Электролитический способ получения наноразмерного порошка дисилицида церия

Изобретение относится к получению нанопорошков дисилицида церия и может быть использовано для изготовления токопроводящих и резистивных элементов интегральных схем. Способ электролитического получения наноразмерного порошка дисилицида церия включает синтез дисилицида церия из расплавленных сред в атмосфере очищенного и осушенного аргона. Синтез проводят из галогенидного расплава. В качества источника церия используют безводный хлорид церия, в качестве источника кремния - фторсиликат натрия, а в качестве растворителя - эквимольную смесь хлоридов калия и натрия при следующем соотношении компонентов, мас.%: хлорид церия 1,0÷5,0, фторсиликат натрия 1,0÷4,0, остальное - эквимольная смесь хлоридов калия и натрия. Процесс ведут при температуре 700°С, плотности тока 0,2 А/см2 и потенциалах электролиза относительно стеклоуглеродного электрода сравнения от -2,2 до -2,6 B. Повышается скорость синтеза целевого продукта из расплавленного электролита. Получают целевой продукт в чистом виде за счет хорошей растворимости эквимольного расплава хлорида калия и хлорида натрия в воде и растворимости образующегося фторида церия фторидом калия. 6 ил., 1 пр.

 

Изобретение относится к получению нанопорошков дисилицида церия и может быть использовано в получении функциональной керамики, обладающей рядом уникальных свойств, необходимых для изготовления токопроводящих и резистивных элементов интегральных схем.

Известен способ получения кристаллического силицида ниобия. Исходные порошки кремния 40-400 мкм и ниобия менее 63 мкм берут в соотношении 1,33-1,38:1 для получения однофазного продукта и 1,44-1,69:1 для получения многофазного продукта. Осуществляют механическую активацию в инертной среде в течение 0,5-2 минут. Отношение массы порошка к массе шаров равно 1:20. Полученный порошок прессуют и локально нагревают в атмосфере аргона, инициируя экзотермическую реакцию образования силицида ниобия в режиме самоподдерживающего горения. Техническим результатом является получение однофазного кристаллического силицида ниобия.

Известны способы получения силицидов редкоземельных металлов [Г.В. Самсонов Химия силицидов редкоземельных металлов. Успехи химии, 1982, Т.XXXI, Вып.12, стр.1478-1495]: а) непосредственное соединение редкоземельных металлов с кремнием [R. Vogel, Ztschr. anorg. Chem., 61, 46 (1909)]; б) восстановление оксидов редкоземельных металлов с кремнием [B.C. Нешпор, Г.В. Самсонов, ЖПХ, 33, 993 (1960)]; в) электролиз расплавленных сред, содержащих редкоземельные металлы и кремний [М. Dodero, C.r., 199, 566 (1934); Bull. Soc. Chim. France, 17, 545 (1950)].

Наиболее близким является высокотемпературный электрохимический синтез из расплавленных сред, содержащих редкоземельные металлы и кремний.

Недостатком вышеизложенного метода является высокая температура синтеза и загрязнение побочными продуктами, в частности силикатами, а также невозможность получения индивидуальной фазы дисилицида.

Задачей настоящего изобретения является получение наноразмерного порошка дисилицида церия, повышение скорости синтеза целевого продукта из расплавленного электролита.

Сущность изобретения заключается в том, что осуществляют совместное электровыделение церия и кремния из галогенидного расплава на катоде и последующее взаимодействие их на атомарном уровне с образованием наноразмерных порошков дисилицида церия. Процесс осуществляется в трехэлектродной кварцевой ячейке, где катодом служит вольфрамовый стержень; анодом и одновременно контейнером - стеклоуглеродный тигель; электродом сравнения - стеклоуглеродный стержень. Синтез дисилицида церия проводят посредством потенциостатического электролиза из эквимольного расплава KCl-NaCl, содержащего трихлорид церия и фторсиликат натрия в атмосфере очищенного и осушенного аргона. В качестве источника церия используют безводный трихлорид церия, в качестве источника кремния - фторсиликат натрия, в качестве растворителя - эквимольную смесь хлоридов калия и натрия при следующем соотношении компонентов, мас.%:

хлорид церия 1,0÷5,0;

фторсиликат натрия 1,0÷4,0;

остальное: эквимольная смесь хлоридов калия и натрия.

Потенциостатический электролиз проводят на вольфрамовом катоде при потенциалах от -2,2 до -2,6 B относительно стеклоуглеродного электрода сравнения при температуре 700°C. Оптимальная продолжительность ведения процесса электролиза составляет 60÷90 мин. Полученную катодно-солевую грушу, состоящую из дисилицида церия, отмывают от фторида церия фторидом калия.

Выбор компонентов электролитической ванны произведен на основании термодинамического анализа и кинетических измерений совместного электровыделения церия и кремния из галогенидных расплавов. Из соединений церия и кремния, не содержащих кислород, хлорид церия и фторсиликат натрия являются достаточно низкоплавкими и хорошо растворимыми в эквимольном расплаве KCl-NaCl. Растворитель (эквимольный расплав KCl-NaCl) выбран из следующих соображений: напряжение разложения расплавленной смеси KCl-NaCl больше такового для расплавов CeCl3 и Na2SiF6; хорошая растворимость в воде.

Фазовый состав идентифицирован методом рентгенофазового анализа на дифрактометре ДРОН-6, который показал наличие только фазы CeSi2. Изображения на фиг.1, 3, 5 соответствуют примерам 1, 2, 3.

Фиг.1 - Рентгенограмма порошка дисилицида церия CeSi2 (линия 1), полученного из расплава KCl-NaCl на вольфрамовом катоде при φ=-2,2 B.

Фиг.3 - Рентгенограмма порошка дисилицида церия CeSi2 (линия 1), полученного из расплава KCl-NaCl на вольфрамовом электроде при φ=-2,5 B.

Фиг.5 - Рентгенограмма порошка дисилицида церия CeSi2 (линия 1), полученного на вольфрамовом катоде при φ=-2,6 B.

Размер частиц определяли лазерным дифракционным анализатором Fritsch Analysette-22. Изображения на фиг.2, 4, 6 соответствуют примерам 1, 2, 3.

Фиг.2 - Диаграмма распределения по размерам частиц, полученных при 700°C электрохимическим синтезом при i=0,2 A/см2.

Фиг.4 - Диаграмма распределения по размерам частиц, полученных при 700°C электрохимическим синтезом при i=0,2 A/см2.

Фиг.6 - Диаграмма распределения по размерам частиц, полученных при 700°C электрохимическим синтезом при i=0,2 A/см2.

Пример 1

В стеклоуглеродный тигель объемом 40 мл помещают солевую смесь массой 32,66 г, содержащую 1,53 г CeCl3 (4,70 мас.%); 1,13 г Na2SiF6 (3,46 мас.%); 16,8 г KCl (51,44 мас.%); 13,2 г NaCl (40,42 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы. По достижении рабочей температуры 700°C в расплав опускают вольфрамовый катод, электролиз проводят при потенциале -2,2 B относительно стеклоуглеродного электрода сравнения (плотность тока 0,2 А/см2). Катодно-солевую грушу, состоящую из дисилицида церия, отмывают от фторида церия фторидом калия. Размер частиц полученного порошка дисилицида церия до 100 нм.

Пример 2

В стеклоуглеродный тигель объемом 40 мл помещают солевую смесь массой 34,09 г, содержащую 1,53 г CeCl3 (4,49 мас.%); 2,56 г Na2SiF6 (7,51 мас.%); 16,8 г KCl (49,30 мас.%); 13,2 г NaCl (38,72 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы. По достижении рабочей температуры 700°C в расплав опускают вольфрамовый катод, электролиз проводят при потенциале -2,5 B относительно стеклоуглеродного электрода сравнения (плотность тока 0,2 А/см2). Катодно-солевую грушу, состоящую из дисилицида церия, отмывают от фторида церия фторидом калия. Размер частиц полученного порошка дисилицида церия до 100 нм.

Пример 3

В стеклоуглеродный тигель объемом 40 мл помещают солевую смесь массой 42,83 г, содержащую 1,53 г CeCl3 (3,60 мас.%); 11,30 г Na2SiF6 (7,72 мас.%); 16,8 г KCl (49,79 мас.%); 13,2 г NaCl (26,39 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы. По достижении рабочей температуры 700°C в расплав опускают вольфрамовый катод, электролиз проводят при потенциале -2,6 B относительно стеклоуглеродного электрода сравнения (плотность тока 0,2 А/см2). Катодно-солевую грушу, состоящую из дисилицида церия, отмывают от фторида церия фторидом калия. Размер частиц полученного порошка дисилицида церия до 100 нм.

Техническим результатом является:

- получение наноразмерных частиц дисилицида церия;

- получение целевого продукта в чистом виде за счет хорошей растворимости эквимольного расплава хлорида калия и хлорида натрия в воде, растворимости образующегося фторида церия фторидом калия.

Способ электролитического получения наноразмерного порошка дисилицида церия, включающий синтез дисилицида церия из расплавленных сред в атмосфере очищенного и осушенного аргона, отличающийся тем, что синтез проводят из галогенидного расплава, в качестве источника церия используют безводный хлорид церия, в качестве источника кремния - фторсиликат натрия, а в качестве растворителя - эквимольную смесь хлоридов калия и натрия при следующем соотношении компонентов, мас.%:
хлорид церия 1,0÷5,0;
фторсиликат натрия 1,0÷4,0;
остальное: эквимольная смесь хлоридов калия и натрия,
процесс ведут при температуре 700°С, плотности тока 0,2 А/см2 и потенциалах электролиза относительно стеклоуглеродного электрода сравнения от -2,2 до -2,6 B.



 

Похожие патенты:
Изобретение относится к нанотехнологиям и предназначено для получения нитридных структур нанотолщины. Согласно первому варианту нитридную наноплёнку или нанонить получают осаждением слоя кремния на фторопластовое волокно или на фторопластовую пленку с последующей выдержкой при температуре 800-1200оC в атмосфере азота или аммиака.
Изобретения могут быть использованы в области нанотехнологий и неорганической химии. Способ получения боридной наноплёнки или нанонити включает осаждение на корундовую нанонить или на стекловолокно из легкоплавкого стекла в вакууме несколько чередующихся слоев титана и бора, после чего полученную композицию постепенно нагревают до температуры 1500°С.
Изобретение относится к технологии получения композиционного керамического материала технического назначения состава TiN/Al2O3, который является перспективным для получения жаропрочных и износостойких материалов, а также покрытий для режущих и обрабатывающих инструментов.
Изобретение относится к области порошковых технологий и может быть использовано в электронной промышленности для изготовления нитридной керамики. Способ получения нанодисперсной шихты для изготовления нитридной керамики заключается в том, что в герметичном реакторе в среде газообразного азота при его избыточном давлении производят электрические взрывы алюминиевого проводника с покрытием, содержащим оксид иттрия.

Изобретение относится к материалу смачиваемого анода алюминиевого электролизера. Порошок диборида титана получают при проведении карботермической реакции между мелкодисперсными порошковыми компонентами шихты из безводного диоксида титана, борного ангидрида или борной кислоты и углерода в виде сажи.
Изобретение относится к области производства различных видов металлообрабатывающих инструментов: резцов, фрез, притиров, в частности, к получению спеченного композиционного материала, изготовленного из порошков кубического нитрида бора.

Изобретение относится к способам получения огнеупорных материалов на неоксидной основе, а именно к огнеупорным материалам на основе бета-нитрида кремния -Si3N4, которые могут быть использованы в качестве упрочняющих добавок в неформованные огнеупорные массы.

Изобретение относится к области создания высокотемпературных конструкционных керамических материалов, а именно к способу получения керамического композита с матрицей на основе Ti3SiC 2.
Изобретение относится к составу и способу получения защитных покрытий. .
Изобретение относится к медицине, в частности к способу доставки активных субстанций (АС) через эпидермальный барьер. Заявленный способ включает использование трансдермального пластыря матричного типа, содержащего подложку, защитную ленту и полимерный слой, и характеризуется тем, что в полимерный слой трансдермального пластыря вносят 10% ниосом на основе ПЭГ-12 диметикона и затем полимерный слой наносят на подложку.

Изобретение относится к медицине и косметологии и может быть использовано для эффективной трансдермальной доставки широкого спектра активных субстанций (АС). Заявлен способ трансдермальной доставки АС в составе ниосом, полученных из ПЭГ-12 диметикона, характеризующийся тем, что АС включаются в ниосомы при концентрации 10% путем гомогенизации на АПВ гомогенизаторе геля, содержащего 10% ниосом.

Изобретение относится к области химико-фармацевтической промышленности, в частности к созданию аэрозольной композиции, используемой для введения лекарственных средств с помощью ингаляции.

Изобретение относится к области химико-фармацевтической промышленности, в частности к созданию аэрозольной композиции, используемой для введения лекарственных средств с помощью ингаляции.

Порошковая проволока может быть использована при механизированной и автоматической подводной сварке и наплавке металлических деталей. Порошковая проволока состоит из стальной оболочки и размещенной внутри нее шихты.

Изобретение относится к технологии получения кремниевых наноструктур. В способе изготовления кремниевого чувствительного элемента для люминесцентного сенсора кислорода на подложке монокристаллического кремния p-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным сопротивлением от 1 до 10 мОм·см выращивается слой пористых кремниевых нанонитей методом последовательного выдерживания в следующих растворах: вначале в водном растворе нитрата серебра с концентрацией от 0.02 до 0.04 моль/л и плавиковой кислоты с концентрацией 5 моль/л в соотношении 1:1 в течение времени от 30 до 60 с для нанесения наночастиц серебра на поверхность кремниевой пластины, затем в смеси плавиковой кислоты с концентрацией 5 моль/л и 30% перекиси водорода в соотношении 10:1 в течение времени от 20 до 60 мин для образования кремниевых нанонитей в результате химического травления кремниевой пластины в местах, покрытых наночастицами серебра, и в завершении - в 65%-ном растворе азотной кислоты в течение времени от 10 до 20 мин для удаления наночастиц серебра и стабилизации поверхности кремниевых нанонитей, в результате чего получаются пористые кремниевые нанонити с длиной от 2 до 5 мкм, размером поперечного сечения от 30 до 300 нм, обладающие люминесценцией в диапазоне от 650 до 850 нм, интенсивность которой зависит от присутствия молекул кислорода.

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы.

Изобретение относится к наноматериалам, а именно к композитам, содержащим высокореакционные наноразмерные частицы металла, стабилизированные полимерной матрицей.
Изобретение может использоваться для получения биологических радиоактивных меток. Способ получения меченных тритием наноалмазов методом термической активации трития включает приготовление водной суспензии наноалмазов со средним размером частиц не более 125 нм и содержанием дисперсной фазы от 0,15 до 0,6 мг, равномерное нанесение полученной суспензии на стенки сосуда, содержащего установленную с возможностью подключения электрического тока вольфрамовую нить для активации трития, с последующей лиофилизацией и удалением воздуха.

Изобретение относится к способу получения углеродных нановолокон и/или углеродных нанотрубок. Способ включает пиролиз дисперсного целлюлозного и/или углеводного субстрата, импрегнированного соединением элемента или элементов, металл или сплав которых, соответственно, способен образовывать карбиды, в по существу свободной от кислорода атмосфере, содержащей летучее соединение кремния, необязательно в присутствии соединения углерода.

Изобретение относится к способу синтеза наноразмерного композиционного металлоксида и к композиционному металлооксиду, полученному таким способом. Способ включает добавление диспергатора к коллоиду с наночастицами диоксидцериевого композиционного оксида со средним диаметром наночастиц 10 нм или менее, добавление диспергатора к коллоиду с наночастицами оксида алюминия со средним диаметром наночастиц 10 нм или менее, раздельную подачу коллоида с наночастицами диоксидцериевого композиционного оксида, к которому добавлен диспергатор, и коллоида с наночастицами оксида алюминия, к которому добавлен диспергатор, в высокоскоростную мешалку, синтез наночастиц алюминийоксидно-диоксидцериевого композиционного оксида путем обеспечения взаимодействия в микропространстве наночастиц диоксидцериевого композиционного оксида и наночастиц оксида алюминия и приложение усилия сдвига при степени сдвига 17000 сек-1 или более к наночастицам алюминийоксидно-диоксидцериевого композиционного оксида.
Наверх