Интеллектуальная микропроцессорная система контроля и регистрации потерь электроэнергии в присоединениях распределительного устройства

Изобретение относится к области информационно-измерительной и вычислительной техники, в частности к интеллектуальной микропроцессорной системе контроля и регистрации потерь электроэнергии в присоединениях распределительного устройства. Техническим результатом изобретения является расширение функциональных возможностей системы за счет возможности непрерывного контроля и регистрации мощности потерь электроэнергии в нескольких присоединениях распределительного устройства. Технический результат достигается благодаря тому, что система содержит первый - n-й (где n - число присоединений распределительного устройства) датчики тока присоединений распределительного устройства, первый - n-й буферные масштабные усилители, многовходовой аналоговый коммутатор, двухполупериодный прецизионный выпрямитель, датчик температуры окружающей среды, генератор прямоугольных импульсов, микроконтроллер, первый - n-й датчики температуры проводников присоединений, первый, второй и третий приемопередатчики, цифровой индикатор, постоянное запоминающее устройство, компьютер. 1 ил.

 

Предлагаемое изобретение относится к области информационно-измерительной и вычислительной техники, предназначено для вычисления и индикации усредненной на 1-минутном интервале мощности потерь электроэнергии и может быть использовано в качестве многоканального счетчика-регистратора потерь электроэнергии в присоединениях распределительного устройства.

Аналогом предлагаемого технического решения является счетчик потерь электроэнергии [1], содержащий генератор прямоугольных импульсов, компьютер, таймер, таймер-часы, датчик тока, аналого-цифровой преобразователь, функциональный преобразователь, накапливающий сумматор, индикатор, блок деления, постоянное запоминающее устройство, приемопередатчик, первый и второй счетчики, первый и второй одновибраторы.

Недостатками аналога являются невысокая точность, обусловленная не учетом зависимости активного сопротивления токоведущих элементов электрооборудования от температуры нагрева (погрешность по этой причине может достигать 40% [2]), а также узкие функциональные возможности.

Наиболее близким техническим решением к предлагаемому является счетчик потерь электроэнергии с индикацией потерь мощности (варианты) [3], содержащий датчик тока, микроконтроллер, регистр, цифровой индикатор, датчики температуры окружающей среды и электрооборудования, генератор прямоугольных импульсов, первый и второй приемопередатчики, постоянное запоминающее устройство, компьютер.

Недостатком прототипа являются узкие функциональные возможности.

Техническая задача, решаемая изобретением, - расширение функциональных возможностей системы за счет возможности непрерывного контроля и регистрации мощности потерь электроэнергии в нескольких присоединениях распределительного устройства.

Указанная техническая задача решается благодаря тому, что в счетчик потерь электроэнергии с индикацией потерь мощности (варианты), содержащий первый датчик тока, датчик температуры окружающей среды, первый датчик температуры проводника присоединения, генератор прямоугольных импульсов, цифровой индикатор, первый и второй приемопередатчики, постоянное запоминающее устройство, компьютер, микроконтроллер, порт B которого подключен к выходу датчика температуры окружающей среды, тактовый вход подключен к выходу генератора прямоугольных импульсов, выходы портов микроконтроллера соединены соответственно E - через первый приемопередатчик с входом постоянного запоминающего устройства, F - через второй приемопередатчик с входом компьютера, дополнительно введены второй - n-й (где n - число присоединений распределительного устройства) датчики тока, второй - n-й датчики температуры проводников присоединений, первый - n-й буферные масштабные усилители, многовходовой аналоговый коммутатор, двухполупериодный прецизионный выпрямитель, третий приемопередатчик, через который выход порта D микроконтроллера соединен с входом цифрового индикатора, выходы первого - n-го датчиков тока через первый - n-й буферные масштабные усилители соединены соответственно с первым - n-м информационными входами многовходового аналогового коммутатора, выход которого через двухполупериодный прецизионный выпрямитель соединен с портом A микроконтроллера, а выходы первого - n-го датчиков температуры проводников присоединений соединены соответственно с первым - n-м разрядами порта C микроконтроллера, выход порта G которого соединен с управляющим входом многовходового аналогового коммутатора.

Существенными отличиями предлагаемой системы являются введение дополнительных элементов (второго - n-го датчиков тока, второго - n-го датчиков температуры проводников присоединений, первого - n-го буферных масштабных усилителей, многовходового аналогового коммутатора, двухполупериодного прецизионного выпрямителя, третьего приемопередатчика), а также организация его новой структуры и введение новых связей между элементами. Совокупность элементов и связей между ними обеспечивают достижение положительного эффекта - расширения функциональных возможностей устройства за счет возможности непрерывного контроля и регистрации мощности потерь электроэнергии в нескольких присоединениях распределительного устройства.

Схема системы приведена на фиг.1.

Схема системы (фиг.1) содержит первый - n-й (где n - число присоединений распределительного устройства) датчики тока (ДТ) 1-2 присоединений распределительного устройства, первый - n-й буферные масштабные усилители (БМУ) 3-4, многовходовой аналоговый коммутатор (АК) 5, двухполупериодный прецизионный выпрямитель (ДПВ) 6, датчик 7 температуры окружающей среды (ДТОС), генератор 8 прямоугольных импульсов (ГПИ), микроконтроллер (МК) 9, первый - n-й датчики 10-11 температуры проводников присоединений, первый - третий приемопередатчики 12-14, цифровой индикатор (ЦИ) 15, постоянное запоминающее устройство (ПЗУ) 16, компьютер 16. Выходы первого - n-го датчиков 1-2 тока через первый - n-й буферные масштабные усилители 3-4 соединены соответственно с первым - n-м информационными входами много входового аналогового коммутатора 5, выход которого через двухполупериодный прецизионный выпрямитель 6 соединен с портом A микроконтроллера 9, порт B которого подключен к выходу датчика 7 температуры окружающей среды, тактовый вход подключен к выходу генератора 8 прямоугольных импульсов, выходы первого - n-го датчиков 10-11 температуры проводников присоединений соединены соответственно с первым - n-м разрядами порта C микроконтроллера 9, выходы портов которого соединены соответственно D - через третий приемопередатчик 13 с входом цифрового индикатора 15, E - через первый приемопередатчик 12 с входом постоянного запоминающего устройства 16, F - через второй приемопередатчик 13 с входом компьютера 17, G - с управляющим входом многовходового аналогового коммутатора 5.

Схемы буферных масштабных усилителей 3-4 и двухполупериодного прецизионного выпрямителя 6 общеизвестны, в частности, в качестве их реализации могут быть использованы схемы, описанные в [4, 5] и изображенные на рисунках 1.3 и 2.49 [4], 13.7 и 52.15 [5].

Система (фиг.1) работает следующим образом.

Выходные напряжения ДТ 1-2 первого - n-го присоединений распределительного устройства (РУ), пропорциональные токам нагрузки I(t) присоединений, через первый - n-й БМУ 3-4 поступают соответственно на первый - n-й информационные входы многовходового аналогового коммутатора 5.

Датчики тока 1-2, которые, в частности, могут быть выполнены на измерительных шунтах, включенных в цепь вторичной обмотки измерительных трансформаторов тока, обеспечивают выходной сигнал низкого уровня (номинальное значение 75 мВ). Для согласования уровня сигнала ДТ 1-2 с рабочим диапазоном встроенного в МК 9 аналого-цифрового преобразователя (АЦП) используются БМУ 3-4, имеющие большой коэффициент усиления 15-80 (выбираемый в зависимости от модификации используемого МК 9). Двухполупериодный прецизионный выпрямитель 6 используется для преобразования двухполярного синусоидального сигнала ДТ 1-2 в однополярный.

Путем смены кода на выходе порта G «001-010-011-100-101 …» МК 9, соединенного с управляющим входом АК 5, датчики тока 1-2 с достаточно высокой скоростью поочередно подключаются к входу АЦП МК 9 таким образом, чтобы получать цифровые коды токов нагрузки присоединений РУ 50-100 раз за период. Эти коды возводятся в квадрат, а суммы квадратов накапливаются в n ячейках в течение 1 мин.

Как известно, потери мощности в токоведущих элементах (ТЭ) определяются по формуле

Δ P = I 2 R , ( 1 )

где I(t) - изменяющийся во времени ток нагрузки, протекающий по ТЭ;

R - сопротивление ТЭ.

При упрощенных расчетах сопротивление R принимается неизменным во времени и равным сопротивлению R0 при температуре окружающей среды Θ0=20°C или сопротивлению при другой фиксированной температуре.

Точное значение сопротивления R в функции от температуры ΘТЭ ТЭ определяется по формуле

R = R 0 + α R 0 ( Θ Т Э Θ 0 ) , ( 2 )

где α - температурный коэффициент сопротивления ТЭ; имеет значение для меди αм=0,004°C-1, алюминия αa=0,0044°C-1, стали αст=0,006°C-1.

При наличии доступа к ТЭ их температура Θ0i определяется с помощью датчиков 10-11 температуры проводников присоединений; сопротивление Ri проводника каждого присоединения рассчитывается в МК 9 по формуле (2), а значение потерь ∆Pi определяется по формуле (1).

Управление работой системы осуществляется следующим образом.

Через одинаковые интервалы времени ∆T=1 мин приемопередатчиком 13 с выхода порта D в ЦИ 15 записываются усредненные за минуту значения потерь мощности ∆Pi, которые в дальнейшем отображаются на цифровом индикаторе 15, непрерывно обновляясь каждую минуту.

Приемопередатчик 14 один раз в час размещает в очередных ячейках ПЗУ 16: дату; час; значение потерь ∆Pi во всех присоединении РУ и т.д.

В том случае, если доступ к проводникам присоединений отсутствует, датчиком 7 один раз в минуту измеряется температура окружающей среды Θокр, а температура проводников Θi определяется из дифференциального уравнения нагрева по следующей формуле [6]

τ d Θ d t + Θ = K R ( Θ н о м i Θ 0 ) [ I i 2 I н о м i 2 ] + Θ о к р , ( 3 )

где K R ( Θ ) = 1 1 + α ( Θ н о м Θ 0 ) [ 1 + α ( Θ Θ 0 ) ] - коэффициент изменения сопротивления проводников в функции от температуры;

Θномi - номинальная длительно допустимая температура i-го проводника;

Iномi - номинальный ток проводника i-го присоединения;

Ii - среднеквадратическое значение тока нагрузки i-го присоединения.

Преимуществом предлагаемого изобретения по сравнению с известными аналогами является его более широкие функциональные возможности. Схема системы ориентирована на применение современной микроэлектронной основы - микроконтроллеров.

Источники информации

1. Патент 2380715 РФ, МПК G01R 19/02, G01R 11/00, 2008.

2. Осипов Д.С. Учет нагрева токоведущих частей в расчетах потерь мощности и электроэнергии при несинусоидальных режимах систем электроснабжения: Автореф. дис. … канд. техн. наук. - Омск, 2005.

3. Патент 2449356 РФ, МПК G06F 17/18, 2012, 5 независимый пункт формулы (прототип).

4. Применение интегральных схем: Практическое руководство: В. 2 кн.: Пер. с англ. / П. Брэдшо, С. Гош, X. Олдридж и др.; Под ред. А. Уильямса. - М.: Мир, 1987: Кн. 1. - 432 с.

5. Граф Р. Электронные схемы: 1300 примеров: Пер. с англ. - М.: Мир, 1989. - 688 с.

6. Гудзовская В.А., Ермаков В.Ф., Балыкин Е.С., Зайцева И.В. Математическая модель процесса изменения температуры нагрева проводника // Изв. вузов. Электромеханика. - 2012. - №2. - С.42-43.

Интеллектуальная микропроцессорная система контроля и регистрации потерь электроэнергии в присоединениях распределительного устройства, содержащая первый датчик тока, датчик температуры окружающей среды, первый и второй приемопередатчики, постоянное запоминающее устройство, компьютер, генератор прямоугольных импульсов, цифровой индикатор, первый датчик температуры проводника присоединения, микроконтроллер, порт B которого подключен к выходу датчика температуры окружающей среды, тактовый вход подключен к выходу генератора прямоугольных импульсов, выходы портов микроконтроллера соединены соответственно E - через первый приемопередатчик с входом постоянного запоминающего устройства, F - через второй приемопередатчик с входом компьютера, отличающаяся тем, что в нее дополнительно введены второй - n-й (где n - число присоединений распределительного устройства) датчики тока, второй - n-й датчики температуры проводников присоединений, первый - n-й буферные масштабные усилители, многовходовой аналоговый коммутатор, двухполупериодный прецизионный выпрямитель, третий приемопередатчик, через который выход порта D микроконтроллера соединен с входом цифрового индикатора, выходы первого - n-го датчиков тока через первый - n-й буферные масштабные усилители соединены соответственно с первым - n-м информационными входами многовходового аналогового коммутатора, выход которого через двухполупериодный прецизионный выпрямитель соединен с портом A микроконтроллера, а выходы первого - n-го датчиков температуры проводников присоединений соединены соответственно с первым - n-м разрядами порта C микроконтроллера, выход порта G которого соединен с управляющим входом многовходового аналогового коммутатора.



 

Похожие патенты:

Изобретение относится к мониторингу объектов атомной энергетики. Технический результат - определение оценки риска объекта атомной энергетики.

Изобретение относится к области информационно-измерительной и вычислительной техники. Техническим результатом является расширение функциональных возможностей регистратора за счет возможности непрерывного контроля и регистрации усредненных значений потерь мощности, напряжения сети и тока нагрузки.

Изобретение относится к классификации биомолекулярных данных. Техническим результатом является повышение надежности классификации.

Изобретение относится к области информационно-измерительной и вычислительной техники и предназначено для вычисления и индикации усредненной на 1-минутном интервале мощности потерь электроэнергии, а также может быть использовано в качестве счетчика-регистратора потерь электроэнергии за каждый час, сутки, месяц.

Изобретение относится к вычислительной технике и может быть использовано для оценки функционирования однотипных организаций с целью выработки рекомендаций по улучшению качества их работы.

Изобретение относится к вычислительной технике и может быть использовано для анализа взаимосвязи субъективных ответов респондента с его частотой сердечных сокращений (ЧСС) в процессе производимого тестирования, которая характеризует его психологическое состояние.

Изобретение относится к вычислительной технике, предназначено для определения закона распределения случайных величин и может быть использовано в системах цифровой обработки сигналов для классификации последовательности цифровых данных по заданным эталонным законам распределения.

Изобретение относится к области информационно-измерительной и вычислительной техники, предназначена для вычисления и индикации усредненной на 1-минутном интервале мощности потерь электроэнергии, а также может быть использована в качестве счетчиков потерь электроэнергии.

Изобретение относится к специализированным средствам вычислительной техники и может быть использовано в системах, в которых требуется аппаратная реализация алгоритмов оценки среднеквадратического отклонения дискретных сигналов, например, при оценке уровня шума и пороговом обнаружении.

Изобретение относится к судовождению и предназначено для оперативной идентификации математической модели судна в реальном масштабе времени. .

Изобретение относится к устройству для моделирования каталога разведки разнотипных подвижных объектов. Технический результат заключается в расширении функциональных возможностей путем обеспечения моделирования каталога разведки разнотипных подвижных объектов. Устройство содержит два генератора тактовых импульсов, датчик случайных чисел, блок расчета вероятности обнаружения подвижного объекта, блок сравнения, регистр сдвига, блок расчета размеров подвижного объекта, блок расчета квадратов отклонений размеров подвижного объекта, блок определения типа подвижного объекта, блок расчета координат подвижного объекта, регистр памяти. 1 ил.

Изобретение относится к области вычислительной техники и может быть использовано для оценки надежности и качества функционирования сложных автоматизированных и гибких производственных и телекоммуникационных систем произвольной структуры, в которых используется циклический характер производства, предоставления телекоммуникационных услуг и временное резервирование. Техническим результатом является моделирование текущих состояний в условиях, присущих реальному процессу функционирования исследуемой системы, а именно в условиях динамики смены параметров этих состояний с учетом влияющих факторов, повышение достоверности идентификации состояния безотказной работы и отказа системы с учетом изменяющегося значения оперативного времени на основе динамически корректируемых значений времени выполнения сменного задания на каждом модельном элементе участка системы. Устройство содержит блок управления, блок модели системы, блок имитаторов состояний участков системы, блок формирования сигналов отказов, блок регистрации, блок проверки данных модели, блок коррекции данных модели, N≥2 контроллеров оперативного времени модельных элементов, главный контроллер оперативного времени. 2 з.п. ф-лы, 12 ил.

Изобретение относится к вычислительной технике и может быть использовано для управления равновесным случайным процессом (РСП). Техническим результатом является оптимизация режима управления. Способ заключается в том, что: выделяют для РСП его характеристики, которые рассматривают в качестве координат фазового пространства, в котором протекает РСП; строят для исследуемого РСП в соответствии с априорной информацией о нем эволюционно-симулятивную модель (ЭСМ), взаимно увязывающую координаты фазового пространства, и загружают построенную ЭСМ в память процессорного устройства; выделяют один из расчетных показателей в качестве целевого показателя и исключают его из координат фазового пространства; измеряют с помощью соответствующих датчиков характеристики исследуемого РСП и вводят их в память процессорного устройства в качестве входных сигналов для ЭСМ; находят конкретные значения расчетных показателей для каждого допустимого набора управляющих воздействий и каждого момента воздействия; связывают наборы управляющих воздействий логическими связями; загружают в память процессорного устройства установленные логические связи между управляющими воздействиями и их предельные значения; находят с помощью алгоритма динамического программирования для решения булевых задач, загруженного в память процессорного устройства, оптимальное управление в виде однозначно определенных наборов управляющих воздействий в каждый момент воздействия на весь период управления. 1 з.п. ф-лы.

Изобретение относится к области медицины. Техническим результатом является повышение точности эпидемиологического районирования. Способ, характеризующийся тем, что карту выбранной территории покрывают сеткой из равных по площади ячеек в форме правильных шестиугольников; на полученную основу путем пространственного соединения агрегируется информация по эпидемиологически значимым показателям, данные записываются в атрибутивную таблицу ячеек с последующей их обработкой и расчетом дополнительных показателей: число больных, совокупная длительность эпидемического периода, численность населения, показатель темпа роста числа больных, далее ячейки со схожими значениями объединяют в кластеры, для каждого кластера рассчитывают степень эпидемиологического риска - максимальный, средний, низкий - с последующим построением карты эпидемиологического риска и районированием территории путем объединения кластеров, к кластерам с высоким эпидемиологическим риском относятся ячейки с максимальными величинами показателей, к средним и низким - с промежуточными и минимальными показателями. 2 ил., 1 табл.

Изобретение относится к области исследований, в ходе которых оценивается работоспособность армированных и подвергающихся воздействию нагрузки изделий при их проектировании, а также в процессе эксплуатации. Сущность: строятся поля вероятностей безотказной работы по объему изделия по критериям прочности или жесткости (предельной деформации), с учетом времени эксплуатации и температурной зависимости. Технический результат: повышение степени оценки механической работоспособности изделий. 7 ил.

Группа изобретений относится к области полигонных испытаний и может быть использована для определения характеристик пролета снарядов относительно центра мишени. Техническим результатом является определение вида рассеивания снарядов относительно центра мишени при стрельбе из артиллерийского оружия. Устройство содержит два разнесенных в пространстве неконтактных датчика, блок определения параметров движения снарядов, электронную мишень, блок обработки сигналов, приемное устройство, блок согласования, микроЭВМ, индикатор. 2 н. и 3 з.п. ф-лы, 11 ил.

Изобретение относится к информационной безопасности. Технический результат заключается в снижении нагрузки на вычислительные ресурсы при определении категории сетевого ресурса. Способ расчета интервала повторного определения категорий содержимого сетевого ресурса, в котором а) анализируют содержимое сетевого ресурса, при этом анализируют содержимое отдельных страниц упомянутого сетевого ресурса; ссылки между отдельными страницами упомянутого сетевого ресурса; ссылки на другие сетевые ресурсы; б) определяют на основании результатов анализа по меньшей мере две категории содержимого упомянутого сетевого ресурса, при этом первая категория определяется как безопасная или небезопасная, вторая категория определяется как нежелательная для просмотра пользователями или нейтральная по содержимому; в) выполняют этапы "а" и "б" по меньшей мере еще один раз; г) на основании категорий, определенных на этапах "а", "б" и "в", вычисляют вероятность изменения по меньшей мере одной категории содержимого упомянутого сетевого ресурса; д) на основании вычисленной вероятности изменения категорий содержимого рассчитывают интервал повторного определения категорий содержимого упомянутого сетевого ресурса. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к средствам анализа данных. Техническим результатом является увеличение точности прогнозирования событий в скважине. Предложен способ моделирования скважинных событий, согласно которому осуществляют следующие этапы: извлекают из базы данных набор данных, содержащий нормальные данные скважины и аномальные данные скважины; кластеризуют множество аномальных данных в множество кластеров, разделяют множество кластеров на кластер высокой плотности и кластер низкой плотности, причем кластеры высокой плотности используют в качестве кластера аномальных данных; анализируют кластер аномальных данных для определения переменных данных в пределах кластера аномальных данных, которые указывают на скважинное событие, и моделируют скважинное событие на основании анализа кластера аномальных данных. 2 н. и 10 з.п. ф-лы, 8 ил.

Группа изобретений относится к области вычислительной техники и может быть использована для определения потребления электроэнергии. Техническим результатом является повышение точности расчета потребления электроэнергии каждым электрическим бытовым прибором. Устройство содержит модуль получения данных, выполненный с возможностью получения данных, представляющих смешанный сигнал двух или более последовательных по времени сигналов; модуль оценки состояния, выполненный с возможностью оценки параметра для моделирования сигнала, последовательного по времени, с факториальной скрытой моделью Маркова (FHMM); при этом модуль оценки состояния выполнен с возможностью оценки параметра при определенном ограничении посредством вычисления вариации данных, представляющих смешанный сигнал двух или более сигналов временной последовательности; и использования вычисленной вариации, в качестве параметра FHMM. 6 з.п. ф-лы, 30 ил.

Изобретение относится к области вычислительной техники, применяемой в нефтяной промышленности, а именно, к информационным системам автоматизации управления нефтедобывающего предприятия. Технический результат - создание системы статистической обработки, агрегирования и визуализации данных, полученных с систем телеметрии, с целью получения информации, пригодной для решения задач регулирования технологических процессов. Заявленная система содержит: блок выбора данных, базу данных хранения телеметрической информации, блок настройки списков пользователей, блок обработки запросов параметров, блок построения отчетов, блок нейросетевого анализа, блок расчета математического ожидания, блок расчета среднеквадратического отклонения, блок расчета асимметрии, блок расчета корреляции, блок отображения графиков, блок отображения векторов взаимовлияния, блок отображения матрицы Мериленда, блок отображения тепловой карты, базу данных справочной информации, блок обработки картографических параметров, блок подготовки необработанных данных, блок подготовки нормированных данных, блок подготовки данных в логарифмических координатах, блок подготовки данных для математических расчетов, блок редактирования параметров расчета, блок расчета параметров нефтедобычи. 1 ил.
Наверх