Способ изготовления сверхпроводникового детектора

Использование: для получения высокотемпературных сверхпроводников и изготовления высокочувствительных приемников электромагнитного излучения. Сущность изобретения заключается в том, что способ включает в себя формирование пленки из высокотемпературного сверхпроводящего материала, который представляет собой монофазный текстурированный сверхпроводник состава (Bi,Pb)2Sr2Ca2Cu3O10, на диэлектрической подложке методом магнетронного распыления из мишени, изготовление чувствительного элемента, антенны и подводящих линий выполняется в едином процессе на одном слое образованной пленки ВТСП (Bi,Pb)2Sr2Ca2Cu3O10. Технический результат: обеспечение возможности повышения рабочей температуры детектора терагерцевого излучения и расширения частотного диапазона приемной антенны, увеличение надежности прибора.

 

Изобретение относится к области получения высокотемпературных сверхпроводников и изготовления высокочувствительных приемников электромагнитного излучения терагерцового диапазона на их основе.

Известен способ изготовления сверхпроводниковых однофотонных детекторов [1]. Этот способ заключается в формировании на диэлектрической подложке канала проводимости из нитрида ниобия любым из известных способов с толщиной не более 20 нм, но не менее толщины, приводящей к нарушению сплошности, и с шириной не более 350 нм и его облучении потоком ускоренных частиц (протонов, атомов гелия, ионов или атомов кислорода или смеси перечисленных частиц) с энергией от 0,5 до 5,0 кэВ в присутствии кислорода. В качестве подложки используется лейкосапфир, прозрачный в области рабочих длин волн (от видимого диапазона до 7 мкм). Недостатком детектора, изготовленного таким способом, является низкая рабочая температура (так как нитрид ниобия - низкотемпературный сверхпроводник). Кроме того, сверхпроводниковый однофотонный детектор не регистрирует электромагнитные волны терагерцового диапазона, так как фотоны этого излучения не имеют достаточной энергии для разрушения куперовских пар и образования «горячего пятна».

Известен способ изготовления источника и детектора терагерцового излучения на внутренних джозефсоновских переходах высокотемпературных сверхпроводников [2]. Слой монокристаллической сверхпроводящей мезаструктуры состава Bi2Sr2CaCu2O8+X или Tl2Ba2Ca2Cu3O10+X крепится на первой подложке с помощью фоторезиста, на сверхпроводник наносится слой золота. Далее методом фотолитографии и травлением формируется Т-образная структура. Верхний слой золота травлением делится на две части, которые соответствуют длинной и короткой стороне Т-образной структуры. На разделенный слой наносятся контакты. Далее структура отсоединяется от первой подложки, переворачивается и присоединяется электродами ко второй подложке таким образом, чтобы обратная сторона мезаструктуры была доступна. На обратную сторону наносятся слой золота и электроды. Методом ионной имплантации кремния между длинной и короткой сторонами Т-образной структуры делается слой изолятора. В результате проделанных операций образуется источник (длинная сторона Т-образной структуры) и детектор (короткая сторона Т-образной структуры) терагерцового излучения. Данный способ изготовления терагерцового детектора технологически сложен. Кроме того, система Tl-2223 ядовита, Bi-2212 имеет более низкую температуру перехода в сверхпроводящее состояние, чем Bi-2223.

Наиболее близким по технической сущности к предлагаемому способу изготовления детектора электромагнитного излучения терагерцового диапазона является способ изготовления болометров на основе тонких пленок системы YBCO [3]. Высокотемпературный (ВТСП) болометр был изготовлен из пленок YBa2Cu3O7-δ толщиной 40-50 нм, выращенных магнетронным распылением на подложках LaAlO3 и CeO2 с использованием мишени YBCO стехиометрического состава. В процессе распыления использовалась атмосфера смеси аргона и кислорода при парциальном давлении 50 Па. Температура подложки при изготовлении пленок составляла около 750°C, скорость роста 30 нм/ч. Далее на сформированную пленку термическим распылением наносилась пленка серебра толщиной около 200 нм. Для изготовления структуры болометра использовалась фотолитография. Первой фотолитографией формировалась двухслойная структура серебро-пленка ВТСП, второй фотолитографией делалась чувствительная область болометра. Эквивалентная мощность шума этого болометра 3,5·10-9 Вт/Гц1/2.

Недостатком болометра, изготовленного таким способом, является то, что его чувствительный элемент быстро деградирует, так как ВТСП Y-123 гигроскопичен. Температура перехода в сверхпроводящее состояние у этого материала ниже, чем у ВТСП (Bi,Pb)2Sr2Ca2Cu3O10 (Bi-2223), а сверхпроводящие эффекты проявляются тем сильнее, чем больше переохлаждение. Кроме того, способ требует большого количества технологических процессов, что усложняет производство детектора.

Задачей данного изобретения является повышение рабочей температуры детектора терагерцового излучения и расширение частотного диапазона приемной антенны, увеличение надежности прибора за счет использования в качестве чувствительного элемента высокотемпературного сверхпроводника системы Bi-2223, уменьшение количества технологических процессов.

Это достигается тем, что чувствительный элемент, антенна и подводящие линии сделаны в едином слое монофазного текстурированного высокотемпературного сверхпроводника состава (Bi,Pb)2Sr2Ca2Cu3O10 в одном процессе фотолитографии.

Высокотемпературный сверхпроводник системы Bi-2223 имеет резистивный ноль при температуре 107K, он не гигроскопичен, поэтому не деградирует при взаимодействии с окружающей средой и не ядовит.

Поскольку антенна сделана из сверхпроводящего материала, допустимый частотный диапазон, в котором она работает, связан с шириной энергетической щели сверхпроводника. При больших частотах излучения квант имеет большую энергию. Он способен стимулировать переход электронов из нижнего энергетического уровня через энергетическую щель, разрывая куперовские пары, что приведет к потерям энергии в приемной антенне. Благодаря высокой критической температуре, энергия разрыва куперовских пар для Bi-2223 достаточно высока, из-за чего расширяется рабочий частотный диапазон приемной антенны.

На фиг.1 изображена конструкция сверхпроводникового детектора электромагнитного излучения терагерцового диапазона. Детектор содержит монокристаллическую подложку MgO с ориентацией (100) (1), антенну типа «бабочка» для приема электромагнитного излучения терагерцового диапазона (2), чувствительный элемент (мостик) (3) и подводящие линии (4), сделанные из высокотемпературного сверхпроводника системы Bi-2223. Для соединения детектора с электронным оборудованием изготавливаются серебряные контакты (5).

Работа устройства осуществляется следующим образом. Чувствительный элемент охлаждается до температуры полного резистивного нуля Tce. Рабочая точка поддерживается системой регулирования по величине смещения по постоянному напряжению. Система настроена на время релаксации около 60 секунд. При облучении структуры электромагнитным излучением, в приемной антенне наводится ток, который также протекает через чувствительный элемент. Дополнительный нагрев смещает чувствительный элемент в область резистивного состояния.

Для создания детектора излучения слой монофазного текстурированного сверхпроводника Bi-2223 толщиной 80…150 нм формируется на очищенной и отожженной при температуре 1000°C подложке монокристаллического оксида магния с ориентацией (100), площадью 10×10 мм2 и толщиной 0,5 мм, методом магнетронного распыления из стехиометрической мишени в атмосфере смеси аргона и кислорода (80% и 20%) при парциальном давлении до 4,7 Па, с температурой подложки 150°C и скоростью роста 100 нм/ч. Далее методом фотолитографии на пленке формируются антенна для приема электромагнитного излучения терагерцового диапазона, чувствительный элемент в центре антенны и подводящие линии. После формирования структуры детектора производится рекристаллизационный отжиг при температуре 860°C в атмосфере содержания кислорода не более 20% в течение 10 ч для формирования требуемой фазы сверхпроводника висмутовой системы. При этом обеспечивается парциальное давление насыщенных паров висмута и свинца. Используемая технология позволяет получить на поверхности монокристаллической подложки MgO эпитаксиальную пленку Bi-2223. На подводящие линии нанесены четыре серебряных контакта.

Получившиеся детекторы имеют структуру монофазного текстурированного высокотемпературного сверхпроводника состава (Bi,Pb)2Sr2Ca2Cu3O10 с температурой начала сверхпроводящего перехода 110K, резистивным нулем при 107K, критическая плотность тока при температуре кипения жидкого азота 105 А/см2, критический ток чувствительного элемента 0,2 мА.

После напыления фотолитографией изготавливается топологический рисунок, который содержит элементы приемной антенны типа «бабочка», чувствительный элемент и подводящие линии. Для эффективного приема электромагнитных волн частотой 1 ТГц, «бабочка» имеет следующие размеры: длина лепестка 38,5 мкм, ширина 34,7 мкм. Чувствительный элемент в центре, соединяющий лепестки антенны, имеет размеры 2×2 мкм2.

Верхняя граница частотного диапазона работы антенны определяется шириной энергетической щели сверхпроводника. Ширина энергетической щели для системы Bi-2223 при температуре кипения жидкого азота 16,6·10-3 эВ. Таким образом, антенна будет работать на частотах менее 4 ТГц. Нижняя граница принимаемой частоты будет определяться геометрией приемной антенны. Для нашего случая она будет равна 0,95 ТГц. Для сравнения, ширина энергетической щели сверхпроводника Y-123 составляет 10,6·10-3 эВ, что соответствует граничной частоте 2,56 ТГц. Антенна для нашего сверхпроводника будет эффективно работать на частотах менее 2,5 ТГц. Приемная антенна, чувствительный элемент в середине антенны и подводящие линии сделаны из одного материала в одном технологическом процессе, что упрощает производство таких приемников излучения.

Измерение отклика чувствительного элемента происходит четырехзондовым методом. Для этого на подводящие линии нанесены контакты: два на крайних (для токовых зондов), два рядом с чувствительным элементом (для потенциальных зондов). Контакты сделаны из серебра, так как оно обладает хорошей адгезией и формирует низкоомный омический контакт к высокотемпературному сверхпроводнику системы Bi-2223.

Для описанной структуры получено значение эквивалентной мощности шума 3,1·10-10 Вт/Гц1/2.

Достоинства полученного прибора следующие:

- самая высокая частота принимаемого сигнала для сверхпроводниковой антенны за счет применения сверхпроводника Bi-2223, имеющего наибольшую ширину щели среди используемых в болометрах высокотемпературных сверхпроводников;

- высокое значение эквивалентной мощности шума за счет интегральной технологии изготовления чувствительного элемента, приемной антенны и подводящих линий;

- низкий уровень собственного шума по сравнению с болометрами на резистивных материалах (не сверхпроводники). Рабочий режим соответствует переходу полного резистивного нуля. Тепловой шум в этом случае практически также равен нулю при большом числе квадратов.

- высокая устойчивость к деградации за счет применения сверхпроводника системы Bi-2223.

Источники информации:

1. Патент РФ №2476373

2. Патент США №20040149983

3. Терагерцовый отклик болометров на основе тонких пленок YBCO / А.В. Смирнов и др. // Журнал технической физики. - 2012. - Т.82. - вып.12. - С.108-111 - прототип.

Способ изготовления сверхпроводникового детектора, включающий формирование пленки высокотемпературного сверхпроводящего материала на диэлектрической подложке методом магнетронного распыления из мишени стехиометрического состава, изготовление чувствительного элемента, антенны для приема электромагнитных волн терагерцового диапазона и подводящих линий, отличающийся тем, что материал пленки представляет собой монофазный текстурированный высокотемпературный сверхпроводник состава (Bi, Pb)2Sr2Ca2Cu3010, а чувствительный элемент, антенна и подводящие линии выполняются в едином процессе фотолитографии на одном слое образованной пленки ВТСП (Bi, Pb)2Sr2Ca2Cu3O10.



 

Похожие патенты:

Изобретение относится к способам формирования сверхпроводящих пленок с двух сторон диэлектрических подложек. Изобретение обеспечивает создание однородных по толщине сверхпроводящих пленок с двух сторон подложки в одном технологическом цикле.

Изобретение относится к формированию на диэлектрических подложках золотых контактных площадок к пленкам YBa2Cu3O7-х. Изобретение обеспечивает получение качественных золотых контактных площадок к сверхпроводящим пленкам.

Изобретение относится к способам формирования методом лазерного напыления сверхпроводящих пленок. Изобретение обеспечивает получение на золотом буферном подслое сверхпроводящих пленок с высокими токонесущими свойствами, обеспечивающими значения плотности сверхпроводящего критического тока не ниже 105 А/см2.

Изобретение относится к технологии криоэлектроники и может быть использовано при изготовлении высокотемпературных сверхпроводящих (ВТСП) схем. Техническим результатом изобретения является повышение качества ВТСП схем, увеличение их температурного рабочего диапазона, повышение удельного сопротивления ВТСП материала в нормальном состоянии путем введения ферромагнитной примеси в ВТСП пленку при электроискровой обработке отрицательными импульсами, мощность которых находится из заявленного соотношения.

Изобретение относится к сборке из металлических элементов, составляющей заготовки для сверхпроводника. Сборка содержит, по меньшей мере, один проводниковый элемент, адаптированный для обеспечения сверхпроводящей нити в конечном сверхпроводнике, и по меньшей мере один легирующий элемент, обеспечивающий источник легирования для легирования проводникового элемента, и источник олова.

Изобретение относится к области высокотемпературной сверхпроводимости и может использоваться для изготовления ленточных высокотемпературных сверхпроводников второго поколения.

Изобретение относится к электричеству, к электрофизике и теплопроводности материалов, к явлению нулевого электрического сопротивления, т.е. к гиперпроводимости, и нулевого теплового сопротивления, т.е.

Изобретение относится к технологии изготовления тонкопленочных высокотемпературных сверхпроводящих материалов, в частности к изготовлению подложек для этих материалов.
Изобретение относится к технологии изготовления тонкопленочных высокотемпературных сверхпроводящих материалов и может быть использовано при промышленном производстве длинномерных сверхпроводящих лент для создания токопроводящих кабелей, токоограничителей, обмоток мощных электромагнитов, электродвигателей и т.д.

Изобретение относится к области сверхпроводимости и нанотехнологий, а именно к способу получения и обработки композитных материалов на основе высокотемпературных сверхпроводников (BTCП), которые могут быть использованы в устройствах передачи электроэнергии, для создания токоограничителей, трансформаторов, мощных магнитных систем.

Изобретение относится к способам формирования методом лазерного напыления сверхпроводящих ультратонких пленок сложного металлооксидного соединения состава YBa2Cu3O7-x путем оптимизации параметров лазерного излучения и условий постростового отжига в напылительной камере. Изобретение обеспечивает получение ультратонких сверхпроводящих пленок толщиной 12-25 нм с неровностью поверхности в пределах 1-2 нм. В способе формирования сверхпроводящей ультратонкой пленки YBa2Cu3O7-x на диэлектрических подложках на керамическую мишень YBa2Cu3O7-x воздействуют лазерным излучением плотностью мощности 3·108÷5·108 Вт/см2, длиной волны 1,06 мкм, длительностью импульса 10-20 нс и частотой следования импульсов 10 Гц в течение времени 15÷30 с при давлении 50÷100 Па, при температуре мишени 600÷700°С, температуре подложки 800-840°С, в результате формируют сверхпроводящую пленку толщиной 12-25 нм, после чего в диапазоне температур 840-780°С производят отжиг пленки со скоростью остывания 4°С/мин, в диапазоне температур 780-700°С - со скоростью остывания 10°С/мин, в диапазоне температур 700-400°С - со скоростью остывания 15°С/мин, в диапазоне температур 400-20°С - со скоростью остывания 19°С/мин. 2 ил.

Изобретение относится к области металлургии, в частности к получению сверхпроводящего материала в виде покрытия, и может быть использовано при изготовлении экранов электронных схем от воздействия электромагнитного и ионизирующего излучений в энергетике, транспорте, связи, приборостроении, в ракетной и аэрокосмической отраслях промышленности. Способ получения сверхпроводящего покрытия включает подачу в плазмотрон порошка материала покрытия фракцией 80-150 мкм, его нагрев до температуры плавления в прикатодной высокотемпературной области плазменной струи и напыление на подложку с предварительно нанесенным на ее поверхность изоляционным слоем. При напылении плазменную струю с напыляемым порошком SmBa2Cu3O7 на всей дистанции напыления охватывают коаксиальным цилиндрическим потоком кислорода, а подложку охлаждают теплоносителем, при этом путем регулирования расхода кислорода и скорости взаимного перемещения плазменной струи и подложки обеспечивают температуру в пятне напыления 940-980°С. Сокращается время процесса получения сверхпроводящего материала с сохранением структуры и стехиометрии исходного спеченного материала. 4 ил.

Использование: для изготовления сверхпроводниковых туннельных или джозефсоновских переходов. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих наноэлементов с туннельными или джозефсоновскими переходами включает формирование нанопроводов из веществ, обладающих сверхпроводящими свойствами, и преобразование их в несверхпроводящие в выбранных разделительных участках заданной ширины за счет селективного изменения атомного состава путем воздействия пучком ускоренных частиц через защитную маску с заданным рельефом. Технический результат: обеспечение возможности повышения производительности. 8 з.п. ф-лы, 2 ил.

Использование: для изготовления провода, кабеля, намотки и катушки. Сущность изобретения заключается в том, что высокотемпературный сверхпроводящий ленточный провод с гибкой металлической подложкой содержит по меньшей мере один промежуточный слой, который расположен на гибкой металлической подложке, и который на стороне, противоположной гибкой металлической подложке, содержит террасы, причем средняя ширина террас меньше 1 мкм, а средняя высота террас больше 20 нм, и который содержит по меньшей мере один расположенный на промежуточном слое высокотемпературный сверхпроводящий слой, который расположен на по меньшей мере одном промежуточном слое и имеет толщину слоя более 3 мкм, причем допустимая токовая нагрузка высокотемпературного сверхпроводящего ленточного провода, отнесенная к ширине провода, при 77 K превышает 600 А/см. Технический результат: обеспечение возможности создания ВТС-провода с большой предельно допустимой токовой нагрузкой. 9 з.п. ф-лы, 9 ил., 2 табл.

Изобретение относиться к способам формирования самоохлаждаемых автономных приборов и элементов электроники, которые могут эффективно работать без использования технологии жидкого азота, и другой криогенной техники. Способ формирования самоохлаждаемого автономного наноприбора заключается в том, что на подложке из монокристаллического материала с сформированным с одной стороны СКВИД-приемником на обратной стороне размещают устройство для поглощения тепла, которое содержит катод и анод, имеющие различную энергию Ферми электронов. Затем подложку через отверстие для монтажа заключают в вакуумную оболочку из ситалла, содержащую контактные электроды для двух сторон подложки. После этого отверстие для монтажа подложки закрывают крышкой из ситалла. Размещают данное устройство в вакуумной камере, в которой располагают также мишень из ситалла. Откачивают до давления 10-1 Па, нагревают мишень и крышку из ситалла до температуры 450÷500°С. Затем лазером с длиной волны излучения 1,06 мкм, длительностью импульса 10-20 нс и частотой повторения импульсов 10 Гц, плотностью мощности 5·108÷8·108 Вт/см2 распыляют мишень из ситалла, находящуюся на расстоянии 8÷10 мм от крышки из ситалла в течение 10 минут. Изобретение обеспечивает создание такой конструкции СКВИДа (сверхпроводящего квантового интерференционного датчика), в которой исключены: деградация сверхпроводящих свойств в воздушной среде, зависимость достижения рабочей температуры от использования жидкого азота или других внешних криогенных установок с большими габаритами. 1 ил.

Изобретение относится к пленкам с чрезвычайно низким сопротивлением (ЧНС-пленки). Способ улучшения рабочих характеристик пленки с чрезвычайно низким сопротивлением, содержащей материал с чрезвычайно низким сопротивлением (ЧНС-материал), имеющий кристаллическую структуру, включает: наслаивание модифицирующего материала на грань ЧНС-материала, которая не является по существу параллельной с-плоскости кристаллической структуры ЧНС-материала ЧНС-пленки, чтобы создать модифицированную ЧНС-пленку, при этом модифицированная ЧНС-пленка обладает улучшенными рабочими характеристиками по сравнению с ЧНС-пленкой без модифицирующего материала. Изобретение обеспечивает получение ЧНС пленок с улучшенными рабочими характеристиками. 3 н. и 35 з.п. ф-лы, 46 ил.

Изобретение относится к сверхпроводникам и технологии их получения. Оксидный сверхпроводящий провод включает лентообразный оксидный сверхпроводящий слоистый материал 1, сформированный путем нанесения промежуточного слоя 4 на стороне передней поверхности металлической лентообразной подложки 3, оксидного сверхпроводящего слоя 5 на промежуточном слое 4 и защитного слоя 6 на оксидном сверхпроводящем слое 5, и покрытие, включающее металлическую ленту 2 и слой металла с низкой точкой плавления 7, при этом ширина металлической ленты 2 больше, чем ширина оксидного сверхпроводящего слоистого материала 1, и лента 2 закрывает поверхность защитного слоя 6 оксидного сверхпроводящего слоистого материала 1, обе боковые поверхности оксидного сверхпроводящего слоистого материала 1 и оба концевых участка 3а задней поверхности подложки 3 в поперечном направлении, причем оба концевых участка металлической ленты 2 в поперечном направлении закрывают оба концевых участка 3а задней поверхности подложки 3а, слой металла с низкой точкой плавления 7 заполняет щели между оксидным сверхпроводящим слоистым материалом 1 и металлической лентой 2, окружающей оксидный сверхпроводящий слоистый материал 1, и соединяет металлическую ленту 2 и оксидный сверхпроводящий слоистый материал 1 друг с другом, а часть 7с заполняющего слоя металла с низкой точкой плавления продолжается в область углубленного участка 2d, сформированного между обоими концевыми участками металлической ленты 2 в поперечном направлении. Полученная структура сверхпроводящего провода способна предотвращать проникновение влаги, в результате чего оксидный сверхпроводящий слой не разрушается. 4 н. и 11 з.п. ф-лы, 10 ил., 6 табл.
Изобретение относится к текстурированной подложке для выращивания на ней эпитаксиальной пленки оксидного сверхпроводящего материала для использования в различных типах электросилового оборудования. Текстурированная подложка содержит слой текстурированного металла, по меньшей мере, на одной стороне, который включает в себя слой меди, имеющий кубическую текстуру, и слой никеля, имеющий толщину 100-20000 нм, сформированный на слое меди; слой никеля имеет слой оксида никеля, сформированный на его поверхности, имеющий толщину 1-30 нм, и слой никеля дополнительно включает в себя палладий-содержащую область, сформированную из палладий-содержащего никеля, на поверхности раздела со слоем оксида никеля. Верхний слой текстурированной подложки, т.е. слой оксида никеля, имеет шероховатость поверхности преимущественно 10 нм или менее. Ультратонкий слой оксида никеля оказывает улучшающее воздействие на ростовые свойства и адгезию эпитаксиальной пленки. Подложка имеет кристаллическую ориентацию, обеспечивающую возможность формирования высококачественной эпитаксиальной пленки на ее поверхности. 3 н. и 8 з.п. ф-лы, 4 табл.

Использование: для формирования в сверхпроводящих тонких пленках областей с требуемыми значениями плотности критического тока. Сущность изобретения заключается в том, что способ формирования областей переменной толщины сверхпроводящей тонкой пленки методом лазерного распыления мишени YBa2Cu3O7-x, в котором между мишенью и подложкой располагают затеняющую пластину, затем воздействуют на мишень лазерным излучением плотностью мощности Ρ=(1÷2)·109 Вт/см2, длиной волны λ=1,06 мкм, длительностью импульса τ=10÷20 нс и частотой следования импульсов ν=10 Гц в течение времени t=175÷185 с, при температуре мишени Тм=600÷700°С, температуре подложки Тп=800÷840°С, расстоянии между подложкой и затеняющей пластиной L=0,1÷0,2 мм, при этом вне затеняющей пластины формируется сверхпроводящая пленка толщиной D2=160÷200 нм с плотностью критического тока j>106 А/см2, а под затеняющей пластиной формируется сверхпроводящая пленка толщиной D2=40-50 нм с плотностью критического тока j=(1÷5)·103 А/см2. Технический результат: обеспечение возможности упрощения технологии создания микромостиков сверхпроводящей пленки с требуемыми значениями критического тока. 3 пр., 4 ил.

Использование: для получения многослойного высокотемпературного сверхпроводящего материала. Сущность изобретения заключается в том, что способ получения включает нанесение на гибкую металлическую текстурированную подложку или на металлическую подложку, покрытую промежуточным биаксиально текстурированным оксидным слоем, по меньшей мере, одного эпитаксиального оксидного буферного слоя из прекурсора, получаемого из золя оксида-гидроксида выбранного элемента или нерастворимой соли выбранного элемента в водном растворе температурно-зависимого полимера, путем нагревания при температуре, превышающей температуру фазового перехода температурно-зависимого полимера, нанесение на буферный слой, по меньшей мере, одного эпитаксиального слоя сверхпроводникового материала и его термообработку, при этом после нанесения эпитаксиального оксидного буферного слоя осуществляют его обработку в переменном магнитном поле с амплитудой напряженности не более 0,10 Тл и частотой 10-40 Гц в течение 100 и более секунд. Технический результат: обеспечение возможности повышения совершенства кристаллической структуры и морфологии эпитаксиального буферного слоя и, как следствие, повышение совершенства кристаллической структуры нанесенного на него сверхпроводящего покрытия, и в результате повышение плотности критического сверхпроводящего тока. 2 ил., 2 табл.
Наверх