Планетарный механизм

Изобретение относится к механизмам, обеспечивающим орбитальное движение дисков (колеса) редуктора, и может применяться в качестве механизма, преобразующего вращательное движение в возвратно-поступательное. Планетарный механизм содержит входную шестерню (1), наружное кольцо (2) и сателлиты (4, 5) разного диаметра, снабженные зубчатыми венцами. Наружное кольцо (2) снабжено механизмом, предотвращающим его свободное вращение вокруг собственной оси, для чего оно шарнирно соединено с ползуном (7) в продольной прорези (8). Все сателлиты (4 и 5) посажены на одно свободное водило (6) таким образом, что сателлит большего размера (4) находится в одновременном зацеплении с шестерней (1) и наружным кольцом (2) и выполнен размером, обеспечивающим эксцентричное смещение наружного кольца (2) относительно центральной оси. Сателлиты меньшего размера (5) зацепляются только с наружным кольцом (2). Изобретение позволяет исключить влияние условий сборки на работу механизма, расширить диапазон возможных размеров эксцентриситета и увеличить нагрузочную способность планетарного механизма. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к планетарным механизмам и предназначено для использования, в частности, в планетарных передачах типа K-H-V (по классификации, принятой в книге В.Н. Кудрявцев. Планетарные передачи. - М.: Машиностроение, 1966 г., стр.10-11) с центральной осью передачи, лежащей внутри основной окружности планетарного колеса. Предлагаемый механизм предназначен для обеспечения орбитального движения планетарного колеса в таких передачах. Планетарный механизм может найти применение и в других конструкциях, где требуется орбитальное движение кольца, например, в механизмах преобразования вращательного движения в возвратно-поступательное.

Традиционно орбитальное движение колеса обеспечивается эксцентриком на входном валу, на котором с возможностью вращения посажено планетарное колесо (см. там же стр.10-11).

Известна дифференциальная планетарная передача RU 2153612, предназначенная для преобразования вращательного движения ведущего звена во вращательно-вращательное движение ведомого звена. Передача содержит центральное колесо внешнего зацепления - ведущую шестерню, центральное колесо внутреннего зацепления, водило с установленными на них сателлитами. Центральное колесо внешнего зацепления смещено относительно оси центрального колеса с внутренним зацеплением на заданную величину эксцентриситета е за счет применения сателлитов разного диаметра. При этом все сателлиты находятся в зацеплении с обоими центральными колесами. Колесо внутреннего зацепления посажено в эксцентриковых подшипниках относительно оси шестерни. Ось водила совмещена с осью ведущей шестерни. Описанная передача преобразует вращательное движение ведущего звена в сложное вращательно-вращательное движение ведомого звена и предназначена для использования в смесителях, полировальных и др. подобных устройствах. Кроме того, передача имеет жесткие условия существования по числу зубьев колес, что резко ограничивает возможности ее использования.

За прототип нами выбран механизм по патенту на полезную модель №63476, как наиболее близкий по конструктивному исполнению и по назначению и выполняемым функциям. В патенте предложен механизм, обеспечивающий орбитальное движение выходного звена и названный авторами эксцентриковым подшипником. Эксцентриковый подшипник, кроме функции эксцентрика, выполняет также функцию редуктора. Эксцентриковый подшипник, по сути, представляет собой планетарный механизм, и содержит наружное кольцо - зубчатое колесо внутреннего зацепления и расположенную внутри него входную шестерню. Наружное кольцо посажено эксцентрично относительно входной шестерни с помощью, по меньшей мере, трех сателлитов разного диаметра. Сателлиты снабжены зубчатыми венцами, которые находятся в зацеплении с наружным кольцом и с входной шестерней. Наружное кольцо жестко связано с кронштейном, образуя совместно с ним шатун, который шарнирно связан с ползуном, взаимодействующим со стойкой. Эта связь предотвращает вращение наружного кольца вокруг собственной оси, но позволяет ему совершать орбитальное движение, тем самым преобразуя его в колебательное возвратно-поступательное движение ползуна.

Для увеличения нагрузочной способности наружное кольцо, входная шестерня и сателлиты кроме зубчатых венцов имеют цилиндрические беговые дорожки, диаметр которых равен диаметрам делительных окружностей соответствующих венцов. Благодаря этому цилиндрические беговые дорожки контактируют попарно друг с другом.

Данный механизм имеет ограничения по передаточному отношению, обусловленные необходимостью соблюдать все условия существования планетарного ряда. В частности речь идет об условии сборки, которое накладывает жесткие ограничения на возможные числа зубьев внутренней шестерни, наружного зубчатого кольца и всех трех сателлитов. Кроме того, прототип имеет ограничения по величине эксцентриситета, которая определяется соотношением диаметров большего и меньших сателлитов. Учитывая ограничения по числам зубьев, в реальности можно обеспечить не любой эксцентриситет, а лишь их ограниченное число.

Задачей изобретения является создание простого в сборке планетарного механизма, обеспечивающего повышенное передаточное отношение и больший эксцентриситет.

Технический результат изобретения заключается в исключении влияния на планетарный механизм условия сборки.

Для решения поставленной задачи планетарный механизм, как и прототип, содержит наружное кольцо, входную шестерню и сателлиты разного диаметра, снабженные зубчатыми венцами. Наружное кольцо снабжено механизмом, предотвращающим его свободное вращение вокруг собственной оси. В отличие от прототипа, все сателлиты посажены на одно свободное водило, причем таким образом, что сателлит большего размера находится в одновременном зацеплении с шестерней и наружным кольцом и выполнен размером, обеспечивающим эксцентричное смещение наружного кольца относительно центральной оси. Сателлиты меньшего размера зацепляются только с наружным кольцом. Очевидно, что при таком выполнении механизм может обеспечивать любой эксцентриситет, так как он определяется лишь размерами шестерни и большего сателлита. Сателлиты меньшего размера могут быть выполнены с любым числом зубьев. Число зубьев будет зависеть только от радиуса водила, который выбирают, учитывая геометрические размеры механизма (диаметр наружного кольца и величину эксцентриситета).

Для увеличения нагрузочной способности целесообразно все зубчатые венцы, как и в прототипе, дополнить цилиндрическими беговыми дорожками, которые имеют диаметры, равные соответственным начальным окружностям зубчатых венцов. В этом случае зубья служат для определения углового положения колес друг относительно друга, а беговые цилиндрические дрожки шестерни, большего и меньших сателлитов, и наружного кольца, опираясь друг на друга, передают основную нагрузку.

Такого же результата можно добиться, если зубья зубчатых венцов всех колес выполнить с опорными поверхностями цилиндрической формы. Опорные поверхности колес, находящихся в зацеплении, контактируют друг с другом и благодаря их цилиндрической форме перекатываются друг по другу, обеспечивая силовой контакт.

Предлагаемый планетарный механизм может быть использован в качестве эксцентрика и предварительной ступени в любой планетарной передаче типа K-H-V. Рассмотрим предлагаемый механизм на примере его использования в шариковых или роликовых редукторах, например таких как описаны в SU 1477964 или в RU 2029172.

Изобретение иллюстрируется графическими материалами, на которых изображено:

На фиг.1 показана принципиальная схема предлагаемого планетарного механизма.

На фиг.2 пример использования планетарного механизма в роликовой передаче с промежуточными телами качения.

На фиг.3 представлена часть продольного сечения планетарного механизма, у которого зубчатые венцы дополнены цилиндрическими опорными беговыми дорожками.

На фиг.4 показаны профили зубьев с опорными цилиндрическими поверхностями на вершинах и впадинах зубьев соответственно.

Планетарный механизм, представленный на фиг.1, содержит входную шестерню 1 и наружное кольцо 2 с зубчатым венцом 3, совершающее орбитальное движение вокруг входной шестерни 1 благодаря эксцентричной посадке с помощью сателлитов 4 и 5 разного размера с зубчатыми венцами. Сателлит 4 большего размера находится в зацеплении с шестерней 1 и наружным кольцом 2, а сателлиты 5 меньшего размера зацепляются только с наружным кольцом 2, причем все три сателлита посажены на одно свободное водило 6. Размер большего сателлита 4 выбран таким образом, чтобы наружное колесо 2 было смещено относительно центральной оси O механизма на эксцентриситет e. Все зубчатые колеса расположены в одной плоскости. Наружное кольцо 2 снабжено механизмом, предотвращающим его свободное вращение вокруг собственной оси. На фиг.1 этот механизм выполнен в виде ползуна 7, шарнирно связанного с наружным кольцом 2 и расположенного в продольной прорези 8.

В роликовом редукторе, представленном на фиг.2, содержащем корпус 9 с быстроходным и тихоходным валами, заявляемый планетарный механизм выполняет роль эксцентрика и предварительной ступени. Предварительная ступень содержит входную шестерню 1, посаженную на быстроходный вал, водило 6, сателлиты 4 и 5 и наружное колесо 2 с зубчатым венцом 3. Водило 6 посажено на подшипниках 10 с возможностью свободного вращения вокруг общей оси редуктора. Все сателлиты 4 и 5 посажены с помощью подшипников 11 и 12 на одно свободное водило 6 таким образом, что сателлит 4 находится в зацеплении с шестерней 1 и наружным кольцом 2, а сателлиты 5 зацепляются только с наружным кольцом 2. Размер сателлита 4 выбран таким образом, чтобы наружное кольцо 2 было смещено относительно оси O редуктора на эксцентриситет e. Меньшие сателлиты 5 служат только для геометрической фиксации эксцентричного положения наружного кольца 2, смещения от этого положения возникают из-за наличия зазора в зацеплении, который всегда присутствует в реальной конструкции. Внешняя окружность наружного кольца 2 планетарного механизма снабжена механизмом, который не дает возможности поворачиваться кольцу вокруг собственной оси. Этот механизм представляет собой профиль с лунками 13, находящимися в постоянном контакте с роликами 14. Ролики 14 посажены в прорезях сепаратора 15. В свою очередь, ролики 14 зацепляются с венцом внутреннего зацепления 16, посаженным в корпусе 9.

Описанный шариковый редуктор с одним наружным колесом предлагаемого планетарного механизма обладает большой неуравновешенной массой и требует применения противовесов. Кроме того, определенные положения колеса являются мертвыми точками, переход через них обеспечивается только его инерционной массой. Чтобы устранить эти проблемы, редуктор целесообразно делать больше чем с одним наружным кольцом, например двумя или тремя, расположенными вдоль одной оси и повернутыми друг относительно друга на одинаковые углы. Внутри каждого кольца расположены ряды сателлитов разного диаметра, также повернутые друг относительно друга. Два колеса повернуты друг относительно друга на 180 градусов, а три - на 120 градусов, что обеспечивается посадкой сателлитов большего размера со смещением друг относительно друга на те же углы. Кроме того, по длине сквозь все последовательно расположенные ряды наружных колец с сателлитами проходит одна общая входная шестерня.

В предлагаемом механизме зубчатые венцы наружного колеса 2 и сателлитов 4 испытывают дополнительные радиальные нагрузки, которых нет в обычном планетарном механизме. Предлагается эти нагрузки перенести с зубьев на цилиндрические опорные поверхности (см. фиг.3). Здесь шестерня 1, кроме зубчатого венца 17, имеет также цилиндрическую поверхность 18. Соответственно, больший сателлит 4 кроме зубчатого венца 19, находящегося в зацеплении с венцом 17 шестерни 1, имеет цилиндрическую поверхность 20, непосредственно контактирующую с цилиндрической опорной поверхностью 18 шестерни 1. Точно также наружное колесо 2 кроме венца внутреннего зацепления 3 имеет также внутреннюю цилиндрическую опорную поверхность 21, контактирующую с цилиндрической опорной поверхностью 20 сателлита 4. Причем цилиндрические опорные поверхности зацепляющихся колес имеют диаметры, равные соответственным начальным окружностям зубчатых венцов. Таким образом, зубчатые венцы 3, 17 и 19 отвечают только за угловое положение сателлита 4 и наружного кольца 2, а всю радиальную нагрузку несут опорные цилиндрические поверхности 18, 20 и 21, опирающиеся друг на друга.

На фиг.4 эта же задача разгрузки зубьев венцов решена иным образом. Здесь все находящиеся в зацеплении профили 3, 17 и 19 наружного кольца 2, шестерни 1 и сателлита 4 модифицированы так, чтобы перенести радиальную нагрузку с рабочей боковой поверхности зуба. Для этого вершины и впадины зубьев венцов, находящихся в зацеплении, выполнены в форме цилиндрических поверхностей, которые контактируют друг с другом, воспринимая радиальную нагрузку. Так, для пары венцов 3 и 19 вершины зубьев венца 19 выполнены по цилиндрической поверхности 22, которая контактирует с цилиндрической поверхностью 23, по которой выполнены впадины между зубьями венца 3. Соответственно вершины зубьев венца 3 выполнены по цилиндрической поверхности 24, контактирующей с цилиндрической поверхностью 25 впадин зубьев венца 19. Аналогично по цилиндрическим поверхностям 26 и 27 выполнены вершины и впадины зубьев венца 17. При этом поверхность вершин 26 венца 17 контактирует с поверхностью впадин 25 венца 19, а вершины зубьев венца 19, выполненные по цилиндрической поверхности 22, контактируют с поверхностью впадин 27 венца 17.

Рассмотрим работу предлагаемого планетарного механизма на примере роликового редуктора, изображенного на фиг.2. При вращении входного быстроходного вала начинает вращаться шестерня 1 планетарного механизма. Вращение входной шестерни 1 вызывает вращение зацепляющегося с нею большего сателлита 4. Сателлит 4 одновременно зацепляется и с внутренней поверхностью колеса 2. Но вращение сателлита 4 не может вызвать вращение наружного колеса 2 вокруг собственной оси, так как последнее фиксировано от вращения лунками 13 с посаженными в них роликами 14. Вращение сателлита 4 в этих условиях приводит к его обкатыванию по колесу 2 и вращению свободного водила 6. Т.е. ось сателлита 4 начинает вращаться вокруг оси редуктора. Перемещение сателлита 4, обеспечивающего эксцентричную посадку колеса 2, вызывает орбитальное перемещение последнего вокруг оси редуктора. Последующая работа роликового редуктора не отличается от работы обычного роликового редуктора с эксцентриком на входном валу. Движение наружного колеса 2 вызывает в цепочке роликов 14 волну перемещений вдоль радиуса. Взаимодействуя с неподвижным венцом 16, ролики начинают обкатывать венец 16 и вызывают вращение сепаратора 15, которое передается тихоходному валу. Передаточное отношение от шестерни 1 к водилу 6 (и к наружному кольцу 2), т.е. первой ступени, определяется, как и в обычной планетарной передаче, как i1=1+z2/z1. Передаточное отношение непосредственно роликовой ступени определяется как i2=z16, где z1, z2 и z16 - число зубьев шестерни 1, наружного колеса 2 и венца 16 соответственно. Таким образом, суммарное передаточное отношение определяется как ∑i=i1×i2

Сателлиты 5 предварительной ступени сидят на водиле 6 и находятся в зацеплении только с внутренней поверхностью 3 колеса 2. Тем самым сателлиты 5 обеспечивают колесу 2 дополнительные две точки опоры по его внутренней поверхности 3. Несмотря на то что положение колеса 2 в пространстве определено и без этих сателлитов 5 за счет его зацепления механизмом 13 с роликами 14 сепаратора 15, при погрешностях в изготовлении возможно смещение диска 2 от теоретического расчетного положения. Для устранения этих проблем и предусмотрены опорные сателлиты 5, которые к тому же уменьшают дисбаланс масс в предварительной ступени редуктора.

Таким образом, сателлиты 5, посаженные на свободное водило 6 и зацепляющиеся только с внутренней поверхностью 3 наружного кольца 2, исключают влияние условий сборки на работу планетарного механизма, позволяют расширить диапазон возможных эксцентриситетов планетарного механизма, чем и достигается технический результат изобретения. Кроме того, число зубьев меньших сателлитов 5 определяется только радиусом водила и не зависит от числа зубьев шестерни 1. А также дополнение всех зубчатых венцов 3, 17 и 19 цилиндрическими беговыми дорожками 21, 18 и 20 соответственно или выполнение зубьев зубчатых венцов 3, 17 и 19 с опорными поверхностями цилиндрической формы 23 и 24, 26 и 27, 22 и 25, соответственно, позволяет увеличить нагрузочную способность планетарного механизма.

1. Планетарный механизм, содержащий входную шестерню и наружное кольцо с зубчатым венцом внутреннего зацепления, посаженное эксцентрично относительно центральной оси с помощью сателлитов разного размера, причем сателлит большего размера находится в зацеплении с шестерней и наружным кольцом, и наружное кольцо снабжено механизмом, предотвращающим его свободное вращение вокруг собственной оси, отличающееся тем, что сателлиты меньшего размера находятся в зацеплении только с зубчатым венцом внутреннего зацепления наружного кольца, и все три сателлита посажены на оси свободного водила.

2. Планетарный механизм по п.1, отличающийся тем, что сателлиты, входная шестерня и наружное кольцо снабжены цилиндрическими опорными поверхностями с диаметрами, равными соответственным начальным окружностям зубчатых венцов.

3. Планетарный механизм по п.1, отличающийся тем, что вершины и впадины между зубьями зубчатых венцов всех колес выполнены в виде опорных поверхностей цилиндрической формы, опорные поверхности колес, находящихся в зацеплении, контактируют друг с другом.



 

Похожие патенты:

Изобретение относится к электротехнике и может быть использовано в электромеханических приводах, в приборостроении, в средствах автоматизации для различных технологических линий.

Изобретение относится к механическим зубчатым передачам эксцентрикового типа и может быть использовано в машиностроении при проектировании и эксплуатации редукторов и механизмов.

Изобретение относится к машиностроению, в частности к приводной технике. Двухступенчатый планетарно-цевочный редуктор имеет входную (2) и выходную (1)ступени, выполненные в виде планетарно-цевочных передач.

Изобретение относится к машиностроению, в частности к приводной технике. Двухступенчатый планетарно-цевочный редуктор содержит входную (2) и выходную (1) передачи.

Изобретение относится машиностроению. Передача с объемно-пространственным зацеплением содержит червячное колесо и взаимодействующий с ним червяк, выполненный в виде цилиндрического вала и охватывающей его витой пружины, закрепленной на этом валу в профилированных кольцах.

Изобретение относится к области машиностроения, в частности к электромеханическим усилителям тормозного привода. Электромеханический усилитель тормозного привода, предназначенный для передачи мускульного усилия, прикладываемого водителем, и собственного дополнительного усилия в качестве приводного усилия на поршень главного тормозного цилиндра имеет электродвигатель и приводимый им в действие передаточный механизм.

Изобретение относится к многоступенчатым планетарным механизмам, используемым в автомобилестроении, в частности для открытия и закрытия крышек багажника автомобилей.

Изобретение относится к испытательной технике и может быть использовано для исследования работы реальных зубчатых передач на их роликовых аналогах. Модель зубчатой передачи содержит пару сопряженных цилиндрических роликов 1 и 2, расположенных вертикально и установленных с возможностью вращения в корпусе 5 машины трения.

Изобретение относится к конструкции средств высокой проходимости и может быть использовано в транспортном машиностроении. Движитель транспортного средства включает приводную ступицу с установленными на ней и связанными между собой боковым и опорным ободами.

Изобретение относится к машиностроению, в частности, к механическим передачам. Планетарная передача содержит ведущее эксцентриковое водило (1), два сателлита с внешними зубьями и отверстиями на ободах (2), неподвижное центральное колесо с внутренними зубьями (3), ведомый вал (4), жестко связанные с ведомым валом посредством стяжек (7) щеки (5, 6) с отверстиями и установленные свободно в отверстиях щек (5, 6) и ободов сателлитов (2) ролики (8).

Изобретение относится к приводу регулировки для регулировочных устройств автомобильного сиденья. Привод регулировки для регулировочного устройства автомобильного сиденья содержит приводной двигатель, двухступенчатый понижающий редуктор и корпус для установки приводного двигателя и крепления двухступенчатого понижающего редуктора в оболочке корпуса, закрывающейся крышкой корпуса. Сцепление (43) соединено со второй шестерней (42) первой понижающей передачи (4). Сцепление (43) может входить в зацепление с первой шестерней (62) второй понижающей передачи (6, 7), которая размещается в предварительно монтируемой группе (5) между крышкой корпуса (3) и защитным диском (8, 8', 9), соединенным с крышкой корпуса (3), и подпирается в осевом направлении. Предварительно монтируемая группа (5) может соединяться с оболочкой корпуса (2) и образовывать целостный конструктивный узел. Достигается создание привода регулировки с хорошим сопротивлением удару при столкновении и простой, экономичной комбинацией различных ступеней понижающего редуктора. 24 з.п. ф-лы, 25 ил.

Изобретение относится к машиностроению, а именно к планетарным редукторам. Трехсателлитный планетарный редуктор содержит входное зубчатое колесо, три сателлита (2, 3, 4), первый трехпарный шатун (5), второй трехпарный шатун (6), водило и неподвижное зубчатое колесо (8). Первый (2) и второй (3) сателлиты связанны между собой первым трехпарным шатуном (5), к третьей паре которого присоединятся второй трехпарный шатун (6), соединяющий третий сателлит (4) с двухпарным поводком (7) (водилом), входящим в шарнир планетарного механизма. Изобретение направлено на обеспечение определенности движения и передачи мощности от входного звена к водилу через три сателлита. 1 ил.

Изобретение относится к области авиации, в частности к конструкциям трансмиссий вертолетов. Редуктор вертолета содержит корпус, в котором размещены конические зубчатые колеса, связанные с валами несущих винтов вертолета, коническая шестерня, образующая зацепления с вышеуказанными коническими зубчатыми колесами валов винтов и связанная с валом, установленным на конических подшипниках качения и с размещенным на этом валу зубчатым колесом. Внутренние кольца конических подшипников зафиксированы в осевом направлении относительно вала, а наружные кольца поставлены с упором в заплечики корпуса и втулки по схеме «в растяжку». Внешнее кольцо подшипника, установленное рядом с зубчатым венцом конической шестерни, имеет возможность жесткого контакта с заплечиком корпуса, а внешнее кольцо другого подшипника - возможность опоры на внутренний заплечик втулки. Последняя размещена в отверстии корпуса, имеющем паз для взаимодействия со шпонкой, связанной с поверхностью названной втулки. Поверхность втулки выходит за пределы корпуса своей наружной резьбой, сопряженной с резьбой гайки. Торец гайки имеет возможность контакта с корпусом редуктора снаружи. Гайка выполнена в виде глухого стакана с пазами, в одном из которых размещен зуб фиксатора, закрепленного на корпусе редуктора вертолета. Достигается повышение надежности и ремонтопригодности редуктора. 2 ил.

Изобретение относится к вооружению и может быть использовано в многоствольных гранатометах. Многоствольный гранатомет (МГ) содержит основание с отверстием, рисками, опорным устройством и поворотной опорой с блоком стволов и рисками, привод опоры с самотормозящейся червячной передачей, коренную шестерню в зацеплении с зубчатым ободом на поворотной опоре, вал с хвостовиком для червячного колеса и коренной шестерни, датчик угла поворота в виде переменного резистора на корпусе привода и с шестерней с отверстием, регулируемую вращающуюся шестерню центральную, фиксатор с соосным отверстием для болта. Изобретение позволяет упростить управление, сборку и эксплуатацию МГ. 3 з.п. ф-лы, 6 ил.

Изобретение относится к области машиностроения, в частности к космической технике, и может быть использовано при проектировании систем раскрытия конструкций космических аппаратов. Привод раскрытия содержит корпус с установленными в нем зубчатым редуктором и электродвигателем. В качестве электродвигателя применены два коллекторных электродвигателя постоянного тока, определяющие скорость вращения или торможения привода. В кинематическую цепь каждого электродвигателя включены инерционные муфты, а часть редуктора до инерционных муфт имеет передаточное отношение не более 10000. Достигается повышение надежности устройства. 1 ил.

Изобретение относится к машиностроению и может быть использовано для преобразования вращательного движения в поступательное. Винтовая передача содержит винт (1), выполненный с возможностью подключения к двигателю, гайку (2) и две опоры. Винт (1) установлен в одной плавающей опоре и во второй, фиксирующей в двух направлениях, опоре, установленной в корпусе (6) с крышками (7) и (8). Фиксирующая опора состоит из роликов (9), двух колец (10), двух рядов шаров (12). На участке винта (1), находящегося внутри фиксирующей опоры, выполнены кольцевые чередующиеся выступы и соответствующие канавки, взаимодействующие с выступами и канавками роликов (9). Это соединение при вращении винта передает на ролики осевую силу. Кольца (10) препятствуют радиальному смещению роликов, а шары (12) передают нагрузку с роликов на одну из крышек корпуса (6). В крышки (7) и (8) ввинчиваются цилиндрические детали (14), являющиеся опорами для шаров (12) и позволяющие осуществлять индивидуальную регулировку осевых зазоров для каждого ролика. После регулировки положение цилиндрических деталей (14) фиксируется гайками (15). Достигается повышение надёжности работы и снижение технологических издержек при изготовлении. 5 ил.

Изобретение относится к электротехнике, к магнитным бесконтактным планетарным редукторам, предназначенным для привода исполнительных механизмов и устройств с одновременной редукцией частоты вращения. Технический результат состоит в улучшении энергетических показателей и уменьшении габаритов. Магнитный планетарный редуктор содержит корпус, неподвижные и подвижные зубчатые центральные колеса из магнитомягких материалов, водило, эксцентрично расположенный зубчатый сателлит из магнитомягкого материала, магнитопровод, противовесы, подшипники. Система подмагничивания выполнена в виде постоянного магнита или обмотки возбуждения с осевым подмагничиванием, опорные поверхности для сателлита имеют в корпусе ответные опорные поверхности, на которые опирается сателлит. Зубчатые центральные колеса и сателлит выполнены с одинаковым шагом. Центральные колеса с равными количествами зубьев установлены неподвижно в корпусе (на статоре). Сателлит выполнен с двумя зубчатыми венцами равными количествами зубьев с минимальной разницей числа зубьев от числа зубьев на центральных колесах и связан с выходным валом через устройство, способное передавать несоосное вращательное движение, например, через шарнирное устройство, карданное устройство и др. Геометрические параметры опорных поверхностей и параметры зубчатых колес выполнены с соблюдением соотношения между числами зубьев на центральных колесах и на сателлите и диаметрами опорных поверхностей в корпусе и сателлите. 1 з.п. ф-лы, 1 ил.

Устройство для преобразования вращательного движения в плоскопараллельное движение узла изделия относится к машиностроению и может быть использовано в качестве механической роликовинтовой передачи со встроенным электродвигателем. Устройство состоит из корпуса (1) с крышками (2) и (3), в котором на подшипниках (10) и (11) установлена планетарная передача, в которой винт (12) контактирует с гайкой (15) через ролики (13). Винт (12) имеет резьбовой участок и направляющий цилиндрический участок «Г», который сопрягается с отверстием «Д» втулки (4). На конце винта находится стыковочный узел (18). Подшипники (10) и (11) установлены на наружной поверхности гайки (15) планетарной роликовинтовой передачи, а пространство внутри корпуса между подшипниками защищено уплотнениями (25) и предназначено для размещения встроенного электродвигателя с полым ротором, что позволяет уменьшить осевые габариты устройства. 5 ил.

Изобретение относится к механизмам ориентации (поворота) солнечных батарей (СБ). Система поворота СБ содержит корпус (1) с крышками (2), выходной вал, выполненный в виде двух частей (3) и (4) с фланцами (5) и (6) для стыковки с крыльями СБ, и центральный привод (7). Безлюфтовые зубчатые передачи (8), (9) связывают через вал привода (7) части (3) и (4) выходного вала между собой. Данные передачи исключают люфт и повышают жесткость на кручение выходного вала. Для исключения люфта в подшипниках (10), (11) опор частей выходного вала предусмотрены тарельчатые пружины (12). На поверхности частей (3,4) установлены силовые токосъемные устройства (13), (14) крыльев СБ, а внутри - телеметрические токосъемные устройства (15), (16). Платы (17, 18) привода (7) являются опорами выходного вала (3,4), обеспечивая повышенную изгибную жесткость конструкции. Техническим результатом изобретения является улучшение силовой схемы и снижение тем самым массы конструкции, а также повышение надежности системы поворота СБ. 1 ил.

Изобретение относится к планетарным механизмам и может быть использовано в транспортном машиностроении. Планетарный механизм с несколькими передаточными ступенями включает в себя полое колесо. В полом колесе расположен по меньшей мере один имеющий форму круглого кольца вкладной элемент, снабженный наружной и внутренней системами зубьев, при этом наружная система зубьев находится в зацеплении с полым колесом, с которым находятся в зацеплении планетарные колеса по меньшей мере одной передаточной ступени, а внутренняя система зубьев находится в зацеплении с планетарными колесами другой передаточной ступени. Обеспечивается упрощение конструкции, а также уменьшение затрат на изготовление изобретения. 9 з.п. ф-лы, 5 ил.
Наверх