Солнечный коллектор

Изобретение направлено на повышение прочности и производительности солнечного коллектора. В солнечном коллекторе содержатся два боковых профиля, каждый из которых выполнен в виде вертикальной стенки, имеющей на концах утолщения с направляющими пазами, перпендикулярными стенке, прозрачное ограждение, выполненное из стекла, закрепленного по боковым сторонам в верхних пазах боковых профилей, задняя стенка, закрепленная по боковым сторонам в нижних пазах боковых профилей, абсорбер с трубками для протока теплоносителя, расположенный между стеклом и задней стенкой, тепловая изоляция, размещенная между абсорбером и задней стенкой, причем полости боковых профилей между пазами заполнены боковой тепловой изоляцией. На верхнем профилированном утолщении выполнен вертикальный гребень, начинающийся от внутреннего края верхнего утолщения вертикальной стенки и заканчивающийся у поверхности лучеприемной панели абсорбера. 2 ил.

 

Изобретение относится к гелиотехнике и может быть использовано, в частности, в устройствах, преобразующих электромагнитное излучение солнца в тепловую энергию для нагрева жидкого теплоносителя.

Известен солнечный коллектор, содержащий два боковых крепежных элемента, прозрачное ограждение выпуклой формы из однослойного или многослойного гибкого материала, заднюю стенку, абсорбер, расположенный между прозрачным ограждением и задней стенкой, тепловую изоляцию, размещенную между абсорбером и задней стенкой, и две торцевые крышки, причем боковые крепежные элементы выполнены с наклонным направляющим пазом, прозрачное ограждение закреплено по боковым сторонам в пазах боковых крепежных элементов, задняя стенка выполнена стягивающей боковые крепежные элементы и удерживающей согнутое прозрачное ограждение от распрямления /1/.

Основным недостатком солнечного коллектора /1/ является использование в качестве прозрачного ограждения гибкого полимерного материала, поглощающего значительную большую часть электромагнитного излучения солнца, чем стекло. Например, оптическая проницаемость закаленного стекла с низким содержанием железа - 92-95%, в то время как гибкий полимерный материал имеет оптическую проницаемость не более 85-88%.

Известна конструкция солнечного коллектора, принятая нами за прототип, включающая два боковых и два торцевых профиля, каждый из которых выполнен в виде вертикальной стенки, имеющей на концах утолщения с направляющими пазами, перпендикулярными стенке; прозрачное ограждение, выполненное из стекла, закрепленного по боковым и торцевым сторонам в верхних пазах боковых и торцевых профилей; заднюю стенку, закрепленную по боковым и торцевым сторонам в нижних пазах боковых торцовых профилей; абсорбер с трубками для протока теплоносителя, расположенный между стеклом и задней стенкой, и тепловую изоляцию, размещенную между абсорбером и задней стенкой, причем полости боковых и торцевых профилей заполнены тепловой изоляцией /3/.

Прототип имеет существенные недостатки, а именно наличие в боковых и торцовых профилях выполненных в виде вертикальной стенки утолщений с направляющими пазами, в которых крепится стекло; используемый для изготовления корпуса коллектора профиль в виде стенки с утолщениями, который имеет низкую прочность на изгиб и кручение, что при эксплуатации коллектора может привести к разрушению прозрачного ограждения.

Заполнение незамкнутых полостей боковых профилей теплоизоляционным материалом приведет в процессе эксплуатации к снижению эффективности теплоизоляции, т.к. возможна ее осадка и нарушение сплошности.

Заполнение незамкнутых полостей боковых профилей теплоизоляционным материалом может привести к снижению производительности солнечного коллектора за счет затенения части поверхности лучеприемной панели абсорбера.

Задачей предложенной конструкции солнечного коллектора является повышение его тепловой эффективности, прочности корпуса.

Поставленные задачи достигаются тем, что солнечный коллектор содержит два боковых профиля, каждый из которых выполнен в виде вертикальной стенки, имеющей на концах утолщения с направляющими пазами, перпендикулярными стенке. Прозрачное ограждение выполнено из стекла, закреплено по боковым сторонам в верхних пазах боковых профилей. Задняя стенка закреплена по боковым сторонам в нижних пазах боковых профилей. Абсорбер с трубками для протока теплоносителя расположен между стеклом и задней стенкой. Тепловая изоляция размещена между абсорбером и задней стенкой. Причем полости боковых профилей между пазами заполнены боковой тепловой изоляцией. Согласно изобретению, на верхнем профилированном утолщении выполнен вертикальный гребень, начинающийся от внутреннего края верхнего утолщения вертикальной стенки и заканчивающийся у поверхности лучеприемной панели абсорбера на расстоянии 1-5 миллиметров. Абсорбер состоит из лучеприемной панели и трубок для протока теплоносителя и расположен между стеклом и задней стенкой. Тепловая изоляция размещена между лучеприемной панелью абсорбера и задней стенкой. Полости боковых профилей обращены в сторону лучеприемной панели абсорбера и заполнены боковой тепловой изоляцией.

Задняя стенка дополнительно закреплена на поверхности теплоизоляции. Между верхним профилированным утолщением боковой стенки и стеклом устанавливается резиновая герметизирующая лента.

Введение в конструкцию солнечного коллектора вертикального гребня, расположенного параллельно вертикальной боковой стенке, позволяет увеличить жесткость профиля, используемого для изготовления боковой панели корпуса и тем самым повысить его прочность; повысить эффективность работы солнечного коллектора за счет улучшения теплоизоляции боковой стенки корпуса и предотвращения затенения абсорбера; снизить себестоимость изготовления солнечного коллектора за счет уменьшения трудоемкости сборки.

Сущность изобретения поясняется на фиг.1, где:

1 - верхнее утолщение боковой стенки,

2 - верхний профилированный паз,

3 - прозрачное ограждение,

4 - вертикальный гребень,

5 - лучеприемная панель (абсорбер), теплоизоляционный материал,

6 - боковая стенка,

7 - тепловая изоляция,

8 - задняя стенка,

9 - нижний профилированный паз,

10 - трубки,

11 - наружная сторона,

12 - замок,

13 - герметизирующая лента,

14 - уступ на горизонтальном ребре.

На фиг.2 представлены:

10 - верхняя сборная труба,

11 - нижняя сборная труба,

12 - присоединительные муфты.

Солнечный коллектор работает следующим образом.

Солнечные лучи проходят через стекло попадают на лучеприемную панель абсорбера и поглощаются ею. Материал лучеприемной панели обладает высоким коэффициентом поглощения, в результате чего ее поверхность нагревается. Съем тепла с лучеприемной панели производится жидким теплоносителем, циркулирующим в трубках, закрепленных на тыльной стороне лучеприемной панели. Верхние концы трубок соединены с верхней сборной трубой. Нижние концы трубок соединены с нижней сборной трубой. Жидкий теплоноситель поступает в коллектор через штуцеры, закрепленные на верхней и нижней сборной трубах, проходя по трубкам абсорбера, размещенным на его тыльной стороне, отводит тепло от поверхности лучеприемной панели и нагревается до уровня, приемлемого для практического использования. Нагретая жидкость через верхние сборные трубы поступает потребителю.

Предлагаемый солнечный коллектор имеет, в сравнении с прототипом, большую эффективность. Известно, что при одинаковых оптических характеристиках лучеприемной панели наибольшей тепловой эффективностью будет обладать солнечный коллектор, имеющий меньшие потери тепла, что достигается использованием теплоизоляции лучеприемной панели от окружающей среды. В известном солнечном коллекторе, принятом за прототип, за счет свободного заполнения полостей боковых стенок корпуса теплоизоляционным материалом неизбежно возникновение конвективных потоков горячего воздуха от лучеприемной панели, что приведет к росту тепловых потерь и снижению эффективности его работы. Наличие вертикального гребня в конструкции предлагаемого солнечного коллектора позволяет полностью устранить возможность возникновения конвективных потоков воздуха от лучеприемной панели к стенке его корпуса и тем самым повысить его эффективность. Испытания модельного образца солнечного коллектора, предлагаемой конструкции показали, что около 89% энергии теплового излучения Солнца, поступающей на лучеприемную панель, используется на нагрев воды, тепловые потери составляют около 11%, что превышает уровень лучших отечественных и зарубежных образцов.

Повышение прочности корпуса предлагаемого солнечного коллектора достигается за счет увеличения площади поперечного сечения профиля на величину, равную площади сечения вертикального гребня, в плоскости приложения нагрузки.

Источники информации

1. Патент РФ №2407957.

2. Патент Германии №20319300.

3. Патент РФ №2485417 - прототип.

Солнечный коллектор, содержащий два боковых профиля, каждый из которых выполнен в виде вертикальной стенки, имеющей на концах утолщения с направляющими пазами, перпендикулярными стенке, прозрачное ограждение, выполненное из стекла, закрепленного по боковым сторонам в верхних пазах боковых профилей, заднюю стенку, закрепленную по боковым сторонам в нижних пазах боковых профилей, абсорбер с трубками для протока теплоносителя, расположенный между стеклом и задней стенкой, и тепловую изоляцию, размещенную между абсорбером и задней стенкой, причем полости боковых профилей между пазами заполнены боковой тепловой изоляцией, отличающийся тем, что на верхнем профилированном утолщении выполнен вертикальный гребень, начинающийся от внутреннего края верхнего утолщения вертикальной стенки и заканчивающийся у поверхности лучеприемной панели абсорбера.



 

Похожие патенты:
Изобретение может быть использовано в производстве бытовых солнечных коллекторов. Текучая среда, используемая в качестве теплоносителя и применимая для преобразования светового излучения в тепло, содержит воду и порошковый минерал.

Изобретение относится к гелиотехнике и может быть использовано, в частности, в устройствах, преобразующих электромагнитное излучение солнца в тепловую энергию для нагрева жидкого теплоносителя, а также в электрическую энергию.

Изобретение относится к гелиотехнике и может быть использовано, в частности, в устройствах, преобразующих электромагнитное излучение солнца в тепловую энергию для нагрева жидкого теплоносителя, а также в электрическую энергию.

Изобретение относится к гелиотехнике и может быть использовано, в частности, в устройствах, преобразующих электромагнитное излучение солнца в тепловую энергию для нагрева жидкого теплоносителя, а также в электрическую энергию.

Изобретение относится к вакуумированной солнечной панели с геттерным насосом, в частности согласно изобретению геттерный насос представляет собой насос с неиспаряющимся геттером (NEG).

Изобретение относится к гелиотехнике, конкретно - к гелиоагрегатам нагрева жидкостей посредством солнечного лучистого потока (солнечным водонагревателям, коллекторам, поглотителям).

Изобретение относится к устройствам, предназначенным для использования в народном хозяйстве лучистой энергии, преимущественно излучения Солнца, и может быть применено в любой отрасли народного хозяйства.

Изобретение относится к гелиотехнике, в частности к солнечным концентраторным модулям для получения электрической и тепловой энергии. .

Изобретение относится к автономным источникам электропитания, использующим энергию Солнца. .

Изобретение относится к солнечным теплоустановкам и может быть использовано в целях теплоснабжения жилых и производственных помещений и других объектов, а также для иных бытовых и технологических нужд.

Изобретение относится к области гелиотехники и предназначено для энергоснабжения объектов сельскохозяйственного и индивидуального назначения. Фотоэлектрическая тепловая система содержит, по меньшей мере, один солнечный тепловой коллектор, трубопровод подачи жидкости в солнечный тепловой коллектор, трубопровод отвода жидкости из солнечного теплового коллектора в бак-аккумулятор (термос), при этом трубопровод подачи жидкости в солнечный тепловой коллектор соединен, по меньшей мере, с одним фотоэлектрическим тепловым модулем, расположенным уровнем ниже солнечного теплового коллектора и соединенным последовательно с ним, при этом подача жидкости в фотоэлектрический тепловой модуль осуществляется через трубопровод из напорного бака, установленного выше уровня солнечного теплового коллектора, по меньшей мере, в один из трубопроводов вмонтирован соленоидный клапан, имеется, по меньшей мере, одно термореле с индивидуальным для фотоэлектрического теплового модуля или солнечного теплового коллектора датчиком, причем управляющие контакты соленоидного клапана подключены и коммутируются с помощью термореле, при этом солнечный тепловой коллектор и фотоэлектрический тепловой модуль выполнены в виде приемников солнечного излучения, представляющих собой резервуары, которые имеют форму прямоугольного параллелепипеда, а на рабочей поверхности резервуара фотоэлектрического теплового модуля расположена батарея солнечных элементов, внутри резервуаров фотоэлектрического теплового модуля и солнечного теплового коллектора параллельно рабочей поверхности с зазором относительно ее расположена перегородка, не достигающая верхней и нижней стенки резервуара.

Изобретение относится к ветровой энергетике и может быть использовано в сушилках и отоплении промышленных и другого назначения объектов. .

Изобретение относится к гелиотехнике и может быть использовано в системах солнечного теплохладоснабжения. .

Изобретение относится к теплонасосной системе, используемой для отопления или охлаждения зданий, например - обеспечения горячей водой. .

Изобретение относится к способу изготовления абсорбционной панели для солнечных коллекторов из металлической ленты, в частности из алюминия или алюминиевого сплава.

Изобретение относится к теплотехнике, а именно к устройствам для преобразования солнечной энергии в тепловую и электрическую, и может быть использовано для обеспечения объектов бытового и промышленного назначения горячей водой в условиях северных территорий с низкой освещенностью, при высоких снежных нагрузках и с низкими температурами.

Изобретение относится к гелиоэнергетике, а именно к энергетическим установкам эффективного нагрева воды и сохранения нагретой воды длительное время. .

Изобретение относится к гелиотехнике и может быть использовано, в частности, в устройствах, преобразующих электромагнитное излучение Солнца в тепловую энергию для нагрева жидкого теплоносителя, а также в электрическую энергию.

Устройство состоит из абсорбционного аммиачного холодильного агрегата, включающего, в частности, термосифон и испаритель. Устройство оснащено параболическим зеркалом, концентрирующим солнечные лучи на термосифоне холодильного агрегата. Параболическое зеркало механически соединено с солнечной батареей, которая, в свою очередь, соединена с аккумуляторной батареей, блоком определения положения солнца и двигателем, приводящим в движение параболу с солнечной батареей. Изобретение позволяет использовать солнечную энергию для понижения температуры воды. 1 ил.
Наверх