Устройство для измерения и контроля сопротивления изоляции под рабочим напряжением в силовых сетях переменнего тока с резистивной нейтралью

Изобретение относится к области электротехники. Устройство содержит резистор, соединенный с нейтралью одним выводом, резистивный датчик тока, источник стабилизированного напряжения постоянного тока, шунтирующий конденсатор C1, RC-фильтр на 50 Гц, блок гальванической развязки, электронный делитель напряжения, дифференциальный усилитель, блок питания и блоки индикации и сигнализации. При этом второй вывод резистора нейтрали соединен с введенными резистивным датчиком тока и источником стабилизированного напряжения постоянного тока, включенными последовательно. Второй вывод резистора нейтрали соединен с корпусом через шунтирующий конденсатор С1, а плюсовой вывод источника стабилизированного напряжения соединен с корпусом через введенный резистивный датчик тока. Параллельно резистивному датчику тока включен RC-фильтр, средняя точка которого соединена с входом блока гальванической развязки, а выход блока гальванической развязки соединен с входом электронного делителя напряжения, на выход которого входом включен дифференциальный усилитель, на выход которого входом включены блоки индикации и сигнализации. Все блоки устройства запитаны от блока питания. Технический результат заключается в возможности непрерывно контролировать сопротивление изоляции в сетях переменного тока с резистивной нейтралью. 1 ил.

 

Предложение относится к приборам для измерения, контроля и сигнализации о снижении сопротивления изоляции в силовых сетях переменного тока с резистивной нейтралью, то есть когда нейтраль силовой сети заземлена через резистор и используется для непрерывного контроля сопротивления изоляции на кораблях, судах, шахтах, метро и т.д., то есть там, где есть сети переменного тока с резистивной нейтралью.

Известен способ повышения пожароэлектробезопасности систем генерирования и преобразования электроэнергии путем оценки токов утечки в цепях питания переменного или постоянного тока с заземленной нейтралью или заземленным полюсом. Способ основан на выделении разницы входных и выходных токов нагрузки у щита питания. По разнице этих токов судят об уровне пожаробезопасности, оценивая возможность возникновения электрической дуги между токоведущими жилами кабеля и землей (корпусом). По токам утечки судят также об электробезопасности обслуживающего персонала и обеспечивают защиту при малых токах утечки. Примером может служить устройство защитного отключения типа УЗО20 по ТУ 16-92 ИЖТПИ.656111.085 ТУ, г. Ставрополь, завод «Сигнал». Недостатком данного способа является сравнительно низкая надежность пожаробезопасности и ограниченная область применения.

Известны способ и устройство для измерения сопротивления изоляции в сетях постоянного тока по авторскому свидетельству СССР №370551, МПК G01R 27/18 отличающееся тем, что с целью измерения сопротивления изоляции под рабочим напряжением дополнительно введена цепочка из источника питания постоянного тока и диода, подключенных параллельно проводам сети, а их общая точка соединена с другой клеммой токового прибора. Недостатком этого способа и устройства является большая погрешность измерения, так как сопротивление изоляции полюса сети является функцией величины напряжения питания. При больших колебаниях напряжения контролируемой сети соответственно меняется (увеличивается) погрешность измерения сопротивления изоляции.

За прототип взято сравнительно новое устройство измерения сопротивления изоляции силовой сети электроустановок транспорта под рабочим напряжением (патент РФ 2175138 G01 27/18, опубл. 20.01.2001 г., бюл. 29) в которых для измерения сопротивления изоляции силовой сети электроустановок транспорта под рабочим напряжением, накладывают на силовую сеть измерительное напряжение постоянного тока.

Недостатком этого способа и устройства является то, что в процессе измерения сопротивления изоляции происходит перезаряд емкостей электрической сети от нуля до полного напряжения сети. В такой сети без применения способа и устройства контроля сопротивления изоляции человек, касаясь одного полюса сети, попадает под напряжение, которое существенно ниже напряжения сети, а при применении этого способа и устройства в аналогичной ситуации человек попадает под нулевое напряжение относительно земли или под полное напряжение сети, где существенно ухудшаются условия электробезопасности при контроле силовой сети.

Предложенное устройство по сравнению с прототипом обеспечивает повышение надежности и позволяет измерять и контролировать сопротивление изоляции в широком диапазоне величин сопротивлений изоляции.

Предложено устройство для измерения и контроля сопротивления изоляции под рабочим напряжением в силовых сетях переменного тока с резистивной нейтралью, блок-схема устройства приведена на фиг.1, содержащее резистор, включенный в нейтраль одним выводом, а вторым выводом соединенное с корпусом (землей), отличающееся тем, что в устройство введен резистивный датчик тока, источник стабилизированного напряжения постоянного тока, шунтирующий конденсатор CI, RC-фильтр, блок гальванической развязки, электронный делитель напряжения, дифференциальный усилитель, блок питания и блоки индикации и сигнализации, причем один вывод резистора нейтрали отключают от корпуса (земли), а в разрыв включают введенные резистивный датчик тока и источник стабилизированного напряжения постоянного тока, соединенные последовательно, причем плюсовой вывод источника соединен с корпусом (землей) через введенный резистивный датчик тока, а шунтирующий конденсатор С1 включен параллельно резистивному датчику тока и источнику стабилизированного напряжения постоянного тока, a RC-фильтр подключен резистором к плюсу источника измерительного стабилизированного напряжения постоянного тока, а нижним выводом RC-фильтр подключен к корпусу (земле), а средняя точка фильтра RC соединена с входом блока гальванической развязки, а выход блока гальванической развязки соединен с входом электронного делителя напряжения, на выход которого входом включен дифференциальный усилитель, на выход которого включены блоки индикации и сигнализации, а все блоки устройства запитаны от блока питания.

Устройство для измерения и контроля сопротивления изоляции под рабочим напряжением в силовых сетях переменного тока с резистивной нейтралью, содержащее резистор 1, а также резистивный датчик тока 2, источник стабилизированного напряжения постоянного тока 3, шунтирующий конденсатор С1 - 4, RC-фильтр 5, блок гальванической развязки 6, электронный делитель напряжения 7, дифференциальный усилитель 8, блок питания 9, блоки индикации 10 и сигнализации 11, устройство верхним выводом резистора 1 нейтрали подключается к нейтрали контролируемой сети 12, а источник стабилизированного напряжения постоянного тока 3 нижним выводом подключается к земле (корпусу) 13 через резистивный датчик тока 2.

Предлагаемое устройство для измерения и контроля под рабочим напряжением сопротивлением изоляции в силовых сетях переменного тока с резистивной нейтралью работает следующим образом.

Устройство одним верхним выводом резистора нейтрали подключается к нейтрали контролируемой сети 12, а другим выводом устройство подключено к земле (корпусу) 13

Измерительная цепь включает в себя резистивный датчик тока 2, источник стабилизированного напряжения постоянного тока 3, резистор нейтрали 1 и сопротивление изоляции фаз R из контролируемой сети 12.

Напряжение сигнала выделяется на резисторе датчика тока Rдт 2 с помощью фильтра RC 5 мы освобождаемся от помехи напряжения частоты 50 Гц, этому способствует наличие конденсатора шунта 50 Гц С1 (4). Включение конденсатора С1 большой емкости способствует сохранению параметров сети переменного тока с резистивной нейтралью, для того, чтобы эти условия выполнялись, необходимо чтобы емкостное сопротивления конденсатора С1 было много меньше, чем величина резистора нейтрали 1, поэтому после очистки напряжения сигнала от 50 Гц помехи очищенное напряжение сигнала выделяется на конденсаторе С фильтра RC 5 и поступает на вход блока гальванической развязки 6, после чего напряжение сигнала поступает на вход электронного делителя напряжения (ЭДН), на выходе которого мы получаем напряжение сигнала, пропорциональное сопротивлению изоляции, а с помощью дифференциального усилителя ДУ (8) можно подкорректировать, уточнить линейную зависимость напряжения сигнала от сопротивления изоляции, а с помощью блоков индикации 10 и сигнализации 11 на дисплее отобразится точная величина сопротивления изоляции в сети переменного тока с резистивной нейтралью, что дает возможность повысить надежность работы сетей переменного тока с резистивной нейтралью, а все блоки предложенного устройства запитаны от блока питания.

Устройство для измерения и контроля сопротивления изоляции под рабочим напряжением в силовых сетях переменного тока с резистивной нейтралью, содержащее резистор, соединенный с нейтралью одним выводом, отличающееся тем, что в устройство введены резистивный датчик тока, источник стабилизированного напряжения постоянного тока, шунтирующий конденсатор C1, RC-фильтр на 50 Гц, блок гальванической развязки, электронный делитель напряжения, дифференциальный усилитель, блок питания и блоки индикации и сигнализации, а второй вывод резистора нейтрали соединен с введенными резистивным датчиком тока и источником стабилизированного напряжения постоянного тока, включенными последовательно, кроме того, второй вывод резистора нейтрали соединен с корпусом через шунтирующий конденсатор С1, а плюсовой вывод источника стабилизированного напряжения соединен с корпусом через введенный резистивный датчик тока, а параллельно резистивному датчику тока включен RC-фильтр, средняя точка которого соединена с входом блока гальванической развязки, а выход блока гальванической развязки соединен с входом электронного делителя напряжения, на выход которого входом включен дифференциальный усилитель, на выход которого входом включены блоки индикации и сигнализации, а все блоки устройства запитаны от блока питания.



 

Похожие патенты:

Изобретение относится к области электротехники. Устройство состоит из источника измерительного стабилизированного напряжения постоянного тока, фильтра RC, состоящего из последовательно соединенных резистора и конденсатора, одного диод, шунтирующего конденсатор С1, блока гальванической развязки, усилителя напряжения сигнала с регулируемым коэффициентом усиления, блока питания, электронного делителя напряжения, блока индикации и блока сигнализации.

Изобретение относится к технике электрических измерений. Устройство содержит источник испытательного напряжения (ИИН), эталонный резистор (ЭР), зарядный ключ (ЗК), испытуемый объект (ИО), разрядный ключ (РК), разрядный резистор (РР), выходные выводы, к которым подключают ИО, двухканальный цифровой измеритель с запоминающим устройством с двумя информационными (ЦИ) и двумя управляющими входами, устройство отображения информации (УОИ), генератор тактовых импульсов (ГТИ) и блок управления (БУ) с выходами «Пуск» и «Установка нуля».

Изобретение относится к области электротехники и может быть использовано для измерения емкости между фазами и корпусом (или землей) в любых трехфазных электросетях, например в судовых.

Изобретение относится к области электротехники, а именно к релейной защите синхронных генераторов, и может быть использовано на электрических станциях для защиты синхронных генераторов от замыкания обмотки возбуждения на землю в одной точке, а также для контроля сопротивления изоляции.

Способ измерения сопротивления изоляции цепей постоянного тока, находящихся под рабочим напряжением, и устройство для его осуществления относятся к электроизмерительной технике и предназначены для использования преимущественно в автоматизированных системах контроля, диагностики и управления технологическими процессами.

Изобретение относится к электроизмерительной технике, в частности к автоматизированным системам контроля, и применяется при контроле сопротивления изоляции электрических цепей постоянного тока относительно корпуса.

Группа изобретений относится к электроизмерительной технике и предназначена для использования в автоматизированных системах контроля, диагностики и управления технологическими процессами.

Изобретение относится к контрольно-измерительной технике транспортных средств с электрической тягой, а именно к микропроцессорным системам управления и диагностики тепловозов.

Изобретение относится к электроэнергетике и предназначено для эксплуатационного контроля состояния изоляции относительно земли объектов под рабочим напряжением в трехфазных сетях с изолированной нейтралью, а также в сетях, где нейтраль заземлена через резистор или реактор.

Изобретение относится к контрольно-измерительной технике и используется для измерения и постоянно действующего контроля сопротивления изоляции электрических сетей постоянного тока на кораблях, судах, шахтах, метрополитене и там, где есть разветвленные отдельные сети постоянного тока, изолированные от земли.

Изобретение относится к электроизмерительной технике и предназначено для измерения сопротивления изоляции электрических сетей переменного тока, находящихся под напряжением и изолированных от земли. Устройство содержит источник измерительного напряжения, миллиамперметр, блок гальванической развязки, блок вычитания, блок управления, управляемый источник переменного напряжения, первый ключ, второй ключ, токоограничивающий резистор. Причем два входа блока гальванической развязки подключены к двум фазам контролируемой сети, между которыми действует переменное напряжение. Выход блока гальванической развязки подключен ко второму входу блока управления, выход которого подключен к входу управляемого источника переменного напряжения, первый выход которого подключен к второму выводу токоограничивающего резистора, первый вывод которого подключен ко второму выходу источника измерительного напряжения. Второй выход управляемого источника переменного напряжения подключен через миллиамперметр к земле. Первый выход источника измерительного напряжения через первый ключ подключен к любой фазе контролируемой сети. Первый вход блока вычитания подключен к первому выходу управляемого источника переменного напряжения, а выход блока вычитания через второй ключ подключен к первому входу блока управления. Технический результат заключается в уменьшении погрешности и времени измерения сопротивления изоляции. 3 ил.

Изобретение относится к электроизмерительной технике, в частности к автоматизированным системам контроля, и применяется при контроле сопротивления изоляции электрических цепей электро- и радиотехнических изделий, отключенных от источника питания. На первом этапе при закороченных шинах между корпусом и шинами устанавливают тестовый сигнал, существенно превосходящий уровень помех, что позволяет проводить измерения параллельно соединенных сопротивлений изоляции обеих шин с высокой точностью. На втором этапе подключают первый источник низкого уровня между шинами электропитания, который обеспечивает быстрый заряд емкости нагрузки и нейтрализацию влияния активного сопротивления нагрузки на результаты измерений. При этом малый уровень сигнала исключает повреждение потребителей энергии по цепям питания. А второй источник сигнала подключают между корпусом и одной из шин, что обеспечивает высокую точность измерений сопротивления утечки. Технический результат заключается в возможности проведения контроля с минимальными энергетическими затратами, с высоким быстродействием и с минимальным влиянием помех. 4 ил.

Изобретение относится к электротехнике и может быть использовано при создании устройств контроля изоляции сетей постоянного оперативного тока. В сети постоянного тока периодически осуществляют тестовое воздействие путем подключения к полюсам высокоточного резистора, при этом измеряют величины напряжений на полюсах и дифференциальные токи присоединений сети до и после каждого тестового воздействия. Величина сопротивления резистора регулируется исходя из условия, чтобы после его подключения напряжения полюсов относительно земли входили в диапазон допустимых значений, а ток утечки на землю через резистор не превышал установленного допустимого значения. Технический результат заключается в расширении функциональных возможностей и повышении точности измерения сопротивления изоляции, а также в повышении универсальности. 1 з.п. ф-лы, 1 ил.

Изобретение относится к электротехнике и может быть использовано при создании и применении устройств и систем измерения сопротивлений изоляции в сетях постоянного тока с изолированной нейтралью, находящихся под напряжением. Технический результат: повышение точности измерений сопротивления изоляции сети постоянного тока. Сущность: измеряют напряжение между «землей» и полюсами источника постоянного тока. Для чего сначала подключают резистивный элемент к одному из полюсов, а затем к другому, выравнивают напряжения на полюсах параллельным подключением к источнику постоянного тока двух последовательно соединенных одинаковых резисторов, общая точка которых через третий резистор соединена с «землей». При этом резистивные элементы подключают поочередно параллельно первому и второму резисторам, измеряют напряжение на третьем резисторе после подключения одного и другого резистивных элементов. Далее определяют сопротивление изоляции всей сети, а затем для каждого из полюсов. 1 ил.

Изобретение относится к электротехнике и может быть использовано при создании устройств контроля и измерения сопротивления изоляции сетей переменного тока с изолированной нейтралью. Технический результат: расширение функциональных возможностей за счет измерения сопротивлений изоляции присоединений, уменьшение величины перекоса напряжений между фазами и «землей», возникающих при определении сопротивления изоляции сети и сопротивления изоляции присоединений. Сущность: измеряют средние значения напряжения между положительным и отрицательным полюсами трехфазного выпрямительного моста, собранного на полупроводниковых диодах по схеме Ларионова и подключенного к фазам сети переменного тока, а также между положительным и отрицательным полюсами трехфазного выпрямительного моста и «землей». При этом производят выравнивание напряжений на фазах сети путем включения параллельно полюсам трехфазного выпрямительного моста двух последовательно соединенных первого и второго резисторов, общая точка которых соединена с «землей». Измеряют среднее значение тока через провод, соединяющий общую точку первого и второго резисторов с «землей», измеряют средние значения дифференциальных токов, протекающих по присоединениям сети, с помощью датчиков дифференциальных токов для измерений средних значений токов, после подключения сначала к одному из полюсов трехфазного выпрямительного моста третьего резистора, один из выводов которого подсоединен к общей точке первого и второго резисторов, а потом к другому полюсу трехфазного выпрямительного моста четвертого резистора, один из выводов которого подсоединен к общей точке первого и второго резисторов. Значения сопротивлений изоляции всей сети в целом и сопротивления изоляции присоединений определяют из соответствующих выражений. 11 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано для контроля сопротивления изоляции многофазных разветвленных сетей переменного тока с изолированной нейтралью, находящихся под напряжением. Техническим результатом является осуществление избирательного контроля утечки или замыкания фазы на землю в разветвленной системе электроснабжения с изолированной нейтралью, выявление элемента с поврежденной изоляцией до появления аварийного режима. Устройство контроля изоляции сети электроснабжения с изолированной нейтралью содержит высоковольтные провода подключения, контактор измерительной цепи, контактор заземления. Параллельно контактам контактора заземления подключен диодный мост с модулятором поискового тока. При этом обеспечивается возможность подключения фазы сети электроснабжения через коммутационный переключатель, токоограничивающий конденсатор, контакт контактора измерительной цепи и контакт контактора заземления к контуру заземления. 1 з.п. ф-лы, 2 ил.

Изобретение относится к электроизмерительной технике, в частности к автоматизированным системам контроля, и применяется для контроля сопротивления изоляции шин питания гальванически развязанных источников постоянного тока относительно корпуса и между собой. Техническим результатом изобретения является повышение достоверности определения значений сопротивления изоляции относительно корпуса, а также возможность контроля изоляции шин нескольких гальванически развязанных источников постоянного тока как относительно корпуса, так и между собой как в выключенном, так и во включенном состоянии. Способ измерения сопротивления изоляции в цепях постоянного тока основан на подключении к полюсам цепи постоянного тока цепи резисторов, состоящей из двух последовательно соединенных резисторов с одинаковой величиной сопротивления. В место соединения резисторов включается измерительная цепь из последовательно включенных источника измерительного напряжения и измерителя тока. Далее определяется эквивалентное сопротивление цепи резисторов. В измерительную цепь включают источник измерительного напряжения с одним значением напряжения, величина которого может быть равна нулю, затем с другим, отличным от нуля. Определяют значения измерительных токов для двух значений измерительных напряжений, вычисляют алгебраическую разность измерительных напряжений, делят ее на алгебраическую разность измеренных токов и из результата деления, взятого по модулю, вычитают значение эквивалентного сопротивления. Для измерения сопротивления изоляции между двумя гальванически развязанными источниками постоянного тока подключают между местами соединения двух цепочек резисторов с одинаковыми величинами сопротивлений, включенных между полюсами соответствующих источников постоянного тока, при этом вычитаемое эквивалентное сопротивление равно номинальному значению сопротивлений резисторов цепочек. Способ измерения сопротивления изоляции реализуется в устройстве, которое содержит цепочку из одинаковых резисторов, включенных последовательно, подключаемую к полюсам источника постоянного тока для измерения его сопротивления изоляции относительно корпуса, измерительную цепь, состоящую из последовательно включенных источника измерительного напряжения и датчика тока, а также коммутатора измерительного напряжения, имеющего вход управления, контроллера с аналоговым входом, подключенным к датчику тока, и выходом контроллера, имеющим электрическую связь с входом управления коммутатора измерительного напряжения. Дополнительно введены два коммутатора, каждый из которых имеет n+1 вход, один выход и вход управления, резистор, подключенный между n+1 входом первого коммутатора и n+1 входом второго коммутатора, устройство последовательного интерфейса. Кроме этого, введены n-1 дополнительных цепочек последовательно соединенных резисторов, измерительная цепь подключена между выходами введенных коммутаторов, а коммутатор измерительного напряжения своим выходом подключен параллельно источнику измерительного напряжения. 2 н.п. ф-лы, 1 ил.
Наверх