбулизатор выполнен с одним или несколькими отверстиями, а на его передней торцевой поверхности закреплена накладка из материала с низкой температурой абляции. Изобретение позволяет снизить разброс внутрибаллистических параметров ракетного двигателя твердого топлива в период выхода на режим. 2 з.п. ф-лы, 1 ил.

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя с раздвижным соплом. Сопло ракетного двигателя содержит раструб и складной насадок, образованный лепестками, кинематически связанными с раструбом механизмом раздвижки, обеспечивающим перевод лепестков из сложенного положения в рабочее. Образующая лепестка в сложенном положении, проведенная через плоскость его симметрии, параллельна образующей раструба, проведенной через эту же плоскость. Другое изобретение группы относится к механизму раздвижки указанного выше сопла ракетного двигателя, содержащему элементы кинематической связи лепестков с раструбом сопла, образующие пантографы, связывающие соседние лепестки друг с другом. Каждый пантограф содержит продольную балку, связанную с каждым из двух соседних лепестков двумя шарнирно закрепленными планками, а каждый лепесток связан с раструбом направляющими элементами. Группа изобретений позволяет упростить конструкцию сопла и механизма его раздвижки, уменьшить массу конструкции и повысить ее надежность. 2 н. и 1 з.п. ф-лы, 11 ил.

Изобретение относится к области ракетостроения, а именно к способам повышения тяги ракетного двигателя, и может быть использовано для увеличения тяги ракетных и авиационных двигателей. Способ увеличения тяги сверхзвукового сопла ракетного двигателя включает вдув внешней среды во внутреннюю полость сопла через систему отверстий и взаимодействие его с рабочим телом. Вдув внешней среды во внутреннюю полость сопла осуществляют в режиме перерасширения при давлении ра<рн, а выдув рабочего тела из внутренней полости сопла вовне в донную область в режиме недорасширения при давлении ра>рн через концевую часть сопла, выполненную из высокотемпературного газопроницаемого материала с открытой пористостью. В качестве высокопористого проницаемого ячеистого материала используют углерод-углеродный композиционный материал, либо керамический композиционный материал, либо жаропрочный металлический сплав, либо волокнистый и канально-трубчатый материал. Изобретение позволяет повысить средний по траектории полета удельный импульс ракетного двигателя, а также обеспечить равномерность вдува и выдува рабочего тела и регулирование высотных характеристик ракетного сопла в режиме перерасширения при давлении ра<рн и недорасширения при давлении ра>рн. 4 з.п. ф-лы, 8 ил.
Изобретение относится к ракетной технике и может быть использовано при создании сопел ракетных двигателей, в частности при разработке конструкции сопел жидкостных ракетных двигателей, имеющих радиационно охлаждаемый сопловой насадок. Сопло ракетного двигателя имеет контур в форме аксиально сдвоенного колокола с изломом контурной линии между двумя колокольными формами. Излом контура сопла ракетного двигателя выполнен в виде дуги окружности, начало и конец которой определяется точками ее касания контуров первой и второй колокольных форм. Контур второй колокольной формы спрофилирован по кривой второго порядка с углом наклона к оси симметрии ракетного сопла в точке конца излома контура ракетного сопла, большим, чем увеличенный на 8° угол наклона контура первой колокольной формы к оси симметрии ракетного сопла в точке начала излома контура. Изобретение позволяет снизить температуру стенки концевой части сопла ракетного двигателя при минимальном снижении эффективного удельного импульса тяги. 1 ил.

Изобретение относится к боеприпасам, а именно к конструкции ракетных частей реактивных снарядов. Ракетная часть реактивного снаряда содержит корпус, дно и хвостовой блок. На внутренней поверхности выходного конуса хвостового блока размещено устройство закрутки, выполненное в виде лопаток переменного сечения. Лопатки расположены с интервалом 0,65-0,75 диаметра критического сечения сопла, а высота лопаток составляет 0,08-0,1 калибра ракетной части. Лопатки переменного сечения выполнены из материала, обеспечивающего их выгорание к концу активного участка. Изобретение позволяет снизить величину технического рассеивания. 4 з.п. ф-лы, 1 ил.

Техническое решение относится к ракетным двигательным установкам, для работы которых используется горючее и окислитель, и может быть использовано при создании сопл жидкостных ракетных двигателей (ЖРД). Сопло камеры жидкостного реактивного двигателя содержит наружную и внутреннюю оболочки, образующие тракт охлаждения, сообщенный через подколлекторное кольцо с коллектором подвода охладителя, размещенным на наружной оболочке, коллектор включает два диаметрально расположенных патрубка и, как минимум, одну поперечную перегородку, установленную на равном угловом удалении от осей патрубков. Эта перегородка перекрывает в % 80-90 площади поперечного сечения коллектора с образованием зазора между перегородкой и подколлекторным кольцом. Кроме того, сопло камеры жидкостного реактивного двигателя снабжено коллектором отвода охладителя с тремя равнорасположенными по окружности патрубками отвода охладителя. Изобретение обеспечивает повышение надежности работы сопла за счет равномерности распределения расхода охладителя по каналам тракта охлаждения, а также и уменьшение габаритов и веса коллекторов подвода и отвода охладителя. 2 з.п. ф-лы, 4 ил.

Изобретение относится к ракетной технике, а именно к способу изготовления внутренней оболочки сопла камеры сгорания жидкостного ракетного двигателя (ЖРД). Способ включает ротационное выдавливание оболочки за несколько переходов. Верхнюю часть со стороны малого диаметра оболочки изготавливают из материала, предназначенного для сваривания с соседним блоком сопла. До ротационного выдавливания оболочки в плоской заготовке вырезают отверстие по диаметру соединения двух материалов. Затем в отверстие вставляют плоскую заготовку из другого материала такой же толщины, что и основная заготовка. Осуществляют сварку кольцевым швом двух материалов. Проводят зачистку сварного шва и контроль его качества, а затем выполняют ротационное выдавливание сварной заготовки и получают биметаллическую внутреннюю оболочку со стороны малого диаметра с переходной зоной от одного материала к другому. Изобретение обеспечивает изготовление биметаллической внутренней оболочки с минимальной деформацией и без подварок, исключение дефектов сварки в переходной зоне от одного материала к другому за счет упрочнения сварного шва при раскатке, повышение качества и надежности оболочки сопла камеры сгорания ЖРД. 1 ил.

При сборке сопла ракетного двигателя с эластичным опорным шарниром сопло устанавливают вертикально стыковочным фланцем на базовую поверхность стыковочного фланца жесткого основания и сжимают эластичный опорный шарнир с заданным усилием. Затем фиксируют подвижную часть сопла относительно неподвижной части стопорными устройствами. Фиксацию подвижной части сопла относительно неподвижной части производят с дискретным увеличением усилия фиксации до заданных значений. Во время каждого увеличения усилия фиксации в двух взаимно перпендикулярных осевых плоскостях, одна из которых проходит через стопорное устройство, контролируют отклонение от перпендикулярности оси подвижной части сопла относительно базовой поверхности стыковочного фланца жесткого основания. При необходимости изменением усилия фиксации стопорных устройств производят корректировку перпендикулярности до нормированного значения. Изобретение позволяет исключить деформацию сопла с эластичным опорным шарниром при сборке, а также снизить ее трудоемкость. 2 ил.

Изобретение относится к области двигателестроения и может быть использовано в космической технике или авиации. Двигатель содержит систему агрегатов формирования и подачи рабочего тела в сопло, при этом сопло имеет входную часть, выполненную в виде полого цилиндра с тангенциальными подводами рабочего тела, расположенными равномерно в поперечной плоскости. Выходная часть сопла имеет конический раструб, переходящий в полый цилиндр. Изобретение обеспечивает упрощение конструкции, снижение массы двигателя. 1 з.п. ф-лы, 4 ил.
Наверх