Автономное многофункциональное светотехническое устройство

Изобретение относится к области светотехники, в частности к устройствам освещения и сигнализации. Техническим результатом является повышение надежности устройства и расширение его функциональности, что достигается тем, что в автономном многофункциональном светотехническом устройстве, содержащем гибкую слоистую структуру, на которой размещены цепочки полупроводниковых солнечных элементов, источник света в виде линейки светодиодов, аккумуляторная батарея и блок управления, состоящий из датчика освещенности, контроллера заряда аккумуляторной батареи и узла регулирования подачи энергии на линейки светодиодов, в качестве гибкой слоистой структуры используют гибкий фотоэлектрический модуль, солнечные элементы которого и линейки светодиодов расположены на лицевой и обратной стороне модуля, а блок управления и аккумуляторная батарея закреплены на одной из сторон модуля, причем блок управления дополнительно содержит узел звуковой сигнализации, датчики температуры и давления и двунаправленный радиомодем, при этом линейки светодиодов, аккумуляторная батарея и блок управления расположены под защитной оптически прозрачной ламинирующей пленкой, толщина которой составляет 0,2÷1,0 мм, 1 ил.

 

Изобретение относится к устройствам освещения и сигнализации и предназначено для использования преимущественно в аварийных ситуациях при отсутствии обычного (стационарного) освещения, для регулирования движения автомобильного и водного транспорта, а также для дистанционной передачи метеоданных.

Известно автономное светотехническое устройство, содержащее корпус с размещенным в нем рефлектором, внутри которого закреплены светоизлучающие диоды, и устройство энергообеспечения в виде накопительного конденсатора или аккумулятора [1].

Устройство имеет небольшие габаритные размеры и малый вес.

Недостатком устройства является ограниченный ресурс его функционирования в автономном режиме, определяемый временем разряда аккумуляторов или конденсатора.

Известно автономное светотехническое устройство, содержащее фотоэлектрический преобразователь и связанные друг с другом через соответствующие контакты переключателя аккумуляторную батарею и источник света, импульсный повышающий регулятор напряжения, связанный с фотоэлектрическим преобразователем и формирователем импульсов зарядного тока [2].

Недостатком устройства является отсутствие возможности автоматического управления включения и выключения источника света в зависимости от наружного освещения, что ограничивает его ресурс функционирования в автономном режиме.

Известно также автономное светотехническое устройство, включающее источник света в виде линейки светодиодов, аккумуляторную батарею, фотоэлектрический преобразователь и блок управления, состоящий из датчика освещенности и узла управления подачей энергии на линейку светодиодов [3].

Устройство автоматически включается (освещает) с наступлением темного времени суток и выключается при наступлении утра - при повышении освещенности на фотоэлектрическом преобразователе, таким образом, оно не требует внешнего воздействия от потребителя для его включения и выключения.

Конструктивно автономное светотехническое устройство состоит из трех отдельных узлов:

- рефлектор, внутри которого расположены линейки светодиодов и блок управления;

- фотоэлектрический преобразователь (монолитный солнечный модуль мощностью не менее 60 Вт, например ТСМ-60, напряжение и ток под нагрузкой соответственно Uн=17 B и Iн=3,5 A. Солнечный модуль представляет собой заключенное в алюминиевую раму закаленное стекло с закрепленными на нем линейками солнечных элементов;

- свинцово-кислотная необслуживаемая аккумуляторная батарея, например, марки «BOSCH SILVER», напряжением 12 B и емкостью не менее 40 A/час.

Вес рефлектора с линейкой светодиодов и блоком управления небольшой и составляет около 0,7 кг, вес модуля ТСМ-60 составляет ~7 кг при габаритных размерах 773 мм × 676 мм × 43 мм, вес аккумуляторной батареи составляет около 11 кг при габаритных размерах 187 мм × 127 мм × 227 мм.

Таким образом, суммарный вес автономного светотехнического устройства составляет не менее 17 кг.

К недостаткам устройства следует отнести:

- значительный вес и многоблочность конструкции, что существенно ограничивает мобильность его использования, то есть увеличивает время развертывания автономного светотехнического устройства до рабочего состояния;

- функционально указанное устройство предназначено только для выполнения единственной операции: освещения локальной территории в темное время суток.

Наиболее близким по технической сущности и достигаемому результату является портативное автономное светотехническое устройство, включающее гибкую слоистую структуру, на наружной поверхности которой расположены цепочки полупроводниковых тонкопленочных солнечных элементов и источники света (линейки светодиодов), а в специальных карманах на внутренней или наружной поверхности расположены источники накопления энергии (аккумуляторная батарея) и блок управления, состоящий из датчика освещенности, контроллера заряда аккумуляторной батареи и узла регулирования подачи энергии на линейки светодиодов [4].

Гибкая слоистая структура представляет собой либо гибкий пластиковый лист, либо армированную текстильную или кожаную поверхность, на которой закреплены карманы (ячейки), в которых и размещаются все элементы устройства.

В качестве контроллера заряда используется электросхема, обеспечивающая шунтирование фотоэлектрического модуля при превышении напряжения на аккумуляторной батарее более чем на 10% от номинального значения. При этом фотоэлектрический модуль отключается от нагрузки, а весь генерируемый модулем ток перенаправляется на шунтирующую нагрузку. При снижении напряжения на аккумуляторной батарее более чем на 10% от номинального значения узел контроля заряда вновь подключает фотоэлектрический модуль к аккумуляторной батарее, и процесс подзарядки аккумуляторной батареи возобновляется.

Устройство является портативным, имеет небольшой вес и высокую автономность.

К недостаткам устройства следует отнести:

- низкую влагозащищенность, обусловленную структурированностью конструкции;

- невысокую надежность, обусловленную наличием множественных контактных проводов, соединяющих блоки и узлы устройства между собой;

- ограниченную функциональность (устройство предназначено только для освещения и подзарядки небольших портативных устройств через встроенный USB-разъем).

Задачей изобретения является расширение функциональности устройства, повышение его автономности и надежности.

Это достигается за счет того, что в автономном светотехническом устройстве, содержащем гибкую слоистую структуру, на которой размещены цепочки полупроводниковых солнечных элементов, источник света в виде линейки светодиодов, аккумуляторная батарея и блок управления, состоящий из датчика освещенности, контроллера заряда аккумуляторной батареи и узла регулирования подачи энергии на линейки светодиодов, в качестве гибкой слоистой структуры используют гибкий фотоэлектрический модуль, солнечные элементы которого и линейки светодиодов расположены на лицевой и обратной стороне модуля, а блок управления и аккумуляторная батарея закреплены на одной из сторон модуля, причем блок управления дополнительно содержит узел звуковой сигнализации, датчики температуры и давления и двунаправленный радиомодем, при этом линейки светодиодов, аккумуляторная батарея и блок управления расположены под защитной оптически прозрачной ламинирующей пленкой толщиной 0,2÷1,0 мм.

Конструкция заявляемого светотехнического устройства поясняется фиг.1, где:

1 - лицевая сторона гибкого фотоэлектрического модуля;

2 - обратная сторона гибкого фотоэлектрического модуля;

3 - полупроводниковые солнечные элементы;

4 - блок управления;

5 - аккумуляторная батарея;

6 - линейки светодиодов;

R - радиус изгиба поверхности модуля, мм;

Вид А - устройство в стандартном развернутом состоянии;

Вид Б - устройство в изогнутом состоянии.

Полупроводниковые солнечные элементы 3 расположены на обеих плоскостях гибкого фотоэлектрического модуля 1.

Аккумуляторная батарея 5 представляет собой плоский пенал, в котором размещены от одного до трех плоских полимерных Li-Ion аккумуляторов суммарным напряжением 10÷15 В.

Линейки светодиодов 6 расположены как на лицевой, так и на обратной поверхности модуля 1.

Блок управления 4 размещен в клеммной коробке гибкого фотоэлектрического модуля 1 и состоит из микропроцессора, обеспечивающего реализацию помимо стандартных функций (детектирования уровня освещенности, регулирования подачи энергии на линейки светодиодов и контроля заряда аккумуляторной батареи) также функции метеорологического процессора («погодной станции»), двунаправленной радиомодемной связи и звуковой сигнализации.

Оптимальным размещением светотехнического устройства является вариант размещения лицевой стороной фотоэлектрического модуля на юг (фиг.1, вид А).

В этом случае обеспечивается максимальная световая засветка солнечных элементов модуля в течение светового дня, то есть максимальная подзарядка аккумуляторной батареи.

В случае размещения устройства лицевой поверхностью (или в изогнутом состоянии - фиг.1, вид Б) на север зарядка аккумуляторных батарей будет обеспечиваться за счет расположенных на обратной стороне модуля солнечных элементов, которые в данном случае будут ориентированы на запад и восток.

При таком размещении обеспечивается достаточная световая засветка солнечных элементов модуля в утренние и вечерние часы, то есть когда солнце находится на востоке и западе соответственно.

В случае же использовании устройства-прототипа [4] подзарядка аккумуляторной батареи при таких расположениях устройства оказывается принципиально невозможной.

Поскольку все элементы светотехнического устройства находятся под защитной светопроницаемой пленкой, устройство может быть использовано в самых экстремальных погодных условиях, вплоть до размещения в условиях интенсивных атмосферных осадков, вплоть до 100%-ной влажности (например, в качестве автономного бакена, выполняя одновременно функцию светового или звукового сигнализатора и погодной станции, передающей по радиомодему по запросу удаленного центра управления сигнал, содержащий информацию как о состоянии узлов и блоков устройства, так и информацию о влажности, температуре и давлении в точке локализации устройства).

Защита светопроницаемой пленкой осуществляется путем ламинирования по стандартной технологии, используемой в производстве гибких фотоэлектрических модулей, при температуре 145÷150°C в течение ~2,0 мин [5]. Такое кратковременное температурное воздействие не сказывается отрицательно на работоспособности светодиодов.

Минимальная толщина защитной пленки составляет 0,2 мм и ограничена ее прочностными характеристиками. При меньшей толщине возможны локальные разрывы пленки, что отрицательно сказывается на герметичности конструкции.

При толщинах защитной пленки более 1,0 мм уменьшается ее светопропускание, что приводит к дополнительным потерям мощности модуля за счет повышенного поглощения светового потока в пленке и, как следствие, к снижению КПД солнечных элементов.

Также при использовании пленки толщиной более 1,0 мм происходит деформация пластиковых линз светодиодов, поскольку ламинирование толстой пленки происходит при температурах 145÷150°C в течение более длительного времени (до 10 мин).

В случае же использовании устройства-прототипа [4] 100%-ная влагозащищенность узлов и блоков устройства не может быть реализована, поэтому задача обеспечения бесперебойного функционирования устройства в экстремальных погодных условиях становится практически невыполнимой.

Пример конкретного выполнения

В качестве гибкой слоистой структуры с расположенными на ней цепочками полупроводниковых солнечных элементов используют гибкий фотоэлектрический модуль 1 типа TCM-60F с двухсторонним расположением солнечных элементов [5]. Мощность модуля - 60 Вт, напряжение и ток под нагрузкой соответственно Uн=17 B и Iн=3,5 A. Габаритные размеры фотоэлектрического модуля - 1100 мм × 500 мм × 1,5 мм, вес модуля - 1,0 кг.

При изготовлении модуля на лицевой стороне ниже места под размещение клеммной коробки 1 предусматривается свободное от солнечных элементов пространство в виде вертикального прямоугольника площадью, достаточной для размещения аккумуляторной батареи.

Аккумуляторная батарея 5 представляет собой размещенные на этом свободном пространстве модуля три последовательно соединенных плоских полимерных Li-Ion аккумуляторов типа DB02A производства фирмы «Ddreamvasion Wholesale Ltd» емкостью по 4500 мА/час и рабочим напряжением 3,7 В. Габаритные размеры каждого аккумулятора - 96 мм × 119 мм × 3,3 мм, вес - 95 г.

Диапазон рабочих температур подобных аккумуляторов составляет от -40°C до +60°C, гарантированный срок службы - от 3 до 5 лет.

Суммарный вес батареи из 3-х аккумуляторов составляет 0,27 кг.

В качестве линеек светодиодов 6 используют линейки из сверхярких светодиодов малой мощности фирмы ООО «КТЛ» марки KMWH-288.

Линейки светодиодов закрепляют по периферии модуля с лицевой и обратной сторон, а также поверх аккумуляторной батареи.

Указанные линейки светодиодов имеют следующие технические характеристики:

- угол свечения 120°;

- световой поток 500 лм;

- количество светодиодов в линейке 12 шт.;

- длина каждой линейки 288 мм;

- вес линейки 0,02 кг;

- напряжение питания 12 B;

- потребляемая мощность 5,8 Вт;

- диапазон рабочих температур от -40°C до +80°C.

Гарантированный срок службы такой светодиодной линейки составляет не менее 50000 час, то есть около 6 лет.

Контактные провода от аккумуляторной батареи и линеек светодиодов выводят в клеммную коробку 1 и распаивают на соответствующих контактных площадках блока управления 4.

Блок управления 4 представляет собой размещенный в клеммной коробке 1 гибкого фотоэлектрического модуля микропроцессор, содержащий (помимо стандартных узлов: датчика освещенности, узла регулирования подачи энергии на линейки светодиодов и узла контроля заряда аккумуляторной батареи) метеорологический процессор («погодную станцию»), двунаправленный радиомодем и звуковой сигнализатор.

Поскольку все элементы светотехнического устройства находятся под защитной светопроницаемой пленкой (этиленвинилацетатная пленка - ЭВА) толщиной ~0,2 мм, они полностью изолированы от воздействия атмосферных осадков и способны функционировать в условиях повышенной влажности, тумана, дождя.

Таким образом, заявляемое устройство представляет собой полностью герметичный плоский моноблок весом не более 1,4 кг, максимальные габаритные размеры которого не превышают 1100 мм × 500 мм × 5,0 мм, который обеспечивает помимо основной функции (подачу световых сигналов) дополнительно звуковую сигнализацию, сбор погодной информации и передачу регистрируемой информации на удаленный пункт управления.

Технический результат, достигаемый при использовании заявляемой конструкции, заключается в повышение надежности устройства и расширении его функциональности.

В известных науке и технике решениях аналогичной задачи не обнаружено использование в автономных светотехнических устройствах встроенных логических блоков, контролирующих параметры самого устройства, анализирующих погодную информации, содержащих радиомодем и обеспечивающих подачу световых и звуковых сигналов как в автоматическом режиме, так и в режиме удаленного управления.

Источники информации

1. Патент США №8066402 от 29 ноября 2011 г.

2. Патент РФ №2256845 от 20 августа 2005 г.

3. Патент РФ №2324105 от 26 сентября 2006 г.

4. Европатент № WO 2011049859 от 28 августа 2011 г. - прототип.

5. Патент РФ №2416056 от 17 декабря 2009 г.

Автономное многофункциональное светотехническое устройство, содержащее гибкую слоистую структуру, на которой размещены цепочки полупроводниковых солнечных элементов, источник света в виде линейки светодиодов, аккумуляторная батарея и блок управления, состоящий из датчика освещенности, контроллера заряда аккумуляторной батареи и узла регулирования подачи энергии на линейки светодиодов, отличающееся тем, что в качестве гибкой слоистой структуры используют гибкий фотоэлектрический модуль, солнечные элементы которого и линейки светодиодов расположены на лицевой и обратной стороне модуля, а блок управления и аккумуляторная батарея закреплены на одной из сторон модуля, причем блок управления дополнительно содержит узел звуковой сигнализации, датчики температуры и давления и двунаправленный радиомодем, при этом линейки светодиодов, аккумуляторная батарея и блок управления расположены под защитной оптически прозрачной ламинирующей пленкой, толщина которой составляет 0,2÷1,0 мм.



 

Похожие патенты:

Изобретение относится к устройствам освещения помещений и предназначен для использования, преимущественно, в аварийных ситуациях при отсутствии обычного (стационарного) освещения.

Изобретение относится к кондиционированию воздуха и позволяет повысить эффективность очистки воздуха, равномерность его раздачи и уменьшить затраты на его охлаждение.

Изобретение относится к светотехнике, а именно к системам освещения с неэлектрическими источниками света, и позволяет повысить КПД системы. .

Изобретение относится к области электротехники и предназначено для использования в местах проведения подземных работ. Техническим результатом является расширение арсенала технических средств. Искробезопасный светильник содержит корпус, в котором размещены по меньшей мере один источник освещения, работающий при низком напряжении, одно устройство управления источником освещения и один электрический аккумулятор. Устройство управления выполнено с возможностью выборочного снабжения источника освещения электрической энергией, которая подается от электрического аккумулятора или от внешней электрической цепи, и с возможностью приведения источника освещения в действие с помощью электрической энергии от электрического аккумулятора, если внешняя электрическая цепь испытывает высокую токовую нагрузку, а также зарядки электрического аккумулятора через внешнюю электрическую цепь, если внешняя электрическая цепь имеет малую токовую нагрузку. 5 з.п. ф-лы, 2 ил.

Изобретение относится к светотехнике, в частности к полупроводниковой светотехнике, предназначенной для использования в парниках и теплицах в качестве межрядковой досветки. Система включает линейный облучатель, снабженный набором из, по меньшей мере, двух сменных светопреобразующих элементов 5, средствами крепления облучателя над тепличными растениями и средствами изменения положения облучателя по высоте и углу наклона. Облучатель включает несущий корпус 3, выполненный в виде протяженной профилированной детали из теплопроводящего материала, имеющий боковые стенки, сопряженные с основанием, и снабженный торцевыми крышками; по крайней мере, одну печатную плату 2 с, по крайней мере, одним светоизлучающим диодом 1 с максимумом излучения в диапазоне 430-470 нм, размещенную на основании корпуса и снабженную выводом для подключения к питающему напряжению. Корпус снабжен отверстием для упомянутых выводов. Отражатель 4 представляет собой протяженную деталь с боковыми стенками и основанием. Отражатель и торцевые крышки выполнены из материала или покрыты материалом, имеющим коэффициент диффузного отражения 0,95-0,99. Отражатель имеет в поперечном сечении форму трапеции и установлен в корпусе своим основанием на печатной плате со светодиодами. Основание отражателя 4 снабжено прорезями для размещения светодиодов 1. Облучатель включает средства герметизации внутреннего пространства облучателя и средства крепления в корпусе светопреобразующего элемента 5, торцевой крышки, платы со светодиодами, отражателя. Светопреобразующие элементы закреплены в корпусе на расстоянии от диодов и выполнены из оптически прозрачного материала с нанесенным на его внутреннюю и/или внешнюю поверхности слоем, содержащим диспергированные частицы с максимумами пиков флуоресценции в диапазоне длин волн 600-680 нм и полушириной в диапазоне 50-180 нм. Светопреобразующие элементы 5 выполнены с разными максимумами пиков флуоресценции. При таком выполнении обеспечивается повышение урожайности тепличных культур при снижении энергопотребления системы, повышается технологичность производства облучателя, удобство его сборки и эксплуатации с возможностью замены съемных деталей облучателя, в частности платы со светодиодами, светопреобразующей пластины. 25 з.п. ф-лы, 5 ил.

Изобретение относится к области светотехники, а именно к устройствам освещения дневным светом. Техническим результатом является повышение эффективности компенсации потерь от поглощения дневного света. Коллектор (3) дневного света собирает дневной свет (4), который проводится световодом (5) к месту, подлежащему освещению, вдоль оптического пути, при этом дневной свет поглощается световодом. Фотолюминесцентный материал (71, 72) расположен в пределах оптического пути и излучает фотолюминесцентный свет, который компенсирует поглощение дневного света световодом. 3 н. и 12 з.п. ф-лы, 8 ил.

Изобретение относится к системам освещения интерьера. Осветительная система имеет утопленную панель (источник света или окно) и боковую стенку или набор боковых стенок вокруг углубления. По меньшей мере одна из боковых стенок имеет осветительное устройство для управления цветом освещения и/или формой, от которой исходит свет от боковой стенки или боковых стенок. Это может быть использовано для имитации резких границ освещенности на боковых стенках при солнечном освещении через световой люк или создания общего освещения вокруг окна. 12 з.п. ф-лы, 9 ил.
Наверх