Способ обработки среднеуглеродистых сталей

Изобретение относится к области деформационно-термической обработки среднеуглеродистых низколегированных сталей. Для повышения ударной вязкости сталей, работающих при низких температурах, осуществляют закалку и пластическую деформацию путем ротационной ковки со степенью относительной деформации за проход 5-25% в интервале температур 600-500°C. Ротационную ковку проводят в один или более этапов с суммарной истинной степенью деформации не менее ε~1,2. В случае если ротационную ковку проводят более чем за один этап, после каждого этапа охлаждают заготовку до комнатной температуры и осуществляют повторный нагрев до температуры в интервале 600-500°C. 3 ил., 2 табл., 5 пр.

 

Изобретение относится к области деформационно-термической обработки и может быть использовано для повышения ударной вязкости среднеуглеродистых низколегированных сталей, работающих при низких температурах. К деталям машин и механизмов, работающих в условиях Крайнего Севера, предъявляются высокие требования по ударной вязкости при низких температурах.

Известен способ повышения ударной вязкости при низких температурах в среднеуглеродистых сталях путем термической обработки по патенту РФ №2178003, МПК C21D 1/28, включающий нормализацию и отпуск при 655-750°C в течение 120-300 мин, охлаждение на воздухе и повторную нормализацию с выдержкой 10-60 мин. Изготовленные по данному способу изделия во всем интервале режимов термообработки показали прирост показателя вязкости разрушения в 2-4 раза при температуре -60°C при незначительном увеличении уровня прочностных свойств по сравнению с традиционной термической обработкой.

Другой российский патент, обеспечивающий рост вязкостных свойств в 2-4 раза, - РФ №2430978, МПК C21D 9/46, - направлен на улучшение свойств низкоуглеродистой стали. Данный способ производства включает выплавку низкоуглеродистой низколегированной стали, получение заготовки, предварительную и окончательную деформации в реверсивном режиме, контролируемое охлаждение проката, отпуск и окончательное охлаждение на воздухе до температуры окружающей среды. Контролируемое охлаждение проката осуществляли с температуры конца деформации, находящейся в интервале (Ac3+20)-(Ac3+40)°C, до температуры 530-570°C со скоростью 30-40°/с, а отпуск проводили при температуре 665-695°C с выдержкой 0,2-4,0 мин/мм. В результате полученный прокат обладал в 2-4 раза большей ударной вязкостью при -40°C, при некоторой потере прочности и пластичности по сравнению со способом, включающем охлаждение проката при температуре 760-900°C со скоростью 10-60 град/с до температуры 300-20°C, повторный нагрев до температуры 590-740°C с выдержкой 0,2-3,0 мин/мм и окончательное охлаждение на воздухе до температуры окружающей среды.

Наиболее близким по совокупности существенных признаков к заявляемому изобретению является способ обработки, описанный в статье «Inverse temperature dependence of toughness in ultrafine grain-structure steel» авторами Y. Kimura, T. Inoue, F. Yin, K. Tsuzaki, включающий в себя закалку с температуры выше Ac3, отпуск при температуре 500-600°C и измельчение микроструктуры посредством пластической деформации на истинную степень 1,7 при температуре, аналогичной температуре отпуска. Данный набор операций получил название tempforming. Изготовленная по описанному способу заготовка показывает существенный рост прочности, пластичности и ударной вязкости, в том числе при низких температурах.

Задачей изобретения является расширение арсенала способов обработки среднеуглеродистых низколегированных сталей с достижением повышенных показателей ударной вязкости при низких температурах.

Технический результат, достигаемый при осуществлении изобретения, заключается в измельчении микроструктуры и формировании вытянутых вдоль оси деформации ферритных зерен с дисперсно распределенными карбидами, за счет чего повышаются показатели ударной вязкости среднеуглеродистых низколегированных сталей при низких температурах, а также наблюдается рост прочности и пластичности.

Поставленная задача достигается тем, что в предложенный способ, включающий закалку с температуры выше Ac3 и измельчение микроструктуры стали посредством пластической деформации заготовки, внесены новые признаки: пластическую деформацию заготовки из среднеуглеродистой низколегированной стали осуществляют путем ротационной ковки со степенью относительной деформации за проход 5-25% в интервале температур 600-500°C с суммарной истинной степенью деформации не менее ε~1,2, в 1 или более этапов с суммарной истинной степенью деформации не менее ε~1,2, при этом, в случае если ротационную ковку проводят более чем за 1 этап, после каждого этапа охлаждают заготовку до комнатной температуры и осуществляют повторный нагрев до температуры в интервале 600-500°C.

Выбор степени деформации обусловлен следующими причинами. С точки зрения экономической целесообразности технологического процесса является необоснованным применение обработки со степенью относительной деформации за проход менее 5%. Относительная деформация при 500°C за проход более 25% приводит к появлению трещин, что подтверждается в ходе эксперимента на осадку закаленной стали 40ХГНМ. Вследствие недостаточной технологической пластичности среднеуглеродистой стали деформация при температуре ниже 500°C является нецелесообразной. Выбор верхнего лимита температуры деформации на уровне 600°C в свою очередь обусловлен с одной стороны укрупнением ферритных зерен вследствие интенсивной рекристаллизации и коагуляции карбидов при повышении температуры, а с другой - разогревом материала в процессе ротационной ковки - температура деформирования не должна превышать температуру Ac1.

Пластическая деформация при 500°C является предпочтительной для получения более мелкозернистой структуры, чем в случае деформации при 600°C. Однако для прутков большого диаметра, например, если начальный диаметр составляет 35 мм, как далее показано в примере 4, при проведении пластической деформации при 500°C наблюдается наличие значительной неоднородности пластической деформации по сечению. В этом случае проведение первоначальной деформации при температуре 600°C обеспечивает формирование равномерной по сечению ультрамелкозернистой структуры вследствие активного прохождения динамической рекристаллизации. Для более интенсивного измельчения микроструктуры и соответственно обеспечения роста значений прочностных характеристик возможно разделение обработки на несколько этапов и проведение последующих этапов деформации с повторным нагревом на температуру ниже 600°C.

Необходимо отметить, что величина ударной вязкости заготовок, которые получены ротационной ковкой по предложенному способу, существенно выше, чем таковая у заготовок после закалки и высокого отпуска: работа удара образцов при температуре -40 и -65°C после ротационной ковки в 9-11 раз выше работы удара образцов после закалки и отпуска при температуре, аналогичной температуре деформации.

В процессе нагрева и прогрева заготовки до температуры деформации сталь, пребывающая первоначально в закаленном состоянии, отпускается. Выделяющиеся карбидные частицы служат для интенсификации процессов измельчения зерна за счет обеспечения барьеров для миграции границ. Стоит отметить, применение операции отпуска перед ротационной ковкой привело бы к более полному выделению карбидов и некоторому росту их размера, однако включение данной операции в цикл производства прутка является нецелесообразным в виду повышения временных затрат.

Графические материалы.

Фиг. 1. Фотографии образцов стали 40ХГНМ после закалки и осадки при температуре Т=500°C на степень 25% (а) и 50% (б), на фиг. (б) видны трещины, что подтверждает выбор степени деформации за проход.

Фиг. 2. Микроструктура стали 40ХГНМ после обработки по режиму примера 4 в поперечном сечении: а - центр, б - край. Изображения получены с помощью растрового электронного микроскопа FEI Quanta-600.

Фиг. 3. Фотографии микроструктуры стали 40ХГНМ после обработки по режиму примера 5 в поперечном (а) и продольном (б) сечениях. Изображения получены с помощью просвечивающего электронного микроскопа JEOL JEM 2100.

Сущность предложенного технического решения поясняется примерами конкретного выполнения.

Пример 1.

Исходная заготовка - пруток среднеуглеродистой стали 40ХГНМ, содержащей масс.%: C - 0,37-0,43; Cr - 0,6-0,9; Mn - 0,5-0,8; Ni - 0,7-1,1; Mo - 0,15-0,25; Si - 0,17-0,37; S - до 0,035; P - до 0,035 - размером 65×500 мм. Исходная микроструктура - зерна феррита и колонии перлита. Критические температуры для данной стали: AC3=761°C, AC1=776°C.

Заготовку нагревают в печи до температуры 840°C, т.е. выше AC3, и выдерживают при этой температуре до образования однородного твердого раствора аустенита. Затем заготовку закаливают для предотвращения перлитного превращения. В результате закалки образуется мартенсит.

Далее заготовку нагревают в печи до температуры 600°C и подвергают деформации на ротационно-ковочной машине с шагом 4-6 мм на диаметр: ⌀65→⌀59→⌀54→⌀49→⌀44→⌀39→⌀35, истинная степень деформации ε~1,2. Во время нагрева и деформации происходит распад мартенсита с образованием ферритно-цементитной смеси, в ходе деформации образуется фрагментированная структура, в феррите развивается динамическая рекристаллизация. По окончании деформации заготовку охлаждают на воздухе до комнатной температуры. После деформации структура представляет собой мелкие зерна феррита с размером ~710 нм, зеренно-субзеренная структура имеет размер ~420 нм, а дисперсно распределенные частицы карбидов ~45 нм.

Механические свойства стали приведены в таблице 1.

Пример 2.

Для данного примера исходной являлась заготовка, термическая и деформационно-термическая обработка которой подробно описана в примере 1.

Далее заготовку нагревают в печи до температуры 600°C и подвергают деформации на ротационно-ковочной машине с шагом 4 мм на диаметр: ⌀35→⌀31→⌀27→⌀23 соответственно, истинная степень деформации ε~2,2. По окончании деформации заготовку охлаждают на воздухе до комнатной температуры. После деформации структура заготовки представляет собой зерна феррита со средним размером зерен ~600 нм, средний размер зеренно-субзеренной структуры равен ~380 нм, а карбидов ~55 нм. Механические свойства стали приведены в таблице 1, а значения работы удара при различных температурах испытания - в таблице 2.

Пример 3.

Для данного примера исходной являлась заготовка, термическая и деформационно-термическая обработка которой подробно описана в примере 2.

Далее заготовку нагревают в печи до температуры 600°C и подвергают деформации на ротационно-ковочной машине с шагом 3-5 мм на диаметр: ⌀23→⌀18→⌀15 соответственно, истинная степень деформации ε~2,9. По окончании деформации заготовку охлаждают на воздухе до комнатной температуры. Заготовка после деформации имеет следующие характеристики: средний размер зерен феррита ~580 нм, средний размер зеренно-субзеренной структуры ~460 нм, а карбидов ~75 нм.

Механические свойства стали приведены в таблице 1, а значения работы удара при различных температурах испытания - в таблице 2.

Пример 4.

Для данного примера исходной являлась заготовка, термическая и деформационно-термическая обработка которой подробно описана в примере 1.

Далее заготовку нагревают в печи до температуры 500°C и подвергают деформации на ротационно-ковочной машине с шагом 3-5 мм на диаметр: ⌀35→⌀33→⌀31→⌀27→⌀21, истинная степень деформации ε~2,2. По окончании деформации заготовку охлаждают на воздухе до комнатной температуры. После деформации в структуре заготовки наблюдается значительная неоднородность по сечению. В центральной области структура представляет собой зерна феррита с размером ~705 нм, зеренно-субзеренная структура имеет размер ~380 нм, а дисперсно распределенные частицы карбидов ~50 нм (фиг. 2).

Механические свойства стали приведены в таблице 1, а значения работы удара при различных температурах испытания - в таблице 2.

Пример 5.

Для данного примера исходной являлась заготовка, термическая и деформационно-термическая обработка которой подробно описана в примере 4.

Далее заготовку нагревают в печи до температуры 600°C и подвергают деформации на ротационно-ковочной машине с шагом 3 мм на диаметр: ⌀21→⌀18→⌀15, истинная степень деформации ε~2,9. По окончании деформации заготовку охлаждают на воздухе до комнатной температуры. После деформации структура первой заготовки представляет собой зерна феррита с размером ~500 нм, зеренно-субзеренная структура имеет размер ~400 нм, а дисперсно распределенные частицы карбидов ~55 нм (фиг. 3).

Механические свойства стали приведены в таблице 1, а значения работы удара при различных температурах испытания - в таблице 2.

Таблица 1
Механические свойства стали 40ХГНМ после различных режимов ротационной ковки в сравнении со свойствами стали, обработанной по известному способу и прототипу
№ примера Условия обработки стали KV, Дж σ0,2, МПа σB, МПа δ, %
- Закалка 840°C, отпуск 600°C 1 ч 57 840 980 15
прототип Закалка, отпуск 500°C 1 ч 14 1470 1770 10
прототип Tempforming при 500°C, ε~1,7 226 1840 1850 15
1 T=600°C, ε~1,2 143 980 1020 17,7
2 Т=600°C, ε~2,2 212 1030 1060 16,1
3 Т=600°C, ε~2,9 223 830 900 22
4 Т=500°C, ε~2,2 158 1090 1100 16,7
5 Т=500°C, ε~2,9 235 960 1000 19
Где KV - работа удара, Дж; σ0,2 - предел текучести, МПа; σB - предел прочности, МПа; δ - относительная деформация, %.
Таблица 2
Значения работы удара в области низких температур в стали, обработанной различными режимами по предложенному способу, в сравнении со свойствами стали, обработанной по известному способу и прототипу
№ примера Условия обработки стали Температура испытания, °C
+20 -20 -40 -65 -100
Работа удара, Дж
- Закалка 840°C, отпуск 600°C 1 ч 57 37 30 26 18
прототип Закалка, отпуск 500°C 1 ч 14 14 - 12 7
прототип Tempforming при 500°C, ε~1,7 226 291 - 285 88
2 Т=600°C, ε~2,2 212 219 198 267 183
3 Т=600°C, ε~2,9 223 258 270 217 261
4 Т=500°C, ε~2,2 158 146 169 206 122
5 Т=500°C, ε~2,9 235 278 202 280 291

Таким образом, поставленная задача по расширению арсенала способов обработки среднеуглеродистых низколегированных сталей с достижением повышенных показателей ударной вязкости при низких температурах решена.

Способ обработки среднеуглеродистых низколегированных сталей, включающий закалку с температуры выше Ac3, измельчение микроструктуры посредством пластической деформации, отличающийся тем, что пластическую деформацию осуществляют путем ротационной ковки со степенью относительной деформации за проход 5-25% при температуре 600-500°C, при этом ротационную ковку проводят в один или более этапов с суммарной истинной степенью деформации ε не менее 1,2, причем при проведении ротационной ковки более чем за один этап после каждого этапа охлаждают заготовку до комнатной температуры и осуществляют повторный нагрев до температуры в интервале 600-500°C.



 

Похожие патенты:

Изобретение относится к получению стальной проволоки, имеющей повышенные магнитные характеристики, для применения в трансформаторах, транспортных средствах, электрических или электронных изделиях.

Изобретение относится к производству профилированной проволоки из низколегированной углеродистой стали, предназначенной для использования в качестве компонента в гибких трубах для морской нефтедобычи.

Изобретение относится к области металлургии, а именно к поверхностно-упрочняемой стали. Сталь содержит в мас.%: 0,05-0,20 С, 0,01-0,1 Si, 0,3-0,6 Mn, 0,03 или менее Р (за исключением 0), 0,001-0,02 S, 1,2-2,0 Cr, 0,01-0,1 Al, 0,010-0,10 Ti, 0,010 или менее N (за исключением 0), 0,0005-0,005 В, железо и неизбежные примеси остальное.

Изобретение относится к области металлургии, а именно к поверхностно-упрочненной стали. Сталь содержит, в мас.%: С от 0,05 до 0,3, Si от 0,01 до 0,6, Mn от 0,20 до 1,0, S от 0,001 до 0,025, Cr от 1 до 2,5, Al от 0,01 до 0,10, Ti от 0,01 до 0,10, Nb от 0,01 до 0,10, В от 0,0005 до 0,005, N от 0,002 до 0,02, железо и неизбежные примеси остальное.

Изобретение относится к металлургии, в частности к способам для получения высокопрочных и высоковязких крепежных изделий любых конструктивных параметров без резьбы и с резьбой.
Изобретение относится к термомеханической обработке горячекатаного проката. Способ изготовления горячекатаного проката под холодную объемную штамповку крепежных изделий включает двукратный отжиг проката индукционным нагревом ТВЧ при t=760-780°C в мотках и трехкратное волочение на волочильном стане с различными степенями обжатия.
Изобретение относится к металлургии, в частности к метизному производству, и может быть использовано при производстве из высокоуглеродистой стали проволоки больших диаметров, преимущественно 9-12 мм, предназначенной для изготовления, например, высокопрочной арматуры для железобетонных шпал.

Изобретение относится к области металлургии, а именно к получению высокопрочного, высоковязкого тонкого стального прутка, используемого для получения изделий, требующих высокой прочности и вязкости.
Изобретение относится к области металлургии, конкретно к производству круглого сортового проката с повышенной обрабатываемостью резанием, используемого для изготовления крепежных изделий.

Изобретение относится к прокатному производству и может быть использовано для получения катанки в мотках, используемой для волочения в проволоку различного назначения.

Изобретение относится к области металлургии. Для повышения качества проволоки, ее прочностных характеристик осуществляют разматывание бунтовой проволоки и ее правку, нагрев, обжатие, закалку, повторный нагрев, охлаждение и смотку в бунт. Обжатие проволоки ведут путем орбитальной обкатки с последеформационной выдержкой до момента образования полигонизированной структуры, а операции нагрева производят индукционным методом. Линия для осуществления способа содержит разматывающее устройство, устройство правки, узел нагрева, устройство деформации, закалочное устройство в виде спрейера, узлы нагрева и охлаждения и волочильный стан, при этом устройство деформации содержит головку в виде корпуса с тремя роликами, расположенный в корпусе хомут, соединенный с роликами посредством тяг с грузами и рычагов, хомут выполнен в виде равностороннего треугольника, в вершинах которого установлены оси тяг грузов и тяг роликов, причем рычаги связаны с регулируемыми упорами, ограничивающими сведение роликов к оси устройства, а корпус имеет привод вращения. 3 н.п. ф-лы, 3 ил.

Изобретение относится к области термомеханической обработки сортового горячекатаного калиброванного проката. Для достижения высоких прочностных и пластических характеристик по всему сечению и длине проката осуществляют отжиг калиброванного проката при 770-790°С в течение 3-4 часов, охлаждение с печью до 660-680°С, выдержку 3-4 часа, охлаждение с печью до температуры 140-150°С с выдержкой 1-2 часа, дальнейшее охлаждение на воздухе, первичное волочение со степенью обжатия 17-19%, нагрев в печи с контролируемой атмосферой, патентирование при 440-460°С, вторичное волочение со степенью обжатия 4-5%. 1 табл., 1 пр.
Изобретение относится к металлургии стали и может быть использовано при производстве сортового проката круглого сечения для изготовления высокопрочного крепежа холодной осадкой. Для повышения пластических характеристик при сохранении высоких прочностных свойств получают сталь, содержащую, мас.%: углерод 0,30-0,35, марганец 0,50-0,70, кремний 0,20-0,37, фосфор менее 0,020, сера менее 0,010, хром 0,40-0,70, никель не более 0,15, медь не более 0,20, алюминий 0,015-0,035, титан 0,03-0,05, бор 0,002-0,005, кальций 0,0001-0,005 и железо остальное. Приведенный состав при производстве проката круглого поперечного сечения для изготовления высокопрочного крепежа позволит повысить прибыль от реализации проката с улучшенными потребительскими свойствами. 1 пр.

Изобретение относится к области металлургии. Для повышения механических свойств проволоки и обеспечения однородной микроструктуры способ изготовления стальной проволоки включает получение стальной проволоки, нагрев до температуры аустенизации стальной проволоки, патентирование стальной проволоки, волочение стальной проволоки. Патентирование стальной проволоки включает медленное охлаждение указанной стальной проволоки с температуры аустенизации до первой предварительно заданной температуры, быстрое охлаждение проволоки до второй предварительно заданной температуры, выдержку проволоки при указанной второй предварительно заданной температуре. Во время медленного охлаждения стальная проволока по существу сохраняет свою аустенитную структуру неизмененной, при последующем быстром охлаждении стальная проволока находится в лучших условиях, чтобы началось фазовое изменение, в котором аустенитная структура превращается в перлитную структуру. 3 н. и 13 з.п. ф-лы, 6 ил.
Изобретение относится к области термомеханической обработки сортового горячекатаного проката из конструкционных сталей перлитного класса и может быть использовано при изготовлении из него высокопрочных крепежных изделий. Для обеспечения необходимых прочностных, пластических и прочностных характеристик калиброванного проката осуществляют отжиг проката при температуре 770-790°С с выдержкой 3-4 ч, охлаждение с печью до 660-680°С с выдержкой в печи 3-4 ч, охлаждение с печью до температуры 160-170°С с выдержкой 2-3 ч, охлаждение до температуры окружающей среды, первичное волочение со степенью обжатия 17-19%, изотермическую обработку патентированием в ванне со свинцом при температуре 360-370°С, охлаждение на воздухе, вторичное волочение со степенью обжатия 5-6%. 1 табл., 1 пр.
Изобретение относится к области металлургии, в частности к производству круглого сортового проката диаметром от 6 до 13 мм. Для повышения пластических свойств проката, позволяющих гарантировать степень деформируемости проката на уровне 66% при изготовлении крепежных изделий холодной высадкой выплавляют сталь, содержащую, мас.%: углерод 0,07-0,11, кремний 0,15-0,40, марганец 0,30-0,55, алюминий 0,02-0,05, сера 0,005-0,025, фосфор 0,005-0,025, хром 0,02-0,15, никель 0,02-0,30, медь 0,03-0,18, титан 0,002-0,03, бор 0,001-0,003, молибден 0,002-0,03, азот 0,005-0,010, олово 0,001-0,015, свинец 0,001-0,010, цинк 0,001-0,018, кальций 0,001-0,003, железо и примеси – остальное, осуществляют непрерывную разливку стали с получением заготовки сечением 150×150 мм с уровнем ликвации в макроструктуре не более 2 балла, аустенизацию заготовки, прокатку на промежуточное квадратное сечение размера 106×106 мм, сплошную зачистку и шлифовку, нагрев, прокатку заготовки на круглый профиль и охлаждение в две стадии, причем сначала ускоренное охлаждение водой высокого давления до 850-930°C, а затем воздушное охлаждение со скоростью движения круглого проката 0,4-1,0 м/с и с возможностью регулирования интенсивности охлаждения в зависимости от диаметра сортового проката и температуры окружающей среды. Круглый прокат имеет относительное удлинение не менее 34% и относительное сужение не менее 72%.
Наверх