Биосовместимый пористый материал и способ его получения

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан также способ получения биосовместимого пористого материала, включающий предварительную ионную обработку поверхности высокопористого ячеистого никеля, помещенного на планетарный механизм поворотного стола установки ионно-плазменного напыления, в низкотемпературной плазме в атмосфере аргона при токе разряда 40-45 А при постепенном увеличении отрицательного потенциала на поворотном столе от 100 до 1000 B в течение 80-90 мин, последующее электродуговое напыление путем осаждения ионов титана на поверхность никеля с использованием расходуемого катода, выполненного из титана, при отрицательном потенциале 0,9-1,2 кВ между планетарным механизмом и корпусом рабочей камеры при токе катода 75-80 А, с последующим установлением при достижении температуры 700°C потенциала на планетарном механизме 300-350 B и выдержкой 20-60 мин, охлаждение полученного продукта при давлении (5-7)·10-5 мм рт.ст. в течение 100-120 мин, а затем введение в него гидроксиапатита путем 3-9-кратной вакуумной пропитки 10-12%-ной суспензией гидроксиапатита с размером частиц менее 1 мкм при давлении 1·10-1÷8·10-1 с последующей сушкой на воздухе. Биосовместимый пористый материал обладает наряду с высокой пористостью также высокой биологической активностью за счет наличия в его составе гидроксиапатита, имеющего высокие остеозамещающие свойства. 2 н.п. ф-лы, 2 ил., 2 пр.

 

Изобретение относится к области медицины, в частности к новым пористым биомедицинским материалам на основе никелида титана, которые могут быть использованы для изготовления костных имплантатов.

Известен биомедицинский материал, представляющий собой пористый сплав, соответствующий формуле TiCo, с общей пористостью 55-70% при доле открытой пористости 90-98%, с размерами пор 200-800 мкм, при этом поверхность порового пространства сплава покрыта соединениями кальция, фосфора и кислорода, являющимися продуктами разложения гидроксиапатита кальция (патент RU №2341293, МПК A61L 27/04; A61L 27/06; A61L 27/24; A61F 2/28, 2008 год).

Недостатком известного материала является пониженная биологическая активность соединений, покрывающих поровое пространство, по сравнению с гидроксиапатитом. Исследования, проведенные авторами предлагаемого технического решения, показали, что изменение фазового состава гидроксиапатита при его высокотемпературной обработке, характерной для керамических технологий, ведет к снижению биологической активности, поскольку растворимость образующихся соединений меньше, чем растворимость минеральной составляющей кости.

Известен пористый биосовместимый материал на основе никелида титана, содержащий в качестве добавки нестехиометрический карбид титана TiC0,5 (патент RU №2459686, МПК B22F 3/23; C22C 1/08; A61L 27/00, 2012 год) (прототип).

Известен также способ получения пористого биосовместимого материала на основе никелида титана, включающий приготовление экзотермической смеси из порошков никеля и титана в соотношении 47-53 ат.% никель, остальное - титан, и порошковых добавок, прессование из смеси заготовки, размещение ее в реакторе СВС и воспламенение поджигающим составом, при этом в качестве порошковых добавок вводят экзотермическую смесь порошковых компонентов, образующих биосовместимые тугоплавкие соединения с более высокой температурой плавления, чем у никелида титана (патент RU №2459686, МПК B22F 3/23; C22C 1/08; A61L 27/00, 2012 год) (прототип).

Недостатком известного материала является отсутствие в его составе компонента, обладающего остеоиндуктивным действием, вследствие которого появляется способность участвовать в остеогенезе. Именно это свойство обеспечивает прочность взаимодействия материала с костной тканью.

Таким образом, перед авторами стояла задача разработать состав биосовместимого пористого материала, обладающего высокой биологической активностью за счет способности участвовать в остеогенезе костных тканей.

Поставленная задача решена в предлагаемом составе биосовместимого пористого материала на основе никелида титана, в котором никелид титана с пористостью 90-95% при доле открытой пористости 70-80% и средним размером пор 400 мкм пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана.

Поставленная задача также решена в способе получения биосовместимого пористого материала на основе никелида титана, включающем предварительную ионную обработку поверхности высокопористого ячеистого никеля, помещенного на планетарный механизм поворотного стола установки ионно-плазменного напыления, в низкотемпературной плазме в атмосфере аргона при токе разряда 40-45 А при постепенном увеличении отрицательного потенциала на поворотном столе от 100 до 1000 B в течение 80-90 мин, последующее электродуговое напыление путем осаждения ионов титана на поверхность никеля с использованием расходуемого катода, выполненного из титана, при отрицательном потенциале 0,9-1,2 кВ между планетарным механизмом и корпусом рабочей камеры при токе катода 75-80 А с последующим установлением при достижении температуры 700°C потенциала на планетарном механизме 300-350 B и выдержкой 20-60 мин, охлаждение полученного продукта при давлении (5-7)·10-5 мм рт.ст. в течение 100-120 мин, а затем введение в него гидроксиапатита путем 3-9-кратной вакуумной пропитки 10-12%-ной суспензией, содержащей гидроксиапатит с размером частиц менее 1 мкм, при давлении 1·10-1÷8·10-1 с последующей сушкой на воздухе при н.у.

В настоящее время из патентной и научно-технической литературы не известен биосовместимый пористый материал на основе никелида титана, пропитанный гидроксиапатитом, взятым в количестве 26-46 мас.% от массы никелида титана. Также не известен способ его получения, включающий электродуговое напыление титана на поверхность высокопористого ячеистого никеля с последующей пропиткой полученного продукта суспензией гидроксиапатита с соблюдением предлагаемых рабочих параметров процесса.

В настоящее время известна способность гидроксиапатита заживлять и восстанавливать костную ткань, что позволяет широко использовать его в качестве костного имплантата. Общая формула гидроксиапатита Ca(PO4)2(OH)2. Гидроксиапатит имеет пористую молекулярную структуру и обладает свойством формировать и сохранять минерализованные ткани. Однако также известно, что спеченная керамика из гидроксиапатита обладает недостаточно высокими прочностными свойствами. Причем существующие способы упрочнения керамики из гидроксиапатита не позволяют коренным образом решить эту проблему (С.М. Баринов, B.C. Комлев. Биокерамика на основе фосфатов кальция. М.: Наука, 2005, 202 с.).

Таким образом, исследования, проведенные авторами предлагаемого технического решения, были направлены на разработку композиционного материала, имеющего прочную высокопористую биосовместимую основу, заполненную биоактивным гидроксиапатитом, при этом композиционный материал такой структуры должен обладать развитой системой открытых взаимосвязанных пор, обеспечивающих беспрепятственное протекание биологических жидкостей по объему имплантата и постоянный контакт этих жидкостей с гидроксиапатитом, тем самым положительно влияя на процесс остеоинтеграции.

В качестве биосовместимого высокопористого каркаса авторы предлагают использовать никелид титана как обладающий высокими прочностными, антикоррозионными свойствами, биоинертностью к биологическим тканям. Важным моментом исследования был выбор способа получения никелида титана, обеспечивающий наряду с достаточно высокой прочностью высокую пористость. В предлагаемом техническом решении использован способ ионно-плазменного напыления, позволяющий, в частности, использовать в качестве исходного компонента высокопористый никель со следующими характеристиками: общая пористость 90±1%; открытая пористость 65±1% (доля - 71%); закрытая пористость 24±1% (доля - 29%), средний размер пор 400 мкм. Существенным является интервал значений рабочих параметров способа. Так, при снижении значений параметров ионно-плазменного напыления, а именно снижение тока разряда в низкотемпературной плазме ниже 40 А, снижение отрицательного потенциале между планетарным механизмом и корпусом рабочей камеры ниже 0,9 кВ при токе катода ниже 75 А с последующим установлением при достижении температуры 700°C потенциала на планетарном механизме ниже 300 B и выдержкой менее 20 мин, не наблюдается образования никелида титана и титановое покрытие не имеет сплошного характера. При повышении значений параметров ионно-плазменного напыления, а именно повышение тока разряда в низкотемпературной плазме выше 45 А, повышение отрицательного потенциале между планетарным механизмом и корпусом рабочей камеры выше 1,2 кВ при токе катода выше 80 А с последующим установлением при достижении температуры 700°C потенциала на планетарном механизме выше 350 B и выдержкой более 60 мин, наблюдается значительное уменьшение величины открытой пористости. Как было упомянуто выше, биологическая активность гидроксиапатита снижается при высокотемпературной обработке. Например, обработанный при 900°C гидроксиапатит имеет кристаллическую структуру и менее растворим, чем минеральная составляющая кости. Поэтому авторами предлагается нанесение покрытия из гидроксиапатита на биосовместимый каркас из никелида титана путем осаждения частиц гидроксиапатита из водной суспензии, в процессе которого не происходит изменения фазового состава. Осаждение осуществляют вакуумной пропиткой при определенных условиях проведения процесса. Так, при снижении давления ниже 1·10-1 наблюдается неравномерность в заполнении пор никелида титана гидроксиапатитом, обусловленная неконтролируемым проскоком водной суспензии в объеме никелида. Повышение давления выше 8·10-1 не позволяет прокачать водную суспензию через весь объем никелида титана, что также приводит к неравномерности заполнения пор. Содержание гидроксиапатита в суспензии варьируется в пределах 26-46 мас.% от массы никелида титана. 3-9-кратный способ вакуумной пропитки позволяет, дозированно заполняя поры никелида титана, направленно формировать структуру конечного продукта. При этом при уменьшении массы гидроксиапатита менее 26 мас.% приводит к неравномерному распределению гидроксиапатита внутри никелида титана, а увеличение массы более 46 мас.% ведет к уменьшению среднего размера пор материала до 50-70 мкм, что уменьшает контакт биологически активных жидкостей с гидроксиапатитом.

Предлагаемый способ может быть осуществлен следующим образом.

В рабочую камеру установки ионно-плазменного напыления с установленным в ней расходуемым катодом, выполненным из титана, на планетарном механизме поворотного стола размещают пластину из никеля со следующими характеристиками: общая пористость 90±1%; открытая пористость 65±1% (доля - 71%); закрытая пористость 24±1% (доля - 29%), средний размер пор 400 мкм. Рабочую камеру откачивают до давления (5-7)·10-5 мм рт.ст., затем включают вращение планетарного механизма поворотного стола и облучают пластину потоком ионов аргона при токе разряда 40-45 А при постепенном увеличении отрицательного потенциала на поворотном столе от 100 до 1000 B в течение 80-90 мин. Облучение в вакууме высокопористого никеля потоком низкоэнергетических ионов аргона в предлагаемом способе не только обеспечивает эффективную очистку поверхности никеля, но и активирует его поверхность, способствуя образованию никелида титана. При этом по мере обезгаживания рабочей камеры давление сначала возрастает за счет десорбированных газов, а затем падает до первоначального, равного (5-7)·10-5 мм рт.ст. После того как давление в камере устанавливается равным первоначальному, зажигают дугу на расходуемом катоде, выполненном из титана. Процесс ведут при отрицательном потенциале 0,9-1,2 кВ между планетарным механизмом и корпусом рабочей камеры при токе титанового катода, равном 75-80 А. При появлении красного свечения пластины (температура 700°C) устанавливают потенциал на планетарном механизме 300-350 B и дают выдержку 20-60 мин, в течение которой происходит осаждение ионов титана на никель с образованием никелида титана. После чего процесс прерывают гашением дуги, а полученный продукт охлаждают в рабочей камере при давлении (5-7)·10-5 мм рт.ст. в течение 100-120 мин. Полученный продукт подвергают рентгенофазовому анализу. Пористость определяют по известной методике (Черемской П.Г. ″Методы исследования пористости твердых тел/ под ред. Л.С. Палатника″. М.: Энергоатомиздат, 1985, 112 с.). Затем полученный продукт помещают в 10-12%-ную водную суспензию гидроксиапатита состава Са(PO4)2(ОН)2 с размером частиц менее 1 мкм, полученную в соответствии с патентом RU 2406693, и осуществляют 3-9-кратную вакуумную пропитку при давлении 1·10-1÷8·10-1 в течение 2-5 с с последующей сушкой на воздухе при н.у. Получают пористый материал со средним размером пор 100-300 мкм на основе никелида титана, пропитанного гидроксиапатитом.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. В рабочую камеру установки ионно-плазменного напыления с установленным в ней расходуемым катодом, выполненным из титана, на планетарном механизме поворотного стола размещают пластину размером 50×18×2 мм и массой 1,76 г из никеля со следующими характеристиками: общая пористость 90±1%; открытая пористость 65±1% (доля - 71%); закрытая пористость 24±1% (доля - 29%), средний размер пор 400 мкм. Рабочую камеру откачивают до давления 5·10-5 мм рт.ст., затем включают вращение планетарного механизма поворотного стола и облучают пластину потоком ионов аргона при токе разряда 40 А при постепенном увеличении отрицательного потенциала на поворотном столе от 100 до 1000 B в течение 80 мин. При этом по мере обезгаживания рабочей камеры давление сначала возрастает за счет десорбированных газов, а затем падает до первоначального, равного 5·10-5 мм рт.ст. После того как давление в камере устанавливается равным первоначальному, зажигают дугу на расходуемом катоде, выполненном из титана. Процесс ведут при отрицательном потенциале 0,9 кВ между планетарным механизмом и корпусом рабочей камеры при токе титанового катода, равном 75 А. При появлении красного свечения пластины (температура 700°C) устанавливают потенциал на планетарном механизме 300 B и дают выдержку 60 мин, в течение которой происходит осаждение ионов титана на никель с образованием никелида титана. После чего процесс прерывают гашением дуги, а полученный продукт охлаждают в рабочей камере при давлении 5·10-5 мм рт.ст. в течение 120 мин. По данным рентгенофазового анализа полученный продукт имеет состав NiTi и микроструктуру, изображенную на фиг.1, с общей пористостью 90% и долей открытой пористости 70% со средним размером пор 400 мкм. Затем полученный продукт помещают в 10%-ную водную суспензию гидроксиапатита состава Са(PO4)2(ОН)2 с размером частиц менее 1 мк, полученную в соответствии с патентом RU 2406693, и осуществляют 9-кратную вакуумную пропитку в течение 10 часов, каждую стадию которой осуществляют при давлении 1·10-1 в течение 5 с с последующей сушкой на воздухе при н.у. Получают пористый материал на основе никелида титана, в порах которого содержится гидроксиапатит в количестве 46 мас.% от массы никелида титана. Средняя величина пор равна 200 мкм (см. фиг.2).

Пример 2. В рабочую камеру установки ионно-плазменного напыления с установленным в ней расходуемым катодом, выполненным из титана, на планетарном механизме поворотного стола размещают пластину размером 50×18×2 мм и массой 1,76 г из никеля со следующими характеристиками: общая пористость 90±1%; открытая пористость 65±1% (доля - 71%); закрытая пористость 24±1% (доля - 29%), средний размер пор 400 мкм. Рабочую камеру откачивают до давления 7·10-5 мм рт.ст., затем включают вращение планетарного механизма поворотного стола и облучают пластину потоком ионов аргона при токе разряда 45 А при постепенном увеличении отрицательного потенциала на поворотном столе от 100 до 1000 B в течение 90 мин. При этом по мере обезгаживания рабочей камеры давление сначала возрастает за счет десорбированных газов, а затем падает до первоначального, равного 7·10-5 мм рт.ст. После того как давление в камере устанавливается равным первоначальному, зажигают дугу на расходуемом катоде, выполненном из титана. Процесс ведут при отрицательном потенциале 1,2 кВ между планетарным механизмом и корпусом рабочей камеры при токе титанового катода равным 80 А. При появлении красного свечения пластины (температура 700°C) устанавливают потенциал на планетарном механизме 350 B и дают выдержку 20 мин, в течение которой происходит осаждение ионов титана на никель с образованием никелида титана. После чего процесс прерывают гашением дуги, а полученный продукт охлаждают в рабочей камере при давлении 7·10-5 мм рт.ст. в течение 100 мин. По данным рентгенофазового анализа полученный продукт имеет состав NiTi с общей пористостью 95% и долей открытой пористости 80% со средним размером пор 400 мкм. Затем полученный продукт помещают в 12%-ную водную суспензию гидроксиапатита состава Са(PO4)2(ОН)2 с размером частиц менее 1 мкм, полученную в соответствии с патентом RU 2406693, и осуществляют 3-х кратную вакуумную пропитку в течение 10 часов, каждую стадию которой осуществляют при давлении 8·10-1 в течение 3 с с последующей сушкой на воздухе при н.у. Получают пористый материал на основе никелида титана, в порах которого содержится гидроксиапатит в количестве 26,7 мас.% от массы никелида титана. Средняя величина пор равна 300 мкм.

Таким образом, авторами предлагается биосовместимый пористый материал, обладающий наряду с высокой пористостью высокой биологической активностью за счет наличия в его составе гидроксиапатита, имеющего высокие остеозамещающие свойства, и способ получения такого материала.

1. Биосовместимый пористый материал на основе никелида титана, отличающийся тем, что никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм пропитан 10-12%-ной водной суспензией гидроксиапатита с размером частиц менее 1 мкм в количестве 26-46 мас.% от массы никелида титана.

2. Способ получения биосовместимого пористого материала на основе никелида титана по п. 1, включающий предварительную ионную обработку поверхности высокопористого ячеистого никеля, помещенного на планетарный механизм поворотного стола установки ионно-плазменного напыления, в низкотемпературной плазме в атмосфере аргона при токе разряда 40-45 А при постепенном увеличении отрицательного потенциала на поворотном столе от 100 до 1000 В в течение 80-90 мин, последующее электродуговое напыление путем осаждения ионов титана на поверхность никеля с использованием расходуемого катода, выполненного из титана, при отрицательном потенциале 0,9-1,2 кВ между планетарным механизмом и корпусом рабочей камеры при токе катода 75-80 А с последующим установлением при достижении температуры 700°C потенциала на планетарном механизме 300-350 В и выдержкой 20-60 мин, охлаждение полученного продукта при давлении (5-7)·10-5 мм рт.ст. в течение 100-120 мин, а затем введение в него гидроксиапатита путем 3-9-кратной вакуумной пропитки 10-12%-ной водной суспензией гидроксиапатита с размером частиц менее 1 мкм при давлении 1·10-1÷8·10-1 с последующей сушкой на воздухе при нормальных условиях.



 

Похожие патенты:

Изобретение относится к цветной металлургии и может быть использовано для получения сплавов на основе алюминия. Способ включает получения лигатуры алюминий-фосфор в виде таблеток состава, мас.%: фосфор 1,5-3,5, железо 6,0-16, алюминий остальное.

Изобретение относится к области металлургии, а именно к созданию композиционных материалов пропиткой пористого каркаса. Пористую заготовку погружают в расплав матричного сплава, вакуумной дегазацией, нагревом и воздействием избыточным давлением на заготовку за счет термического расширения расплава в замкнутом объеме емкости, в качестве расплава матричного сплава используют расплав свинца, а при нагреве дополнительно проводят пропитку заготовки, последующее охлаждение и кристаллизацию.

Изобретение относится к области металлургии и может быть использовано для получения многослойных композитов на основе системы Cu-Al, а также прекурсоров для синтеза наноструктурных интерметаллических соединений данной системы.
Изобретение относится к области металлургии и может быть использовано при приготовлении литых алюминия, доэвтектических, эвтектических и заэвтектических алюминиево-кремниевых сплавов (силуминов).

Изобретение относится к области металлургии, в частности к бор-содержащим алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании, в частности, с высоким уровнем поглощения при нейтронном излучении.

Изобретение относится к области порошковой металлургии, в частности к изготовлению изделий из порошков твердых сплавов на основе карбидов. Смешивают временное связующее, содержащее двухкомпонентный диспергатор и двухкомпонентную смазочную добавку в весовом соотношении от 1:3,6 до 1:13,1, и порошкообразную смесь неорганических порошков, содержащую порошки карбидов и постоянного связующего.
Изобретение относится к области металлургии, а именно к литейным композиционным материалам (ЛКМ) на основе алюминия и его сплавов, и может применяться для изготовления деталей с повышенной жаропрочностью, твердостью и износостойкостью.
Изобретение относится к области металлургии, а именно к способам получения литейных композиционных материалов (ЛКМ) на основе алюминия и его сплавов. Способ получения литейного композиционного материала, содержащего матрицу из алюминия или сплава на его основе, и дисперсные интерметаллидные частицы TiAl3, включает образование в расплаве алюминия интерметаллидных частиц TiAl3 путем введения в расплав при температуре 700-800°С измельченной титановой губки с размером фракций не более 5 мм, причем измельченная титановая губка вводится в расплав алюминия в таком количестве, чтобы содержание образованных частиц TiAl3 не превышало 35 об.%.

Изобретение относится к металлургии, а именно к получению литейного композиционного материала (ЛКМ) на основе алюминиевого сплава, упрочненного короткими волокнами, и может использоваться в качестве конструкционных материалов при создании конструкций и оборудования авиационных средств.

Изобретение относится к электрохимическому получению лигатурных алюминий-титановых сплавов и может быть использовано для получения коррозионно-стойких алюминиевых сплавов.

Изобретение относится к способу получения пористого пирофосфата кальция для использования в медицине. Способ включает подготовку исходной порошковой смеси, содержащей карбонат кальция и гидрофосфат аммония, формование заготовок и их обжиг.

Изобретение относится к области медицины и созданию новых материалов биомедицинского назначения, которые могут быть использованы при создании биоактивных кальций-фосфатных покрытий на имплантатах, при создании бифазных композитов на основе фосфатов кальция и сплавов титана.

Изобретение относится к области медицинского материаловедения и может быть применено при создании материалов для использования в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, а также в качестве носителей лекарственных средств или субстратов для культивирования клеток.

Изобретение относится к медицине, а именно к челюстно-лицевой хирургии и травматологии, и может быть использовано для изготовления внутритканевых эндопротезов на титановой основе.
Изобретение относится к медицине. Описан двухфазный материал заменителя костной ткани на основе фосфата кальция / гидроксиапатита (САР/НАР), включающий ядро из спеченного CAP и как минимум один равномерный и закрытый эпитаксически нарастающий слой нанокристаллического НАР, нанесенный сверху на ядро из спеченного CAP, причем эпитаксически нарастающие нанокристаллы имеют такой же размер и морфологию, что и у минерала костей человека, то есть длину от 30 до 46 нм и ширину от 14 до 22 нм.

Изобретение относится к области медицины. Описан способ получения карбонатгидроксилапатита, приближенного к неорганическому матриксу костной ткани из модельного раствора синовиальной жидкости человека, в котором готовят модельную среду указанного состава: CaCl2 - 1.3431 г/л, Na2HPO4·12H2O - 7.4822 г/л, NaCl - 2,8798 г/л, MgCl2∙6H2O - 0.4764 г/л, Na2SO4 - 1.6188 г/л, КСl - 0.3427 г/л, осаждение проводят при концентрации карбонат-ионов 24 ммоль/л, температуре 22-25°С, значении рН 7.4±0,05 в течение 30 дней.
Изобретение относится к способу получения шихты для композиционного материала на основе карбоната кальция - гидроксиапатита и/или карбонатгидроксиапатита для восстановления костной ткани при реконструктивно-пластических операциях.

Изобретение относится к медицине, а именно к ортопедической стоматологии. Описан способ изготовления внутрикостных имплантатов, включающий послойное нанесение плазменным напылением на металлическую основу имплантата биологического активного покрытия, при этом первым и вторым слоями дистанционно напыляют титан, третьим слоем наносят механическую смесь порошка титана и гидроксиапатита, четвертый слой формируют на основе гидроксиапатита или оксида алюминия, при этом при формировании четвертого слоя смешивают порошок бемита дисперсностью не более 50 нм с порошками гидроксиапатита или оксида алюминия в количестве 5-20% порошка бемита от общего количества веществ, при этом бемит берут в виде суспензии, приготовленной с добавлением поверхностно-активного вещества, растворенного в дистиллированной воде концентрацией 0,25-5%, обработанного в ультразвуковой ванне, затем полученную суспензию из бемита и гидроксиапатита или оксида алюминия обрабатывают в ультразвуковой ванне, сушат, отжигают и измельчают.
Изобретение относится к области медицины, в частности к травматологии, ортопедии, челюстно-лицевой хирургии, стоматологии, нейрохирургии, а именно к остеопластичным составам биокомпозиционных материалов, предназначенным для лечения заболеваний и повреждений костной системы человека, и может быть использовано в качестве материала, способного в организме полностью биодеградировать и заменяться новой костной тканью, для регенерации костных клеток, биологического наполнителя при дефектах костной ткани, остеокондуктивного и остеоиндуктивного биологического опорного каркаса для регенерации костной ткани.
Изобретение относится к области медицины, а именно к инъекционным биорезорбируемым составам биокомпозиционных материалов, предназначенных для лечения заболеваний и повреждений костной системы человека, в качестве материала, способного в организме полностью биодеградировать и заменяться новой костной тканью, для регенерации костных клеток, остеокондуктивного и остеоиндуктивного биологического опорного каркаса для регенерации костной ткани, применяемых в травматологии, ортопедии, челюстно-лицевой хирургии, нейрохирургии.

Изобретение относится к медицине, а именно к челюстно-лицевой хирургии и травматологии, и может быть использовано для изготовления внутритканевых эндопротезов на титановой основе.
Наверх