Способ производства сжиженного природного газа и комплекс для его реализации

Изобретение относится к газовой промышленности, конкретно к технологиям ожижения природного газа. Способ производства сжиженного природного газа, согласно которому входящий поток газа очищают от примесей и компримируют до разделения его на технологический и продукционный потоки. Технологический поток пропускают через детандер, оборудованный газовой турбиной, вращающий момент которой используют для компримирования входящего потока газа до разделения его на технологический и продукционный потоки. Технологический поток очищают от примеси тяжелых углеводородов путем их конденсации в сопловом аппарате детандера, который выполняют из теплопроводящего материала. Жидкую фазу переохлаждают перед скачиванием в емкость потребителя. Использование изобретение позволяет повысить производительность при снижении энергопотребления. 2 н. и 5 з.п. ф-лы, 1 ил.

 

Предлагаемое изобретение относится к газовой промышленности, конкретно к технологиям производства сжиженного природного газа (СПГ).

Известен «Способ и устройство для ожижения углеводородного потока», в котором поток углеводородов пропускают через несколько этапов охлаждения при помощи теплообменников, в которых испаряют жидкий хладагент (см. патент РФ №2499962, опубл. 27.11.2013). Известно также изобретение «Способ сжижения природного газа и устройство для его осуществления», в котором газ разделяют на два потока, очищают от примесей и охлаждают холодным газом из вихревой трубы (см. патент РФ №2158400, опубл. 27.10.2000).

Наиболее близким, на наш взгляд, к предлагаемому способу является изобретение по патенту РФ №2438081 - прототип I. В пункте 1 формулы данного патента описан способ сжижения природного газа (ПГ), включающий отбор газа из магистральной трубы газораспределительной станции (ГРС), разделение потока ПГ на продукционный и технологический потоки, осушку и сжатие продукционного потока, осушку и расширение технологического потока, охлаждение продукционного потока технологическим, дросселирование продукционного потока для получения парожидкостной смеси, отделение жидкой фазы от паровой фазы ПГ.

Недостатком прототипа I (как и других аналогов) является сложность технологического процесса, что влечет увеличение стоимости технологического оборудования и себестоимости производимого СПГ при значительных затратах электроэнергии (например, на воздушное охлаждение газа после сжатия). Отводимое от сжижаемого газа тепло никак не используется, а рассеивается в окружающую среду, что в условиях глобального потепления является вредной эмиссией. Как показывает практика, при безмашинном сжижении ПГ (т.е. с использованием дросселей, вихревых труб или других пассивных охлаждающих устройств) невозможно добиться существенного повышения производительности при умеренном энергопотреблении.

Известна установки для сжижения природного газа патент РФ на изобретение №2212600 - прототип II. В пункте 5 формулы данного патента описана установка, которая содержит входную трубу, соединенную с магистралью ГРС, линию технологического потока газа с узлом осушки, линию продукционного потока газа с узлом осушки, теплообменники, компрессор, дроссельный узел и сборник-сепаратор сжиженного газа. В данной установке предпринята попытка улучшить производительность и удельное энергопотребление установки за счет использования холода газифицируемого СПГ. Холод от СПГ передается продукционному потоку природного газа, а регазифицированный за счет тепла продукционного потока природный газ подается через распределительную сеть потребителю. К недостаткам прототипа II следует отнести зависимость производительности установки от потребления регазифицированного газа (при снижении или полном отсутствии потребления регазифицированного газа производительность установки соответственно снижается). При этом сохраняется достаточно высокое потребление энергии на охлаждение технологического потока после сжатия, эмиссия тепла в окружающую среду, а сложность и стоимость технологического оборудования увеличиваются.

Технической задачей в предлагаемом изобретении является повышение производительности при снижении энергопотребления, уменьшение стоимости технологического оборудования.

Технический результат (для способа) достигается тем, что в способе производства СПГ, в котором исходный природный газ отбирают из магистрального трубопровода ГРС, очищают от механических частиц, осушают, затем разделяют на продукционный и технологический потоки, из которых по крайней мере один компримируют и охлаждают после сжатия, продукционный поток очищают от примесей СО2, охлаждают, пропускают через дроссель для получения парожидкостной смеси, от которой отделяют СПГ в виде жидкой фазы для скачивания потребителю СПГ, технологический поток газа очищают от примесей, затем пропускают через детандер, оборудованный газовой турбиной, вращающий момент которой используют для компримирования потоков газа, причем продукционный поток очищают от примеси тяжелых углеводородов путем их конденсации в сопловом аппарате детандера, который выполняют из теплопроводящего материала, при этом жидкую фазу (СПГ) переохлаждают перед скачиванием в емкость потребителя.

В указанном способе жидкую фазу газа переохлаждают путем понижения ее давления с помощью струйного компрессора, в котором в качестве активного потока используют газ технологического потока.

В указанном способе для охлаждения системы смазки детандера используют часть обратного потока холодных паров газа, отделенных в сепараторе от жидкой фазы газа и предварительно пропущенных через теплообменники установки.

Технический результат (для устройства) достигается тем, что комплекс для реализации указанного выше способа, содержащий соединенный с магистралью газораспределительной станции трубу, с которой связаны технологическая линия, соединенная с газораспределительной сетью, и продукционная линия, соединенная с хранилищем сжиженного природного газа, включающая компрессор, дроссель, сепаратор, которая содержит детандер, оборудованный турбиной, выполненной с возможностью вращения потоком газа из технологической линии, причем турбина кинематически связана с компрессором, при этом комплекс дополнительно оборудован струйным компрессором, всас которого соединен с хранилищем сжиженного природного газа, а выход соединен с технологической линией. В комплексе сопловой аппарат детандера выполнен из теплопроводящего материала. В комплексе узел осушки выполнен в виде единого блока для осушки технологического и продукционного потоков.

Следует отметить, что производственный комплекс, сопутствующий работе ГРС, должен быть подстроен к ее работе. Комплекс должен учитывать изменения (сезонные и/или районные) параметров газа в ГРС. При этом он должен обеспечивать требуемое качество продукции, т.е. СПГ. В соответствии с перечисленными требованиями была разработана технология для производства СПГ, привязанная к ГРС-4 г. Свердловска.

Устройство комплекса поясняется чертежом, на котором показана его принципиальная схема.

В конкретном исполнении комплекс содержит соединенную с магистралью ГРС входную трубу (вход ПГ), фильтр-пылеуловитель 1, входной счетчик газа 2, блок осушки 3, фильтр 4 для очистки от частиц адсорбента. Комплекс также содержит линию 5 для утилизации тепла, теплообменник 6, регулятор давления 7, струйный компрессор 8, счетчик газа 9 на выходе, блок 10 для очистки газа от углекислоты, фильтр 11 для очистки газа от частиц адсорбента. Комплекс содержит дроссель 12, предварительный теплообменник 13, масляный бак 14 для системы смазки детандера, компрессор 15, масляный насос 16, охладитель масла 17, детандер 18. Комплекс также содержит основной теплообменник 19, дроссель 20, сепаратор 21, хранилище 22 для СПГ, криогенный насос 23, клапан 24.

Комплекс работает в следующем порядке. Природный газ высокого давления, поступающий из ГРС на вход комплекса, разделяют на два потока. Первый поток пропускают через фильтр 1, второй направляют в линию 5, которая служит линией утилизации тепла от агрегатов комплекса. После очистки от пыли в фильтре 1, первый поток подают через счетчик 2 в блок осушки 3, где из газа удаляется влага с помощью адсорбентов (цеолитов). В конкретном исполнении блок 3 содержит два адсорбера, которые работают по очереди. Когда один адсорбер работает на осушке газа, второй ставят на регенерацию адсорбента. Из блока 3 газ пропускают через фильтр 4 для очистки от частиц адсорбента. Затем осушенный и очищенный газ подвергают сжатию с помощью компрессора 15, который приводится в действие крутящим моментом, полученным в газовом турбинном детандере 18. Связанные единым валом и размещенные в одном корпусе компрессор и детандер образуют турбодетандерный агрегат.

Далее сжатый газ охлаждают в теплообменнике 6, нагревая газ линии утилизации тепла 5 перед его редуцированием. Затем газ из линии 5 подают через регулятор 7 в распределительную сеть потребителю. Таким образом, теплота сжатия в компрессоре 15 утилизируется для подогрева газа в ГРС. Отметим, что в данном варианте линия 5 является частью оборудования комплекса. В других вариантах для утилизации тепла можно использовать штатные линии ГРС. При этом экономится топливный газ ГРС.

После теплообменника 6 газ разделяют на две линии (далее - два потока): технологический поток (для выработки холода) и продукционный поток (для сжижения ПГ). Технологический поток, через теплообменник 13 направленный в детандер 18, приводит во вращение турбину детандера. Турбина детандера приводит рабочее колесо турбокомпрессора, сидящее с ней на одном валу, т.е. мощность, произведенная детандером, направляется на вал компрессора для сжатия газа. Таким образом, технологический поток газа, направленный в детандер, расширяется с совершением внешней работы, что приводит к резкому снижению его температуры (охлаждению). При этом тяжелые углеводороды из газа конденсируются на сопловом узле детандера, стекают вниз и удаляются известным способом. Далее холодный поток с выхода детандера 18 добавляют в обратный поток паров из сепаратора 21. Полученную смесь подают противотоком в основной теплообменник 19 для охлаждения продукционного потока (см. ниже). Из теплообменника 19 обратный поток пропускают через теплообменник 13, счетчик 9, подают на выход комплекса и сбрасывают в трубопровод ГРС. На основе показаний счетчика 2 и счетчика 9 производят взаиморасчеты с ГРС за газ, потребленный для производства СПГ.

Продукционный поток направляют в блок 10 для очистки от углекислоты (СО2). Затем продукционный поток пропускают через фильтр 11 для очистки от частиц цеолита. Очищенный продукционный поток пропускают через теплообменники 13 и 19, где сжатый газ охлаждается обратным потоком несжиженной части газа продукционного потока из сепаратора 21, смешанного с холодным потоком из детандера 18 (см. выше). Затем продукционный поток пропускают через дроссель 20, после которого продукт попадает в сепаратор 21 в виде парожидкостной смеси. Здесь жидкость (СПГ) отделяют от холодных паров, которые сбрасывают через теплообменники 19 и 13 в распределительный трубопровод. По мере накопления СПГ из сепаратора сливают через клапан 24 в хранилище 22. Заправку транспортной криогенной емкости СРГ производят при помощи криогенного насоса 23.

В данном комплексе реализуется цикл Клода, что позволяет обойтись одной машиной для генерации необходимого для сжижения ПГ холода и снизить стоимость технологического оборудования (повышение экономичности). Измерения показывают, что доля жидкости в продукционном потоке при входе в сепаратор составляет 84% (повышение эффективности). Это делает процесс независимым от физических параметров газа на входе в комплекс, позволяя получать СПГ стабильно высокого качества.

Поскольку давление СПГ в хранилище выше давления на выходе ГРС на величину сопротивления трубопроводов на участке от сепаратора до выхода, для выдачи потребителю СПГ из хранилища давление необходимо уменьшить. Понижение давления производят путем снижения температуры СПГ за счет откачивания паров из хранилища 22 с помощью струйного компрессора 8. В качестве активного потока в струйном компрессоре используется часть технологического потока, отбираемого с входа комплекса, что позволяет обойтись без дополнительных затрат электроэнергии. Понижение давление производят и в тех случаях, когда потребителю требуется СПГ с меньшим равновесным давлением, чем давление на выходе ГРС. Это необходимо при транспортировках СПГ на дальние расстояния или для обеспечения более длительных сроков его бездренажного хранения.

Если давление на входе ГРС достаточно высоко, сжатие продукционного потока не требуется. Тогда компрессор 15 можно использовать в режиме откачки паров СПГ из хранилища 22. Это позволит производить СПГ при более низком равновесном давлении, исключив из состава комплекса струйный компрессор 8. При этом охлаждение газа после сжатия также исключается, т.е. исключается теплообменник 6, что позволит дополнительно снизить стоимость комплекса. Исключение струйного компрессора 8 и теплообменника 6 влечет сокращение потребляемого комплексом газа (исключаются потоки линии 5 и активный поток, потреблявшийся струйным компрессором) приблизительно на 34%, что означает повышение коэффициента сжижения комплекса (отношение массы произведенного СПГ к массе вошедшего в комплекс природного газа) на 2% (дополнительное повышение эффективности).

Регенерацию адсорбента осуществляют, пропуская через адсорбер горячий газ, подогретый в нагревателе, который работает на энергии сжигания природного газа. Отработавший влажный газ добавляют в отработанный технологический поток, который направляют в распределительную сеть.

Согласно описанной выше схеме заявителем был разработан и реализован комплекс для производства СПГ, привязанный к ГРС-4 г. Свердловска. Рабочие показатели комплекса следующие:

Достигнутый коэффициент сжижения (отношение массы произведенного СПГ к массе вошедшего в комплекс природного газа) составил 10%.

Потребление газа для подогрева газа регенерации - 360 кг/сутки.

Потребление электроэнергии по блокам:

Подогреватель газа - 2 кВт,

Турбодетандерный агрегат (включая масляный насос) - 19 кВт,

Модуль азотный - 16 кВт,

Система управления (АСУТП) - 3 кВт.

Расчетное энергопотребление комплекса в зимний период составляет 85 кВт, а среднее по году составило 22 кВт. Минимальная работа сжижения метана составляет 0,307 кВт*час/кг. Т.е. мощность, необходимая для достижения проектной производительности комплекса, составляет порядка 921 кВт. Это значит, что расчетное энергопотребление комплекса примерно в 11 (а фактическое в 42) раз меньше минимальной теоретической мощности, необходимой для производства СПГ в объеме 3 т/час.

Таким образом, энергия, которая до сих пор преобразовывалась в необратимые термодинамические потери при редуцировании на регуляторах ГРС, используется для производства продукта с ценными потребительскими качествами.

Высокий КПД детандера (по сравнению с дросселем, вихревой трубой, волновым криогенератором и другими безмашинными устройствами для получения холода) позволяет получить большую холодильную мощность при переработке сравнительно малых объемов газа. Благодаря этому снижаются размеры и масса теплообменного оборудования, что важно с точки зрения снижения теплоемкости для уменьшения времени выхода на режим после останова и отогрева установки, т.к. предполагаются частые остановы и повторные пуски комплекса из-за необходимости подстраиваться под работу ГРС, о чем говорилось выше. Кроме того, именно теплообменное оборудование имеет наивысшую удельную стоимость, приведенную к единице тепловой мощности, так что снижение мощности теплообменников важно с точки зрения снижения сметной стоимости комплекса.

Технология производства СПГ за счет перепада давления между магистральным и распределительным газопроводами на ГРС является энергосберегающей технологией, преобразующей избыточно совершенную работу по транспорту газа в полезную работу по переводу природного газа в агрегатное состояние, позволяющее эффективно осуществлять его доставку потребителю транспортом, альтернативным трубопроводному, или использовать его в качестве моторного топлива.

Описанное выше техническое решение, отвечающее требованиям новизны, изобретательского уровня и промышленной применимости, предлагается к правовой защите патентом на изобретение.

1. Способ производства сжиженного природного газа, в котором природный газ отбирают из магистрального трубопровода, очищают от механических частиц, осушают, затем разделяют на продукционный и технологический потоки, из которых по меньшей мере один компримируют и охлаждают после сжатия, продукционный поток очищают от примесей CO2, охлаждают, пропускают через дроссель для получения парожидкостной смеси, от которой отделяют жидкую фазу для скачивания потребителю СПГ, технологический поток очищают от примесей, затем пропускают через детандер, отличающийся тем, что очищают от примесей и компримируют входящий поток газа до разделения его на технологический и продукционный потоки, технологический поток пропускают через детандер, оборудованный газовой турбиной, вращающий момент которой используют для компримирования входящего потока газа до разделения его на технологический и продукционный потоки, при этом технологический поток очищают от примеси тяжелых углеводородов путем их конденсации в сопловом аппарате детандера, который выполняют из теплопроводящего материала, при этом жидкую фазу переохлаждают перед скачиванием в емкость потребителя.

2. Способ по п.1, отличающийся тем, что указанную турбину вращают технологическим потоком газа.

3. Способ по п.1, отличающийся тем, что жидкую фазу газа переохлаждают путем понижения ее давления с помощью струйного компрессора, в котором в качестве активного потока используют газ технологического потока.

4. Способ по п.1, отличающийся тем, что для охлаждения системы смазки детандера используют обратный поток холодных паров газа, отделенных от жидкой фазы газа.

5. Комплекс для реализации способа по п.1, содержащий соединенную с магистралью газораспределительной станции трубу, с которой связаны технологическая линия, соединенная с газораспределительной сетью, и продукционная линия, соединенная с хранилищем сжиженного природного газа и включающая компрессор, дроссель, сепаратор, отличающийся тем, что содержит детандер, оборудованный турбиной, выполненной с возможностью вращения потоком газа из технологической линии, кинематически связанной с компрессором, при этом комплекс дополнительно оборудован струйным компрессором, вход которого соединен с хранилищем сжиженного природного газа, а выход соединен с технологической линией.

6. Комплекс по п.5, отличающийся тем, что сопловой аппарат детандера выполнен из теплопроводящего материала.

7. Комплекс по п.5, отличающийся тем, что узел осушки выполнен в виде единого блока для осушки технологического и продукционного потоков.



 

Похожие патенты:

Способ сжижения газа, заключающийся в том, что предварительно очищенный и осушенный природный газ охлаждают и конденсируют в теплообменнике предварительного охлаждения, затем сепарируют, отделяя жидкую этановую фракцию, которую направляют на фракционирование, а газовый поток с первого сепаратора последовательно охлаждают в теплообменнике сжижения, используя смешанный хладагент, переохлаждают газообразным азотом в теплообменнике переохлаждения, давление переохлажденного СПГ снижают в жидкостном детандере, и переохлажденный СПГ направляют на сепарирование, после чего сжижаемый газ направляют в емкость хранения СПГ, отсепарированный газ направляют в систему топливного газа.

Способ предназначен для раздачи природного газа потребителям газа низкого давления с получением сжиженного газа. Способ заключается в отводе потока газа из магистрального трубопровода высокого давления, расширении его в многоступенчатой турбине с получением в ней механической энергии, теплообмене в теплообменнике и раздаче полученного газа низкого давления потребителю, при этом газ из магистрального трубопровода высокого давления направляют на вход тракта горячего теплоносителя теплообменного устройства и охлаждают, а на выходе из тракта его направляют в многоступенчатую турбину, где охлажденный поток газа расширяют до давления меньше заданного давления подачи потребителю в трубопроводе низкого давления, при котором подаваемый поток сжатого природного газа меняет свои параметры и свое агрегатное состояние, переходя из однофазного на входе в многоступенчатую турбину в двухфазный поток на выходе из нее, при этом из последнего отделяют в сепараторе жидкую фазу и направляют для раздачи в трубопровод сжиженного газа, а оставшуюся после отделения часть потока направляют на вход тракта холодного теплоносителя теплообменного устройства для подогрева при теплообмене с подаваемым потоком сжатого природного газа из магистрального трубопровода высокого давления и далее сжимают эту часть в дожимающем компрессоре до давления, равного давлению в трубопроводе низкого давления, одновременно нагревая ее до положительных температур, а затем направляют для раздачи в трубопровод низкого давления, причем на сжатие этой части природного газа в компрессоре используют механическую энергию расширения, полученную в многоступенчатой турбине, при этом отделение сжиженной части природного газа осуществляют после каждой ступени турбины.

Способ и система предназначены для оптимизации операций изоляции диоксида углерода и направлены на управление рабочими параметрами наземной установки для сжатия диоксида углерода (CO2) или трубопровода для поддержания потока CO2 в жидком или сверхкритическом состоянии при транспортировке к месту изоляции.

Группа изобретений относится к системе и способу сжижения газа. Способ сжижения газа содержит следующие этапы.

Изобретение относится к технологии подготовки и переработки природного или попутного нефтяного газов в сжиженный газ, представляющий собой пропан-бутановую фракцию.

Группа изобретений относится к области сжижения природных газов высокого давления и их смесей. В способе частичного сжижения природного газа прямой поток после охлаждения дросселируют и разделяют на продукционный и технологический потоки.

Изобретение относится к технологии подготовки и переработки попутного газа в товарную продукцию. Способ заключается в том, что попутный нефтяной газ после охлаждения в рекуперативном теплообменнике сепарируют в многоступенчатом центробежном сепараторе от нефтебензиновых жидких фракций, водного конденсата и механических примесей, которые выводят для дальнейшей переработки на газофракционирующую установку, а газообразную фракцию направляют на двухступенчатое компремирование.

Изобретение относится к низкотемпературному сжижению газа, например природного газа. При реализации способа вихревую трубу размещают вертикально в трехсекционной емкости-сепараторе, разделенной горизонтальными перегородками.

Изобретение относится к области сжижения газов и их смесей, в частности к частичному сжижению природного газа на газораспределительных станциях. Способ включает разделение потока природного газа высокого давления на технологический и продукционный потоки.

Установка для производства бинарного льда содержит замкнутый контур хладагента, включающий последовательно соединенные трубопроводом первый компрессор, маслоотделитель, конденсатор, ресивер, отделитель жидкости, первый электромагнитный клапан, четыре параллельные линии, каждая из которых содержит терморегулирующий вентиль и кристаллизатор-испаритель.

Группа изобретений относится к области сжижения природных газов высокого давления и их смесей. Способ частичного сжижения природного газа по варианту 1 включает предварительное охлаждение прямого потока газа высокого давления. После охлаждения прямой поток дросселируют и разделяют в ректификационной колонне на жидкую фракцию и паровую фракцию. Паровую фракцию направляют на реконденсацию с последующим направлением части реконденсированного продукционного потока в ректификационную колонну в качестве флегмового орошения, а также дросселированием другой части реконденсированного продукционного потока и разделением ее на жидкостную фазу, являющуюся готовым продуктом, и паровую фазу, направляемую далее в качестве обратного потока для охлаждения прямого потока. Жидкую фракцию из ректификационной колонны расширяют и, за счет реконденсации паровой фракции из ректификационной колонны, испаряют, далее нагревают прямым потоком, а после повторного дросселирования направляют в обратный поток. В отличие от способа по варианту 1 в способе частичного сжижения природного газа по варианту 2 часть прямого потока после охлаждения расширяют и соединяют с обратным потоком. Предложенная группа изобретений позволит получить сжиженный природный газ с малым содержанием высококипящих компонентов, в том числе диоксида углерода, обладающего повышенными эксплуатационными характеристиками, при снижении энергетических затрат на его производство. 2 н.п. ф-лы, 2 ил.

Изобретение относится к криогенной технологии газоразделения попутных нефтяных газов. Способ комплексной осушки и очистки попутного нефтяного газа включает газодинамическую сепарацию, мембранную технологию удаления кислых соединений. Поступающий попутный нефтяной газ подвергают двухступенчатой осушке и очистке. Удаляют основное количество воды и тяжелых углеводородных фракций С5 и выше в многоступенчатом основном центробежном сепараторе при низком давлении (0,3…0,5 МПа). Затем очищенную легкую углеводородную фракцию компримируют до давления 3,0…6,0 МПа, доочищают в дополнительном центробежном сепараторе, а затем подвергают очистке методом мембранной технологии от кислых соединений H2S и CO2. Очищенную фракцию легких углеводородов подвергают вихревому энергоразделению в трехпоточной вихревой трубе, из которой образующийся холодный поток направляют на рекуперацию холода для охлаждения исходного потока ПНГ, а затем выводят в качестве товарной сжиженной фракции С3-С4. Отсепарированную фракцию горячего потока вихревой трубы направляют на рецикл на компрессию, в смеси с предварительно отсепарированной легкой углеводородной фракцией. Горячий поток вихревой трубы выводят в качестве товарного топливного газа. Изобретение позволяет оптимально выбрать режимы разделения и последовательность осушки и очистки от нежелательных примесей. 1 ил.

Изобретение относится к технологии раздельного извлечения компонент газовых смесей, в частности очистки гексафторида урана от легколетучих примесей. Способ охлаждения газовой смеси включает предварительную очистку сжатого атмосферного воздуха, предварительное захолаживание сжатого атмосферного воздуха, охлаждение сжатого атмосферного воздуха в турбодетандере до заданной температуры, отвод работы, затраченной на расширение, регулирование холодопроизводительности. Предварительную очистку сжатого атмосферного воздуха производят на цеолите, обеспечивающем очистку до точки росы 203K. Предварительное захолаживание сжатого атмосферного воздуха осуществляют в рекуперативном теплообменнике. Отвод работы, затраченной на расширение, осуществляют нагревом промежуточного рабочего тела на тормозящем устройстве. Регулирование холодопроизводительности обеспечивают изменением числа оборотов турбины турбодетандера. Использование изобретения позволяет обеспечить необходимую степень очистки гексафторида урана от легколетучих примесей, существенно упрощает технологическое и конструктивное исполнение схемы охлаждения, обеспечивает необходимый интервал температур даже при самых теплонапряженных режимах работы. 2 з.п. ф-лы, 1 ил.

Изобретение относится к криогенной технике. Способ получения сжиженного метана высокой чистоты, включающий предварительное охлаждение компрессата, его разделение на технологический поток, который охлаждают, редуцируют и нагревают продуктовым и технологическим потоками, и продуктовый поток, который охлаждают, редуцируют и сепарируют с получением сжиженного метана и газа сепарации. Природный газ предварительно подвергают мягкому паровому каталитическому риформингу совместно с водным конденсатом и деминерализованной водой с получением риформата. Риформат смешивают с нагретым технологическим потоком и сжимают компрессором, оснащенным в качестве привода двигателем внутреннего сгорания, с получением компрессата, предварительное охлаждение которого осуществляют сторонним хладоагентом до температуры не ниже температуры гидратообразования. Перед разделением компрессата на технологический и продуктовый потоки его осушают и очищают от углекислого газа с получением метана высокой чистоты, водного конденсата и отходящего газа, содержащего CO2, при этом газ сепарации нагревают продуктовым и технологическим потоками, смешивают с отходящим газом, содержащим CO2, и используют в качестве топлива для привода компрессора. Техническим результатом является повышение выхода жидкого метана высокой чистоты. 2 з.п. ф-лы, 1 ил.

Изобретение относится к химической промышленности, в частности к способу получения сверхчистого сжатого гелия в баллонах. Газообразный гелий с концентрацией 99,99% подают на всасывание в компрессор [1], где сжимают до давления 15-25 кгс/см2. Далее гелий подают в блок очистки [2], где охлаждают до температуры жидкого азота (77К) и очищают от влаги, масла, газообразных примесей, после чего гелий подают в блок теплообменников [3], где разделяют на две части. Одну часть - детандерный поток (примерно 70%) расширяют в детандере [4] и охлаждают при этом. Вторую часть - дроссельный поток (примерно 30%) охлаждают, очищают от неона в неоновом адсорбере [5] и дросселируют в сборник жидкого гелия, частично сжижая. Часть гелия или весь гелий после неонового адсорбера с чистотой 99,9999% - 99,99999% по линии [8] направляют на нагреватель [9], далее в компрессор [10], где сжимают и закачивают в баллоны [11]. Изобретение позволяет получить очищенный от примесей гелий выше 99,99%. 1 ил.

Изобретение относится к криогенной технике и может быть использовано в газовой промышленности для сжижения природного газа. Способ сжижения природного газа, включающий предварительное охлаждение, очистку от масла и капельной влаги, адсорбционную осушку и очистку от углекислого газа компрессата, полученного сжатием смеси природного газа и технологического потока газа, охлаждение компрессата до полной конденсации, очистку от твердых примесей фильтрованием и разделение на технологический поток. Его используют для охлаждения и предварительного охлаждения компрессата и далее направляют на смешение с природным газом. Продуктовый поток, который редуцируют и разделяют на сжиженный природный газ, выводимый в качестве продукта, и газ сепарации, которым охлаждают компрессат, а затем используют в качестве топливного газа для привода компрессора. Осушку компрессата осуществляют после его охлаждения сторонним хладоагентом, технологическим потоком газа и топливным газом до температуры, близкой к температуре гидратообразования, но превышающей ее, очистку компрессата от углекислого газа осуществляют после его предварительного охлаждения технологическим потоком газа и топливным газом до температуры, близкой к температуре точки росы по углекислому газу, но превышающей ее. Очищенный компрессат разделяют на технологический и продуктовый потоки и производят их раздельное охлаждение и редуцирование, кроме того, газы регенерации осушки и очистки компрессата от углекислого газа смешивают с газом сепарации. Техническим результатом является повышение выхода сжиженного природного газа. 3 з.п. ф-лы, 1 ил.

Изобретение относится к нефтегазовой промышленности и может быть использовано для сжижения природного газа и утилизации попутного газа путем его сжижения. Устройство содержит линию подачи газа, три вихревых трубы с линиями отвода частично нагретого и охлажденного газа, связанные между собой каскадно через линии охлажденного газа. Также содержит теплообменные аппараты, линию отвода сжиженного газа и емкость для сбора конденсата. Теплообменные аппараты размещены на линиях отвода частично нагретого газа первых двух вихревых труб. На линиях отвода охлажденного газа из вихревых труб установлены дроссели, а линии отвода частично нагретого газа всех вихревых труб подведены к вводу первой вихревой трубы. При этом первые две вихревые трубы оснащены сепарационными узлами, которые снабжены линиями отвода газа и линиями отвода механических примесей, подключенными к емкости сбора механических примесей. Техническим результатом является снижение габаритов и массы устройства, обеспечение оптимального охлаждения. 1 з.п. ф-лы, 2 табл., 2 ил.

Изобретение относится к способу охлаждения одно- или многокомпонентного потока косвенным теплообменом со смесью охлаждающего средства в циркуляционном контуре смеси охлаждающего средства. Смесь охлаждающего средства сжимают в две ступени, разделяют на низкокипящую, сжатую до конечного давления циркуляционного контура смеси охлаждающего средства, фракцию смеси охлаждающего средства и одну высококипящую, сжатую до промежуточного давления фракцию смеси охлаждающего средства. Высококипящую фракцию смеси охлаждающего средства нагнетают до давления низкокипящей фракции смеси охлаждающего средства и перед косвенным теплообменом или непосредственно в его начале объединяют с низкокипящей фракцией смеси охлаждающего средства. Техническим результатом является создание способа охлаждения, который требует меньших затрат на оборудование и регулирование. 2 з.п. ф-лы, 1 ил.

Группа изобретений относится к водозаборному блоку трубопроводов, который может быть подвешен к морской структуре. Блок содержит пучок из первого трубчатого канала и второго трубчатого канала, которые по существу простираются бок о бок в направлении длины. Каждый содержит ближайший участок, содержащий средства подвески, последующий соединительный участок, последующий удаленный участок, содержащий водозаборную секцию. Указанный удаленный участок простирается между первым удаленным краем и соединительным участком соответствующего трубчатого канала. Указанный соединительный участок соединяет по текучей среде ближайший участок и удаленный участок. Причем первый и второй трубчатые каналы поперечно соединяются между собой с помощью одной распорной втулки в сочетании с соответствующими соединительными участками, при этом в полностью подвешенном состоянии часть удаленного участка первого трубчатого канала простирается дальше в направлении длины, чем второй трубчатый канал. Также описаны способ получения сжиженного углеводородного потока и способ получения потока парообразных углеводородов. Группа изобретений позволяет снизить риск полного прекращения транспортирования воды в ближайший участок из-за закупорки в удаленной части водозаборного блока трубопроводов. 4 н. и 8 з.п. ф-лы, 6 ил.

Изобретение относится к криогенике. Способ сжижения природного газа включает очистку нерасширившегося газа от примесей, разделение его на три потока, первый и второй из которых подают на сжижение по тракту системы рекуперативных теплообменных аппаратов. Отношение массовых расходов газа, который подается на сжижение, к общему расходу газа, поступающего в вихревые трубы, составляет 0,1-0,2. Далее потоки дросселируют и собирают образовавшийся конденсат в накопительной емкости. Третий поток пропускают через теплообменный аппарат. Далее поток разделяют на два равных потока, подают в вихревые трубы с дополнительным потоком, где разделяют на подогретый и охлажденный с отношением массовых расходов охлажденного газа на выходе из трубы и общего газа, поступающего в нее, равным 1,2. Охлажденный газ из вихревых труб пропускают по тракту системы рекуперативных теплообменных аппаратов, частично охлаждая нерасширившийся поток газа, подаваемый на сжижение. Далее отводят газ к потребителю редуцированного газа, подогретый газ из вихревой трубы с дополнительным потоком дросселируют, охлаждают в теплообменном аппарате и вместе с эжектируемыми через эжектор массами газа подают в качестве дополнительного потока в вихревую трубу с дополнительным потоком. Изобретение позволяет увеличить долю выхода конденсата. 2 з.п. ф-лы, 1 ил.
Наверх