Устройство свч плазменной обработки пластин

Изобретение относится к СВЧ плазменным устройствам для проведения процессов осаждения и травления слоев - металлов, полупроводников, диэлектриков и может быть использовано в технологических процессах создания полупроводниковых приборов с высокой степенью интеграции, работающих в экстремальных условиях. Изобретение обеспечивает улучшение равномерности обработки и повышение скорости формирования слоев. В устройстве СВЧ плазменной обработки пластин, содержащем волноводный тракт, огибающий боковую стенку реакционной камеры, через центр широкой стенки волноводного тракта перпендикулярно к ней проходят несколько разрядных трубок, а в местах их входа и выхода из волноводного тракта накладывается магнитное поле для создания условий электронного циклотронного резонанса, волноводный тракт выполняют кольцевым и располагают на боковой стенке реакционной камеры так, что разрядные трубки размещаются в одной плоскости, параллельной обрабатываемой пластине, а над обрабатываемой пластиной вне реакционной камеры на ее крышке, выполненной из прозрачного для СВЧ материала, располагают плоскую двухзаходную спиральную СВЧ антенну, под обрабатываемой пластиной для ее нагрева размещают еще одну плоскую двухзаходную спиральную СВЧ антенну. 2 ил.

 

Изобретение относится к СВЧ плазменным устройствам для проведения процессов осаждения и травления слоев - металлов, полупроводников, диэлектриков и может быть использовано в технологических процессах создания полупроводниковых приборов с высокой степенью интеграции, работающих в экстремальных условиях.

Известно СВЧ плазменное устройство волноводного типа обработки материалов при пониженных давлениях, состоящее из СВЧ генератора, волноводного тракта, огибающего реакционную камеру и заканчивающегося короткозамыкающим поршнем или согласованной нагрузкой. В нескольких местах широкую стенку волноводного тракта пересекают кварцевые разрядные трубки перпендикулярно ее поверхности, один конец которых входит в реакционную камеру, а через другой подается газ (или газы). В местах входа и выхода кварцевых трубок из волноводного тракта накладывается магнитное поле, с помощью которого реализуются условия электронного циклотронного резонанса (ЭЦР). В разрядных трубках загорается плазма, которая «впрыскивается» в реакционную камеру, в которой происходит обработка (травление, осаждение слоев) кремниевых пластин [«Устройство СВЧ плазменной обработки пластин большого диаметра» Сборник материалов «3-й международный симпозиум по теоретической и прикладной плазмохимии». Иваново, 2002, том 2, стр. 472-474].

Недостатки аналога:

- трубно настроить одинаковое горение плазмы в каждой разрядной трубке (плотность плазмы разрядов в каждой трубке отличаются);

- практически сложно уставлять равномерностью обработки по пластине (хотя и возможно).

Известен ближайший аналог (прототип), устройство плазменной обработки [RU 2368032 C1, H01L 21/3065, 20.09.2009], состоящее из реакционной вакуумной камеры с вводами источников СВЧ плазмы, количество которых не регламентировано, расположенными перпендикулярно боковой стенке, и расположенного в реакционной вакуумной камере подогреваемого или охлаждаемого пьедестала для подложек, имеющего возможность вертикального перемещения и возможность электрического смещения относительно плазмы. Вне камеры над местом размещения подложек на пьедестале расположен ВЧ-индуктор, причем стенка камеры, в месте ее примыкания к индуктору, выполнена из материала, прозрачного для ВЧ электромагнитного поля. Основными недостатками устройства являются неравномерность обработки пластин (приблизительно 2%) и относительно низкая скорость формирования слоев.

Техническим результатом изобретения является улучшение равномерности обработки и повышение скорости формирования слоев. Изобретение поясняется чертежами - фиг. 1 и фиг. 2.

Технический результат достигается за счет того, что волноводный тракт 1, огибающий боковую стенку реакционной камеры 2, делается кольцевым и возбуждается с двух диаметрально противоположных сторон посредством волноводных тройников. Волны в противоположных плечах тройников отличаются друг от друга по фазе на 180° и не «видят друг друга». Поэтому возбуждение ЭЦР плазмы в каждой разрядной трубке 3, проходящей через центр широкой стенки волноводного тракта и перпендикулярно ей, посредством наложения магнитного поля с помощью электромагнитов 4 и магнитопроводов 5 в местах входа и выхода из волноводного тракта производится как бы от двух источников СВЧ. Отраженные волны совпадают по фазе с падающей волной в противоположном плече тройника, то есть идет «подпитка» каждого источника за счет отраженной волны и тем самым резко повышается коэффициент полезного использования СВЧ энергии генератора и равномерность горения плазмы в каждой разрядной трубке (плотность плазмы в каждой разрядной трубке практически одинакова). Таким образом, в реакционную камеру «впрыскивается» плазма из всех разрядных трубок с практически одинаковой плотностью в телесные углы, которые пересекаются, и образуется область распадающейся плазмы с высокой степенью однородности параметров плазмы, в которую и помещают пластину. Все разрядные трубки располагаются в одной плоскости, параллельной обрабатываемой пластине. При обработке пластин до 76 мм в диаметре неравномерность обработки составляет порядка 2÷3%. При обработке пластин до 150 мм в диаметре неравномерность составляет до 5%. При обработке пластин до 200 мм в диаметре неравномерность обработки составляет 6÷8%. Если проводятся процессы травления, то в центре пластины наблюдается недотрав слоев. Если проводятся процессы осаждения, то в центральной зоне наблюдается уменьшение толщины по сравнению с периферийной зоной. Для снижения такой неравномерности обработки пластин большого диаметра вне реакционной камеры над местом размещения подложек 6 на пьедестале 7 расположена плоская спиральная двухзаходная СВЧ антенна 8, запитываемая или от отдельного СВЧ генератора, или ответвлением с помощью тройника и коаксиально-волноводного перехода части СВЧ энергии от основного СВЧ генератора. СВЧ энергия, проводимая с помощью спиральной антенны, поглощается «технологической» плазмой, создаваемой с помощью разрядных трубок, ее параметры (плотность, энергия ионов и т.д.) возрастают и «выравниваются» по сечению над обрабатываемой пластиной. Спиральная двухзаходная СВЧ антенна размещается на крышке реакционной камеры, выполненной из прозрачного для СВЧ материала 9. Таким образом, равномерность параметров «технологической» плазмы в реакционной камере над обрабатываемой пластиной повышается и позволяет обрабатывать пластины диаметром до 200 мм с неравномерностью 1÷1,5%.

Подогрев обрабатываемых пластин осуществляется с помощью СВЧ поля. Для этого в реакционной камере под обрабатываемой пластиной размещается еще одна плоская спиральная двухзаходная СВЧ антенна, запитываемая или от отдельного СВЧ генератора, или ответвлением с помощью тройника и коаксиально-волноводного перехода части СВЧ энергии от основного СВЧ генератора.

Устройство СВЧ плазменной обработки пластин, содержащее волноводный тракт, огибающий боковую стенку реакционной камеры, через центр широкой стенки волноводного тракта перпендикулярно к ней проходит несколько разрядных трубок, а в местах их входа и выхода из волноводного тракта накладывается магнитное поле для создания условий электронного циклотронного резонанса, отличающееся тем, что волноводный тракт выполняют кольцевым и располагают на боковой стенке реакционной камеры так, что разрядные трубки размещаются в одной плоскости, параллельной обрабатываемой пластине, а над обрабатываемой пластиной вне реакционной камеры на ее крышке, выполненной из прозрачного для СВЧ материала, располагают плоскую двухзаходную спиральную СВЧ антенну, под обрабатываемой пластиной для ее нагрева размещают еще одну плоскую двухзаходную спиральную СВЧ антенну.



 

Похожие патенты:

Изобретение относится к микроэлектронике, методам и технологическим приемам контроля и анализа структуры интегральных схем, к процессам сухого плазменного травления.

Изобретение относится к устройствам для генерирования плазмы высокой плотности и может быть использовано для травления изделий микроэлектроники. Устройство для плазмохимического травления содержит вакуумную камеру, генератор переменного напряжения высокой частоты и подложкодержатель с обрабатываемым изделием.

Изобретение относится к технологии производства электронных компонентов для микро- и наносистемной техники. .

Изобретение относится к устройствам локального травления тонких пленок микроэлектроники. .

Изобретение относится к технологии полупроводникового производства, в частности к формированию затворов в КМОП технологии. .

Изобретение относится к способам общего назначения для обработки материалов с помощью электрической энергии и может быть использовано в технологии полупроводниковых приборов.

Изобретение относится к области полупроводниковой электроники, в частности к технологии полупроводниковых приборов. .
Изобретение относится к области вакуумно-плазменной обработки (очистки, осаждения, травления и т.д.) потоками ионов, атомов, молекул и радикалов инертных или химически активных газов слоев и пленочных материалов на ленточных носителях в микро- и наноэлектронике, оптике, гелиоэнергетике, стекольной, автомобильной и других отраслях промышленности.

Изобретение относится к микроэлектронике, в частности к реакторам для высокоплотной и высокочастотной плазменной обработки полупроводниковых структур. .
Изобретение относится к микроэлектронике и может быть использовано в технологии изготовления интегральных пьезоэлектрических устройств - фильтров, резонаторов, линий задержки на поверхностных акустических волнах.

Изобретение относится к СВЧ плазменным установкам для проведения процессов травления и осаждения слоев - металлов, полупроводников, диэлектриков при пониженном давлении и может быть использовано в технологических процессах создания полупроводниковых приборов с высокой степенью интеграции. Изобретение обеспечивает улучшение равномерности обработки кремниевых пластин, упрощение настройки горения плазмы в каждой разрядной трубке. Устройство СВЧ плазменной обработки содержит волноводный тракт, огибающий боковую стенку реакционной камеры, через центр широкой стенки волноводного тракта перпендикулярно к камере проходят несколько разрядных трубок, а в местах их входа и выхода в волноводный тракт накладывается магнитное поле для создания условий электронного циклотронного резонанса. Для обеспечения одинаковых параметров плазмы волноводные тракты, выполненные кольцевыми, расположены на стенке реакционной камеры ярусами со смещением разрядных трубок в ярусах друг относительно друга, а также дополнительно введен электрод, через который вводятся газы. 2 ил.

Изобретение относится к области радиоэлектронной техники и микроэлектроники и может быть использовано для плазмохимической обработки подложек из поликора и ситалла. В способе плазмохимической обработки подложек из поликора и ситалла производят предварительную протирку изделий спиртом со всех сторон, включая протирку всех торцов подложки, производят предварительный обдув изделий нейтральным газом, помещают изделия в камеру плазменной установки вместе с подобным образцом - свидетелем, производят очистку изделий в среде доминирования кислорода при мощности 500-600 Вт, давлении процесса 800-900 мТорр в течение 10-20 минут, проверяют качество обработки поверхности по свидетелю методом краевого угла смачивания по окончании очистки. Изобретение обеспечивает повышение качества очистки подложек из поликора и ситалла перед напылением, в частности удаление оксидных пленок, органики, сокращение времени и экономических затрат на выполнение операций очистки. 4 з.п. ф-лы, 2 ил.

Изобретение относится к электронной технике СВЧ. Способ селективного реактивного ионного травления полупроводниковой гетероструктуры, имеющей, по меньшей мере, последовательность слоев GaAs/AlGaAs с заданными характеристиками, включает расположение полупроводниковой гетероструктуры на подложкодержателе в реакторе системы реактивного ионного травления с обеспечением контактирования слоя арсенида галлия с плазмой технологических газов, подачу в реактор технологических газов и последующее селективное реактивное ионное травление при заданных параметрах технологического режима. В способе используют полупроводниковую гетероструктуру, имеющую слой AlGaAs толщиной не менее 10 нм, с содержанием химических элементов AlxGa1-xAs при x, равном либо большем 0,22, в качестве технологических газов используют смесь трихлорида бора и гексафторида серы при соотношении (2:1)-(9:1) соответственно, селективное реактивное ионное травление осуществляют при давлении в реакторе 2-7 Па, мощности, подаваемой в разряд 15-50 Вт, температуре подложкодержателя 21-23°С, общем расходе технологических газов 15-25 мл/мин. Технический результат - повышение выхода годных путем повышения селективности, контролируемости, воспроизводимости, анизотропии и снижения неравномерности, плотности дефектов и загрязнений на поверхности полупроводниковой гетероструктуры. 1 з.п. ф-лы, 9 ил.

Изобретение относится к области измерений температуры тонких поверхностных слоев, в частности пористого диэлектрического слоя в химической промышленности (катализ), при изготовлении оптических и химических сенсоров, а так же в процессе криогенного травления диэлектриков в технологии микроэлектроники. Заявлен бесконтактный способ измерения температуры пористого слоя, характеризующийся тем, что температура пористого слоя определяется по калибровочным графикам зависимости показателя преломления пористого слоя от температуры при постоянном давлении паров выбранных химических соединений, адсорбирующихся в пористом слое, рассчитанным на основе экспериментальных графиков зависимости показателя преломления пористого слоя от относительного давления летучих паров в этом слое при комнатной температуре. Технический результат - повышение точности получаемых результатов. 2 з.п. ф-лы, 4 ил.

Изобретение относится к технологии изготовления изделий оптической техники, конкретно к способу удаления фоторезистивных пленок с поверхности оптических стекол, служащих в качестве основной маски при формировании микроэлементов на их поверхности. Технический результат изобретения заключается в обеспечении высокой скорости удаления фоторезистивной пленки с поверхности габаритных по площади и толщине оптических стекол без науглевоживания поверхности. В способе удаления фоторезистивных пленок с поверхности оптических стекол, включающем плазмохимическое травление пластины низкотемпературной плазмой в присутствии атомарного кислорода, согласно изобретению обрабатываемой пластиной является оптическое стекло, а нагрев фоторезистивной пленки до оптимальной температуры травления осуществляется инфракрасным излучателем, расположенным под поверхностью обрабатываемой пластины. 1 ил.
Наверх