Способ получения (5z,9z)-5,9-гексадекадиеновой кислоты

Изобретение относится к области органической химии, конкретно к области получения (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1), проявляющей ингибирующее действие на человеческую топоизомеразу I. (5Z,9Z)-5,9-гексадекадиеновая кислота перспективна в качестве лекарственного препарата, обладающего противоопухолевым, противовирусным и антибактериальным действием. Сущность способа заключается во взаимодействии тетрагидропиранового эфира 5,6-гептадиен-1-ола (5) и 1,2-нонадиена (6) с реактивом Гриньяра RMgX (R = Me, Et, Pr, Bu, Oct; X = Cl, Br, I) в диэтиловом эфире в присутствии металлического Mg (порошок) и катализатора титаноцендихлорида Cp2TiCl2, при мольном соотношении (5):(6): RMgX : Mg : Cp2TiCl2 = 10:12:30-50:32:0,4-0,6), в атмосфере аргона при температуре 0-35°C и атмосферном давлении за 6-10 ч. После чего реакционную массу обрабатывают 5% водным раствором HCl с получением 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2H-пирана (7), который окисляют реагентом Джонса. Способ позволяет получать индивидуальное соединение формулы (1) в две препаративные стадии с высоким выходом. 15 пр., 1 табл.

 

Предлагаемое изобретение относится к области органической химии, конкретно к области получения (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1):

(5Z,9Z)-5,9-гексадекадиеновая кислота формулы (1) перспективна в качестве лекарственного препарата, обладающего противоопухолевым, противовирусным и антибактериальным действием [N.M. Carballeira. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents // Prog Lipid Res, 47, (2008), 50-61; D'Arpa, P., Machlin, P.S., Ratrie, H., III, Rothfield, N.F., Cleveland, D.W., Earnshaw, W.C. cDNA cloning of human DNA topoisomerase I: catalytic activity of a 67. 7-kDa carboxyl-terminal fragment // Proc. Nat. Acad. Sci., 85, (1988), 2543-2547]. (5Z,9Z)-5,9-гексадекадиеновая кислота обладает ингибирующим действием на человеческую топоизомеразу I [N.M. Carballeira, J.E. Betancourt, Е.А. Orellano, F.A. Gonzalez. Total syntheses and biological evaluation of (5Z,9Z)-5,9-hexadecadienoic acid, an inhibitor of Human topoisomerase I // J. Nat. Prod, 65, (2002), 1715-1718].

Известен [N.M. Carballeira, A. Emiliano, A. Guzman. Facile syntheses for (5Z,9Z)-5,9-hexadecadienoic acid, (5Z,9Z)-5,9-nonadecadienoic acid, and (5Z,9Z)-5,9-eicosadienoic acid through a common synthetic route // Chem. Phys. Lipids, 100, (1999), 33-40] четырехстадийный способ синтеза (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1) и (5Е,9Z)-5,9-гексадекадиеновой кислоты формулы (3) в соотношении, равном 9:1, исходя из 2-(2-бромоэтил)-1,3-диоксолана (2) с выходом 9-12% по схеме:

Предлагаемый способ не позволяет получать индивидуальную (5Z,9Z)-5,9-гексадекадиеновую кислоту формулы (1).

Известен [N.M. Carballeira, J.E. Betancourt, Е.А. Orellano, F.A. Gonzalez. Total syntheses and biological evaluation of (5Z,9Z)-5,9-hexadecadienoic acid, an inhibitor of Human topoisomerase I // J. Nat. Prod, 65, (2002), 1715-1718.] шести стадийный способ синтеза (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1) исходя из 1,5-гексадиина (4) с выходом 8% по схеме:

Предлагается новый способ стереоселективного синтеза (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1) исходя из тетрагидропиранового эфира 5,6-гептадиен-1-ола (5) и 1,2-нонадиена (6).

Сущность способа заключается во взаимодействии тетрагидропиранового эфира 5,6-гептадиен-1-ола (5) и 1,2-нонадиена (6) с реактивом Гриньяра RMgX (R=Me, Et, Pr, Bu, Oct; X=Cl, Br, I) в присутствии металлического Mg (порошок) и катализатора титаноцендихлорида Cp2TiCl2, взятых в мольном соотношении (5):(6):RMgX:Mg:Cp2TiCl2=10:12:(30-50):32:(0.4-0.6), предпочтительно 10:12:40:32:0.5. Реакцию проводят в атмосфере аргона при температуре 0-35°C, предпочтительно 20°C и атмосферном давлении. Время реакции 6-10 часов, предпочтительно 8 часов. В качестве растворителя необходимо использовать диэтиловый эфир. После обработки реакционной массы 5% водным раствором HCl получают 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2H-пиран формулы (7). Полученный 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2Н-пиран формулы (7) окисляют реагентом Джонса с получением целевой (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1) с выходом 50-70% на исходный пиран (7). Реакция проходит по схеме:

Проведение реакции в присутствии катализатора Cp2TiCl2 больше 6 мол.% по отношению к O-содержащему 1,2-диену формулы (5) не приводит к существенному увеличению выхода целевых продуктов (1). Использование в реакции катализатора Cp2ZrCl2 менее 4 мол.% снижает выход 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2H-пирана (7), что связано с уменьшением каталитически активных центров в реакционной массе. Опыты проводили при температуре 20°C. При более высокой температуре (например, 35°C) увеличиваются энергозатраты и содержание продуктов уплотнения, при меньшей температуре (например, 0°C) снижается скорость реакции.

Изменение соотношения исходных реагентов в сторону увеличения содержания RMgX (R=алкил, X=Cl, Br, I) по отношению к кислородсодержащему 1,2-диену (5) не приводит к значительному повышению выхода целевых продуктов (1). Снижение количества RMgX приводит к уменьшению выхода 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2H-пирана (7), что приводит к уменьшению выхода целевой (5Z,9Z)-5,9-гексадекадиеновой кислоты (1).

Существенные отличия предлагаемого способа.

Предлагаемый способ базируется на использовании в качестве исходных реагентов тетрагидропиранового эфира 5,6-гептадиен-1-ола (5) и 1,2-нонадиена (6), доступных реактивов Гриньяра общей формулы RMgX (R=алкил, X=Cl, Br, I) и реактива Джонса, а также катализатора титаноцендихлорид (Cp2TiCl2). В известном способе (5Z,9Z)-5,9-гексадекадиеновую кислоту получают из 1,5-гексадиина, с применением на двух стадиях крайне пирофорного н-бутиллития. Реакция проводится в шесть стадий, общий выход стереоизомерных кислот составляет (8%).

Предлагаемый способ обладает следующими преимуществами.

Способ позволяет получать с высокой стереоселективностью индивидуальную (5Z,9Z)-5,9-гексадекадиеновую кислоту (1) в две препаративные стадии с высоким выходом. Без применения пирофорного н-бутиллития и низких температур (-78°C) в течение длительного времени.

Способ поясняется следующими примерами.

ПРИМЕР 1. В стеклянный реактор в атмосфере сухого аргона (~0°C) при перемешивании загружали 1.82 г (10 ммоль) тетрагидропиранового эфира 5,6-гептадиен-1-ола формулы (5), 1.49 г (12 ммоль) 1,2-нонадиена (6), 20 мл (40 ммоль) EtMgBr (2M раствор в Et2O), 0.77 г (32 ммоль) Mg (порошок) и 0.124 г (0.5 ммоль) Cp2TiCl2. Температуру реакционной смеси повышали до 20-22°C, перемешивали 8 ч. Реакционную массу обрабатывали 5% раствором HCl в H2O. Продукты реакции экстрагировали эфиром, экстракты сушили над MgSO4, растворитель упаривали, остаток хроматографировали на колонке (SiO2, элюент - петролейный эфир - EtOAc (50:1)). Получали индивидуальный 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2H-пиран формулы (7). Полученный 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2H-пиран формулы (7) окисляют реагентом Джонса (CrO3-H2SO4) с получением целевой (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1) с выходом 69% на исходный пиран (7).

Спектральные характеристики (5Z,9Z)-5,9-гексадекадиеновой кислоты (1):

Спектр ЯМР 1H, δ, м.д.: 0.90 (т, 3H, CH 3, J=12 Гц), 1.30-1.32 (м, 8H, CH 2), 1.70 (кв, 2Н, CH 2, J=7.6 Гц), 2.01-2.14 (м, 8H, CH 2CH=), 2.37 (т, 2H, CH 2-COOH, J=7.2 Гц), 5.33-5.46 (м, 4H, CH=CH);

Спектр ЯМР 13C, δ, м.д.: 14.08 C(16), 22.65 C(15), 24.63 C(3), 26.51 C(11), 27.27 C(7,8), 27.40 C(4), 28.99 C(12), 29.69 C(13), 31.78 C(14), 33.60 C(2), 128.63 C(10), 128.92 C(9), 130.53 C(5), 130.57 C(6), 180.27 C(1).

Другие примеры, подтверждающие способ, приведены в таблице 1.

Таблица 1
№№ п/п Мольное соотношение (4):(5):RMgX:Mg:Cp2TiCl2, ммоль R X Температура, °C Время реакции, час Выход (1), %
1 10:12:40:32:0.5 Et Br 20 8 69
2 10:12:40:32:0.5 Et Br 0 8 50
3 10:12:40:32:0.5 Et Br 35 8 67
4 10:12:40:32:0.5 Et Br 20 6 62
5 10:12:40:32:0.5 Et Br 20 10 66
6 10:12:30:32:0.5 Et Br 20 8 63
7 10:12:50:32:0.5 Et Br 20 8 68
8 10:12:40:32:0.4 Et Br 20 8 64
9 10:12:40:32:0.6 Et Br 20 8 70
10 10:12:40:32:0.5 Et CI 20 8 68
11 10:12:40:32:0.5 Et I 20 8 66
12 10:12:40:32:0.5 Me Br 20 8 65
13 10:12:40:32:0.5 Pr Br 20 8 64
14 10:12:40:32:0.5 Bu Br 20 8 66
15 10:12:40:32:0.5 Oct Br 20 8 51

Способ получения (5Z,9Z)-5,9-гексадекадиеновой кислоты формулы (1):

отличающийся тем, что тетрагидропирановый эфир 5,6-гептадиен-1-ола (5) и 1,2-нонадиен (6) взаимодействуют с реактивом Гриньяра RMgX (R = Me, Et, Pr, Bu, Oct; X = Cl, Br, I) в диэтиловом эфире в присутствии металлического Mg (порошок) и катализатора титаноцендихлорида Cp2TiCl2, при мольном соотношении (5):(6): RMgX : Mg : Cp2TiCl2 = 10:12:30-50:32:0,4-0,6), в атмосфере аргона при температуре 0-35°C и атмосферном давлении за 6-10 ч, после чего реакционную массу обрабатывают 5% водным раствором HCl с получением 2-[(5Z,9Z)-5,9-гексадекадиен-1-илокси]тетрагидро-2H-пирана (7), который окисляют реагентом Джонса.



 

Похожие патенты:

Изобретение относится к средству для лечения или предупреждения заболевания, возникшего на основе структурных и/или функциональных, и/или композиционных изменений липидов в клеточных мембранах, выбранного из рака, сосудистых заболеваний, воспалительных заболеваний, метаболических заболеваний, ожирения и избыточной массы тела, неврологических или нейродегенеративных расстройств, которое представляет собой соединение формулы (I) или его фармацевтически приемлемые соли и производные, выбранные из сложных эфиров, простых эфиров, алкила, ацила, фосфата, сульфата, этила, метила или пропила: в которой а и с могут иметь независимые значения от 0 до 7; b может иметь независимые значения от 2 до 7, где R1 выбран из следующих радикалов: Н, Na, К, СН3О, СН3-CH2O и ОРО(О-СН2-СН3)2, и R2 выбран из следующих радикалов: ОН, ОСН3, O-СН3СООН, СН3, Cl, СН2ОН, ОРО(O-СН2-СН3)2, NOH, F, НСОО и N(ОСН2СН3)2.

Изобретение относится к новым омега-3 липидным соединениям общей формулы (I) или к их любой фармацевтически приемлемой соли, где в формуле (I): R1 и R2 являются одинаковыми или разными и могут быть выбраны из группы заместителей, состоящей из атома водорода, гидроксигруппы, С1-С7алкильной группы, атома галогена, C1-С7алкоксигруппы, С1-С7алкилтиогруппы, С1-С7алкоксикарбонильной группы, карбоксигруппы, аминогруппы и С1-С7алкиламиногруппы; Х представляет собой карбоновую кислоту или ее карбоксилат, выбранный из этилкарбоксилата, метилкарбоксилата, н-пропилкарбоксилата, изопропилкарбоксилата, н-бутилкарбоксилата, втор-бутилкарбоксилата или н-гексилкарбоксилата, карбоновую кислоту в форме триглицерида, диглицерида, 1-моноглицерида или 2-моноглицерида, или карбоксамид, выбранный из первичного карбоксамида, N-метилкарбоксамида, N,N-диметилкарбоксамида, N-этилкарбоксамида или N,N-диэтилкарбоксамида; и Y является С16-С22 алкеном с двумя или более двойными связями, имеющими Е- и/или Z-конфигурацию.

Изобретение относится к усовершенствованному способу получения этиленненасыщенных кислот или их эфиров следующей формулы: R3-C(=(CH2)m)-COOR4, где R3 и R4, каждый независимо, представляют собой водород или алкильную группу, и m равно 1, путем взаимодействия алкановой кислоты или эфира алкановой кислоты формулы R3-CH2-COOR4, где R3 и R4, каждый независимо, представляют собой водород или алкильную группу с источником метилена или этилена формулы I, где R5 и R6 независимо выбраны из C1-C12 углеводородных групп или Н; Х представляет собой О или S; n представляет собой целое число от 1 до 100; и m равно 1, в присутствии каталитической системы с получением в качестве продукта этиленненасыщенной кислоты или сложного эфира, где продукт в виде кислоты или сложного эфира затем приводят в контакт с диенофилом, чтобы устранить нежелательный цвет продукта, где диенофил представляет собой соединение формулы: где Z выбран из группы, состоящей из -C(O)Y, -CN, -NO2 или галогена; Y выбран из группы, состоящей из водорода, алкила, гетеро, -OR, галогена или арила; R, R1 и R2 независимо представляют собой водород, алкил или арил, а гетеро представляет собой N, S или О, причем гетероатомы могут быть незамещенными или замещенными одной или несколькими группами, состоящими из водорода, алкила, -OR, арила, аралкила или алкарила, где R такой, как определено выше для Y; Z' может представлять собой любую группу, выбранную выше для Z, или может, кроме того, представлять собой водород, алкил, арил или гетеро; или Z и Z1 могут вместе составлять группу -C(O)Y(O)C- таким образом, чтобы диенофил образовывал циклическую группу формулы Iа, где R1 и R2 такие, как определено выше, Y представляет собой гетеро, такой, как определено выше, или Y представляет собой алкиленовую группу формулы -(CH2)s-, где s равно 1, 2 или 3.

Изобретение относится к новому липидному соединению общей формулы (I), в которой n=0; R1 и R2 являются одинаковыми или различными и могут быть выбраны из группы заместителей, состоящей из атома водорода, С1 -С7алкильной группы, атома галогена и С1 -С7алкокси группы; Х представляет собой COR3 или CH2OR4, где R3 выбран из группы, состоящей из водорода, гидрокси, С1-С 7алкокси и амино; и R4 выбран из группы, состоящей из водорода, С1-С7алкила или С1 -С7ацила, Y представляет собой С9-С 21алкен с одной или несколькими двойными связями в Е- или Z-конфигурации, при этом цепь Y является незамещенной и содержит двойную связь в -3 положении; при условии, что R1 и R2 не могут одновременно представлять собой атом водорода.

Изобретение относится к производным 3-аминокапролактама формулы (I): где Х представляет собой -CO-R1 или -SO2-R2, R1 представляет собой алкильный (за исключением 5-метилгептанила и 6-метилгептанила, где радикал R1 присоединен к карбонилу в положении 1), галогеналкильный, алкокси (за исключением трет-бутилокси), алкенильный, алкинильный или алкиламино радикал из 4-20 атомов углерода (например, из 5-20 атомов углерода, 8-20 атомов углерода, 9-20 атомов углерода, 10-18 атомов углерода, 12-18 атомов углерода, 13-18 атомов углерода, 14-18 атомов углерода, 13-17 атомов углерода) и R2 представляет собой алкильный радикал из 4-20 атомов углерода (например, из 5-20 атомов углерода, 8-20 атомов углерода, 9-20 атомов углерода, 10-18 атомов углерода, 12-18 атомов углерода, 13-18 атомов углерода, 14-18 атомов углерода, 13-17 атомов углерода); или к его фармацевтически приемлемой соли.

Изобретение относится к химии производных переходных металлов и может найти применение в химической промышленности при получении карбоксилатов переходных металлов, а также относится к усовершенствованному способу получения карбоксилатов циркония взаимодействием четыреххлористого циркония с карбоксильными производными общей формулы RCOOM, где R - линейный или разветвленный алифатический радикал C nH2n+1 или остаток ненасыщенной кислоты, где n=0-16, a M - протон или катион щелочного металла, в котором в качестве соединений RCOOM используют щелочные соли алифатических или ненасыщенных кислот, взаимодействие четыреххлористого циркония с указанными соединениями проводят в твердой фазе в отсутствие растворителя при механической активации при мольном соотношении ZrCl4:RCOOM в пределах 1<m<4.5, где m - целое или дробное число, с последующей экстракцией образовавшегося карбоксилата циркония органическим растворителем.

Изобретение относится к применению соединений формулы R 2=R1-X, где R1 и R2 имеют всего от 23 до 35 атомов углерода, X представляет собой первичную спиртовую функциональную группу -СН2ОН или карбоксильную функциональную группу -СООН, R1 представляет собой насыщенную линейную углеводородную цепь, имеющую 9 атомов углерода, а R 2 представляет собой линейную углеводородную цепь, которая является насыщенной или ненасыщенной, включающей от 1 до 4 этиленовых ненасыщенных связей, для получения композиций, которые могут быть использованы для лечения и профилактики гиперхолестеринемии.

Изобретение относится к способу получения насыщенных или ,-ненасыщенных карбоновых кислот. .

Изобретение относится к способу получения ω-иодалифатических карбоновых кислот и их эфиров. Способ включает расщепление алифатических циклических кетонов, таких как циклогексанон, циклогептанон или 4-метилциклогексанон, под действием пероксида водорода в присутствии катализатора и соединений иода при комнатной температуре.

Изобретение относится к тонкому органическому синтезу. .
Изобретение относится к способу получения катализатора для окисления в газовой фазе с определенным распределением по размерам частиц оксида ванадия. .
Изобретение относится к усовершенствованному способу получения адипиновой кислоты, применяемой в различных областях, например, в качестве добавки в различные продукты и при изготовлении бетона, а также в качестве мономера при получении полимеров.
Изобретение относится к усовершенствованному способу получения дикарбоновых кислот, которые находят применение в различных областях, например, в качестве добавки к различным продуктам, при изготовлении бетона, а также в качестве мономеров при получении полимеров.

Изобретение относится к усовершенствованному способу окисления циклоалифатических углеводородов и/или спиртов и кетонов в жидкой среде с помощью окислителя, содержащего молекулярный кислород, до кислот или многоосновных кислот.
Изобретение относится к усовершенствованному способу получения карбоновых кислот и поликислот окислением в жидкой среде молекулярным кислородом циклогексана в присутствии катализатора, липофильного кислотного органического соединения, имеющего растворимость в воде ниже 10 мас.% при температуре от 100С до 30 0С и образующего с циклогексаном, по меньшей мере, одну гомогенную жидкую фазу, причем соотношение между числом молей липофильной кислоты и числом молей металла, образующего катализатор, составляет в интервале от 7,0 до 1300, а липофильную кислоту выбирают из группы, в которую входят кислоты 2-этилгексановая, декановая, ундекановая, додекановая, стеариновая (октадекановая) и их перметилированные производные, кислоты 2-октадецилянтарная, 2,5-ди-третбутилбензойная, 4-третбутилбензойная, 4-октилбензойная, третбутилгидроофталат, нафтеновые или антраценовые кислоты, замещенные алкильными группами, преимущественно типа третбутила, жирные кислоты, замещенные производные фталевых кислот.
Изобретение относится к усовершенствованному способу окисления циклических углеводородов, спиртов и/или кетонов до карбоновой кислоты с помощью кислорода или кислородсодержащего газа.

Изобретение относится к способу селективного отделения железа от других ионов металлов, в частности, от ионов, содержащихся в некоторых катализаторах окисления. .

Изобретение относится к области органической химии, конкретно к области получения (5Z,9Z)-5,9-докозадиеновой кислоты формулы (1), проявляющей ингибирующее действие на человеческую топоизомеразу I. (5Z,9Z)-5,9-Докозадиеновая кислота перспективна в качестве лекарственного препарата, обладающего противоопухолевым, противовирусным и антибактериальным действием. Сущность способа заключается в том, что тетрагидропирановый эфир 5,6-гептадиен-1-ола (4) и 1,2-пентадекадиен (5) взаимодействуют с реактивом Гриньяра RMgX (R = Me, Et, Pr, Bu, Oct; X = Cl, Br, I) в диэтиловом эфире в присутствии металлического Mg (порошок) и катализатора титаноцендихлорида Cp2TiCl2, при мольном соотношении (4):(5) : RMgX : Mg : Cp2TiCl2=10:12:(30-50):32:(0.4-0.6), в атмосфере аргона при температуре 0-35°С и атмосферном давлении за 6-10 ч, после чего реакционную массу обрабатывают 5% водным раствором HCl с получением 2-[(5Z,9Z)-5,9-докозадиен-l-илокси]тетрагидро-2H-пирана (6), который окисляют реагентом Джонса. 2 н.п. ф-лы, 1 ил., 1 табл., 15 пр.
Наверх