Способ производства холоднокатаной полосы

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления полосы с прочностными свойствами в 1,2-1,4 раза выше, чем у прототипа. Возможность получения фрагментированной структуры металла с высокой плотностью дислокаций обеспечивается за счет того, что холодную прокатку полосы осуществляют в валках с шероховатостью 6,0-12,0 мкм Ra, окружную скорость которых задают из условия: V1≥2V2, где V1 - окружная скорость первого валка, м/с; V2 - окружная скорость второго валка, м/с. При этом прокатку ведут с единичной степенью деформации не менее 50% до суммарной степени деформации 75-95%. 1 ил., 1 табл.

 

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении высокопрочной полосы из различных металлов и сплавов.

Известен способ прокатки тонких лент, включающий деформацию исходной заготовки путем протягивания ее между двух валков, один из которых является приводным, а второй - неприводным (см. патент РФ №2061563, B21B 13/00).

Недостатками известного способа являются низкие прочностные свойства изготавливаемой ленты, обусловленные невысокими единичными степенями деформации, реализуемыми при использовании неприводного валка.

Наиболее близким аналогом к заявляемому способу является способ прокатки листов при рассогласовании окружных скоростей валков до 6,0-12,0%. Способ позволяет снизить силу прокатки и применяется при производстве толстых и тонких листов, но особенно эффективен при холодной прокатке тонких листов на низких очагах деформации (см. Рудской А.И., Лунев В.А. Теория и технология прокатного производства: Учеб. пособие. СПб.: Наука, 2005. - с.87-91).

Недостатком данного способа является изготовление листов с низкими прочностными свойствами за счет того, что при холодной прокатке с рассогласованием окружных скоростей валков до 6,0-12,0% деформация металла по сечению листа является неравномерной, а структура, соответственно, крупнозернистой и неоднородной.

Техническая задача, решаемая изобретением, заключается в повышении прочностных свойств изготавливаемой полосы путем создания по всему ее сечению интенсивной сдвиговой деформации, обеспечивающей получение фрагментированной структуры металла с высокой плотностью дислокации.

Поставленная задача решается тем, что в способе производства холоднокатаной полосы, включающем холодную прокатку полосы в валках при рассогласовании их окружных скоростей, согласно изобретению холодную прокатку полосы осуществляют в валках с шероховатостью 6,0-12,0 мкм Ra, окружную скорость которых задают из условия:

V1≥2V2,

где V1 - окружная скорость первого валка, м/с;

V2 - окружная скорость второго валка, м/с,

при этом прокатку полосы ведут с единичной степенью деформации не менее 50% до суммарной степени деформации 75-95%.

Известно осуществление холодной прокатки с рассогласованием скоростей валков для снижения энергосиловых параметров процесса и повышения точности проката (см. авт. св. СССР №225829 B21B 1/24; Бровман М.Я., Выдрин В.Н., Римен В.Х. Энергосиловые параметры при прокатке с различными окружными скоростями валков // Изв. вузов. Черная металлургия. - 1976. - №11. - С.76-80).

В заявляемом способе указанный признак так же, как и в известном способе, предназначен для повышения точности проката при одновременном снижении энергосиловых параметров процесса.

Однако наравне с известным техническим свойством заявляемый отличительный признак, характеризующийся заявляемыми режимами, при холодной прокатке создает новый технический результат, заключающийся в создании равномерной сдвиговой деформации по всему сечению полосы за счет противоположно направленных сил контактного трения, действующих на полосу одновременно со стороны верхнего и нижнего валков. Это позволяет получить фрагментированную структуру металла с высокой плотностью дислокации, а следовательно, повысить прочностные свойства изготавливаемой полосы.

Известна холодная прокатка полосы до суммарной степени деформации 75-95% для повышения прочностных свойств полосы (см. Целиков А.И. Теория прокатки. Справочник. - М.: «Металлургия», 1982. - с.128-131).

Как в известном, так и в заявляемом способе указанный режим прокатки предназначен для повышения прочностных свойств изготавливаемой полосы.

Однако наравне с известным техническим свойством заявляемый отличительный признак при холодной прокатке создает новый технический результат, заключающийся в получении фрагментированной структуры металла с высокой плотностью дислокации за счет создания равномерной сдвиговой деформации по всему сечению полосы, что способствует повышению прочностных свойств изготавливаемой полосы.

На основании вышесказанного можно сделать вывод, что заявляемый способ изготовления полосы не следует явным образом из известного уровня техники и, следовательно, соответствует условию патентоспособности «изобретательский уровень».

Сущность изобретения поясняется чертежом, где изображена схема очага деформации при холодной прокатке с рассогласованием окружных скоростей валков. На чертеже позициями обозначены: 1 - полоса; 2 - нижний валок; 3 - верхний валок; 4 - силы трения, действующие на полосу со стороны валка 2; 5 - силы трения, действующие на полосу со стороны валка 3; 6 - слои металла до прокатки; 7 - слои металла после прокатки.

Способ холодной прокатки полосы осуществляют следующим образом.

Холодную прокатку полосы 1 осуществляют в приводных валках 2 и 3, имеющих одинаковую шероховатость 6,0-12,0 мкм Ra. При этом прокатку ведут за один или несколько проходов с единичной степенью деформации не менее 50% до достижения суммарной степени деформации 75-95%. Окружную скорость валков 2 и 3 задают из условия: V1≥2V2, где V1 - окружная скорость валка 2; V2 - окружная скорость валка 3.

При холодной прокатке с заявляемыми режимами силы трения 4, действующие со стороны валка 2, вращающегося с большей скоростью (V1), на всей дуге контакта длиной АВ направлены по ходу движения полосы 1, а силы трения 5, действующие со стороны валка 3, вращающегося с меньшей скоростью (V2), на всей дуге контакта длиной CD направлены против движения полосы 1, т.е. контактные силы трения 4 и 5 в очаге деформации являются противоположно направленными.

Противоположно направленные силы 4 и 5 контактного трения позволяют создать интенсивную сдвиговую деформацию равномерно по сечению полосы 1. Интенсивность сдвиговой деформации при этом характеризуется величиной угла наклона γ слоев металла 6 и 7, соответственно, до и после прокатки полосы. При холодной прокатке полосы по заявляемому способу угол наклона слоев металла составит γ≥45°. Это обеспечивает создание в полосе фрагментированной структуры металла с высокой плотностью дислокации, что значительно повысит прочностные свойства изготавливаемой полосы.

Для создания интенсивной сдвиговой деформации по сечению полосы 1, обеспечивающей получение структуры металла с высокими прочностными свойствами, холодную прокатку с заявляемым рассогласованием окружных скоростей валков 2 и 3 необходимо осуществлять в условиях высокого контактного трения. Для создания указанного технического результата холодную прокатку в заявляемом способе осуществляют в валках с шероховатостью 6,0-12,0 мкм Ra без использования технологической смазки, снижающей трение.

Осуществлять холодную прокатку в валках с шероховатостью менее 6,0 мкм Ra, нецелесообразно, так как возникающие при этом противоположно направленные силы контактного трения будут недостаточны для создания равномерной сдвиговой деформации по сечению полосы, в результате чего структура металла будет неравномерной и крупнозернистой, прочностные свойства полосы, соответственно, низкими.

При холодной прокатке полосы в валках с шероховатостью более 12,0 мкм Ra противоположно направленные силы контактного трения будут слишком большими. Это приведет к образованию поверхностных дефектов и снижению ресурса пластичности деформируемой полосы, а также к значительному росту энергосиловых параметров процесса прокатки.

Для создания равномерной сдвиговой деформации по сечению полосы холодную прокатку с заявляемым рассогласованием окружных скоростей (V1 и V2) валков 2 и 3, соответственно, необходимо осуществлять с единичной степенью деформации не менее 50%. Это обеспечивает получение фрагментированной структуры, равномерно распределенной по всему сечению изготавливаемой полосы.

Осуществлять холодную прокатку с единичной степенью деформации менее 50% нецелесообразно, так как структура металла по сечению полосы будет неравномерной, в результате чего прочностные свойства полосы будут низкими.

Холодная прокатка до заявляемой суммарной степени деформации 75-95% обеспечит получение высоких прочностных свойств полосы за счет создания фрагментированной структуры металла с высокой плотностью дислокации по всему сечению.

Осуществлять холодную прокатку до суммарной степени деформации менее 75% нецелесообразно, так как получаемый при этом размер фрагментов зерна и плотность дислокации будут недостаточными для получения высоких прочностных свойств полосы.

Осуществлять прокатку полосы с суммарной степенью деформации более 95% также нецелесообразно, так как это приведет к образованию поверхностных и внутренних трещин в металле, а, следовательно, к потере пластических и прочностных свойств и дальнейшему разрушению металла полосы.

Осуществлять холодную прокатку с рассогласованием скоростей, заданным из условия V1<2V2, нецелесообразно, так как в этом случае противоположно направленные силы контактного трения существенно снижаются, в результате уменьшается интенсивность сдвиговой деформации и увеличивается ее неравномерность по сечению полосы. Это приводит к значительному снижению прочностных свойств полосы.

Для обоснования преимуществ заявляемого способа производства холоднокатаной полосы по сравнению с прототипом были проведены 10 экспериментов, из них: эксперименты №1-3 с заявляемыми режимами, эксперименты №4-9 с режимами, выходящими за заявляемые пределы, и эксперимент №10 - по прототипу.

Исходную заготовку в виде полосы толщиной 3,0 мм и шириной 40 мм из стали 20 прокатывали в валках радиусом 100 мм. Холодную прокатку осуществляли с рассогласованием окружных скоростей валков без использования технологической смазки. Режимы обработки и результаты испытаний приведены в таблице.

Результаты испытаний показали, что полоса, полученная по заявляемому способу (эксперимент №1-3), при равных пластических свойствах (относительное удлинение металла полосы составило 5,5-6,0%) имеет прочностные свойства (предел текучести и временное сопротивление разрыву) в 1,2-1,4 раза выше, чем у прототипа (эксперимент №10).

Производить полосу по режимам, выходящим за заявленные пределы, нецелесообразно, так как прочностные свойства полосы остаются низкими (эксперимент №4-7), или сталь теряет ресурс пластичности и в ней образуются трещины и разрывы (эксперимент №8-9).

На основании вышеизложенного можно сделать вывод, что заявляемый способ производства холоднокатаной полосы работоспособен и устраняет недостатки, имеющие место в прототипе, что подтверждается примером осуществления способа. Полоса, изготовленная по заявляемому способу, обладает высокими прочностными свойствами.

Таблица
Способ производства холоднокатаной полосы
Номер опыта Шероховатость рабочих валков Ra, мкм Единичные степени деформации ≥50% Суммарная степень деформации, % Окружная скорость первого валка V1, м/с Окружная скорость второго валка V2, м/с Предел текучести, МПа Временное сопротивление разрыву, МПа Относительное удлинение, %
заявляемый 1 6,0 50 75 0,60 0,30 830 920 6,0
2 8,0 55 80 0,60 0,30 869 954 6,0
3 12,0 60 95 0,40 0,20 882 985 5,5
4 6,0 34 75 0,60 0,30 705 780 6,0
5 12,0 29 68 0,40 0,20 710 790 6,0
6 8,0 50 75 0,60 0,50 695 765 6,5
7 0,5 55 80 0,60 0,30 670 740 5,0
8 6,0 65 97 0,60 0,30 На поверхности полосы образовывались трещины и разрывы
9 13,0 50 75 0,60 0,30
прототип 10 0,5 34 75 0,60 0,54 680 710 6,0

Способ производства холоднокатаной полосы, включающий холодную прокатку полосы в валках при рассогласовании их окружных скоростей, отличающийся тем, что холодную прокатку осуществляют в валках с шероховатостью 6,0-12,0 мкм Ra, окружную скорость которых задают из условия:
V1≥2V2,
где: V1 - окружная скорость первого валка, м/с;
V2 - окружная скорость второго валка, м/с,
при этом прокатку полосы ведут до суммарной степени деформации 75-95% с единичной степенью деформации не менее 50%.



 

Похожие патенты:

Изобретение относится к прокатному производству и может быть использовано при получении холоднокатаных листов толщиной 0,4-1,8 мм из низкоуглеродистой стали марки 08ЮТР для получения изделий методом глубокой вытяжки.

Изобретение относится к прокатному производству и может быть использовано при получении бескремнистой листовой изотропной электротехнической стали толщиной 0,2-1,8 мм.
Изобретение относится к прокатному производству и может быть использовано на непрерывных станах для холодной прокатки полос и лент из высокопрочных сталей и сплавов.

Изобретение относится к прокатному производству и может быть использовано на многоклетевых непрерывных станах при холодной прокатке полосы из стали или сплавов цветных металлов из горячекатаного подката.
Изобретение относится к области черной металлургии, конкретнее к технологии прокатки и термической обработки металлов, и может быть использовано при производстве высокопрочной холоднокатаной полосы из углеродистой стали в нагартованном состоянии толщиной 0,8-1,0 мм и массой 17-26 т для получения упаковочной ленты.

Изобретение предназначено для повышения производительности при производстве холоднокатаной широкополосной стали. Способ включает непрерывную прокатку на совмещенном агрегате непрерывного травления и стане непрерывной холодной прокатки при заданных режимах травления и прокатки.

Изобретение относится к области черной металлургии, к прокатному производству, и может быть использовано при получении упаковочной ленты, используемой для автоматизированной обвязки грузов.
Изобретение предназначено для снижения разнотолщинности тончайших полос и лент (толщиной не более 0,2 мм), получаемых холодной прокаткой из низкоуглеродистых сталей на непрерывных многовалковых станах.
Изобретение относится к прокатному производству и может быть использовано при прокатке холоднокатаных полос из низкоуглеродистой стали на непрерывных станах с последующим отжигом в садочных печах.
Изобретение предназначено для снижения энергозатрат прокатного производства и может быть использовано при дрессировке стальных холоднокатаных отожженных полос в клети с по меньшей мере одним приводным валком.

Изобретение относится к области прокатного производства металлической полосы. Снижение продольной и поперечной разнотолщинности полосы обеспечивается за счет того, что в способе обработки металлической полосы пластической деформацией, включающем прокатку с охватом передним концом полосы ведущего валка и охватом задним концом полосы ведомого валка с углом охвата в пределах π≤φ1 и φ0 < 2π радиан, соответственно, с рассогласованием окружных скоростей валков и обеспечением снижения натяжения концов полосы, снижают силы переднего и заднего натяжений на свободных концах полосы путем подачи смазочно-охлаждающей жидкости в зазор между ведущим и ведомым валками и полосой на входе полосы в валки. В устройстве, содержащем станину рабочей клети, ведущий и ведомый валки, прижимные ролики, расположенные центрально-симметрично относительно очага деформации, закрепленные на станине рабочей клети верхнюю и нижнюю криволинейные проводки, на входе в верхнюю и нижнюю проводки установлены форсунки для подачи смазочно-охлаждающей жидкости в зазор между ведущим и ведомым валками и полосой. 2 н.п. ф-лы, 1 ил.

Изобретение относится к технологии производства холоднокатаного проката, предназначенного для изготовления упаковочной ленты. Повышение механических свойств, их стабильности и однородности по длине полосы обеспечивается за счет того, что способ включает горячую прокатку полосы из стали, имеющей регламентированный состав, ее смотку, травление, холодную прокатку, термообработку, согласно которому температуру раската перед чистовой группой клетей поддерживают в диапазоне 1050-1200°С, горячую прокатку ведут с суммарным относительным обжатием не менее 90%, температуру конца прокатки и смотки поддерживают в диапазонах 810-880°С и 480-570°С соответственно, холодную прокатку ведут с суммарным относительным обжатием не менее 62%. Стальная полоса имеет феррито-цементитную структуру с нерекристаллизованным ферритным зерном и отношение σт/σв не менее 0,70. 3 з.п. ф-лы, 2 табл.

Изобретение относится к технологии дрессировки отожженных стальных полос на одноклетевом дрессировочном стане с использованием моталки и разматывателя. Способ включает прокатку с относительными обжатиями 0,5-2% с приложением заднего и переднего натяжений. Снижение энергозатрат обеспечивается за счет того, что обжатие производят приводными рабочими валками, заднее натяжение устанавливают и поддерживают постоянным в диапазоне 0,05-0,1, а переднее - в диапазоне 0,15-0,21 от условного предела текучести отожженной полосы. 2 ил., 1 табл.

Изобретение относится к области прокатки, в частности холодной прокатки металлической полосы (2). Прокатный стан содержит по меньшей мере одну клеть (1) холодной прокатки, расположенный перед клетью (1) холодной прокатки разматыватель (3), при этом между разматывателем (3) и клетью (1) холодной прокатки промежуточно расположен блок (10), который состоит по меньшей мере из трех приводимых во вращение вокруг соответствующей оси (6А, 7А, 8А) вращения роликов (6, 7, 8), при этом предусмотрена возможность перестановки каждого из этих роликов (6, 7, 8) по отдельности или совместно в направлении соответствующей оси (6А, 7А, 8А) вращения или в направлении поперек оси (6А, 7А, 8А) вращения с помощью приводного и регулировочного устройства (11). Способ включает прокатку с перемещением в процессе прокатки роликов (6, 7, 8) с помощью приводного и регулировочного устройства (11). 2 н. и 20 з.п. ф-лы, 4 ил.

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления высокопрочных тонких полос и листов из алюминиевых сплавов. Способ включает прокатку тонкой полосы из алюминиевых сплавов в двух валках с рассогласованием их окружных скоростей по меньшей мере в два раза и с единичной степенью деформации не менее 50% до суммарной степени деформации 75-95%. Одновременное повышение прочностных и пластических свойств изделий в условиях интенсификации процесса фрагментирования зерен металла путем активизации процесса механического двойникования и повышения плотности дислокаций под действием больших сдвиговых деформаций, а также подавления процессов динамического возврата и рекристаллизации в условиях криогенных температур обеспечивается за счет того, что перед прокаткой тонкую полосу охлаждают до -153÷-196°С, а сразу после прокатки полосу нагревают до температуры 20-25°С со скоростью 100-400°С/с. 2 табл.

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления металлических профилей с повышенными прочностными свойствами. Продольную прокатку металла производят в клети с двумя трехвалковыми калибрами, образующими между собой максимально сближенные очаги деформации. Повышение прочностных свойств изготавливаемых металлических профилей за счет создания в металле фрагментированной структуры с высокой плотностью дислокаций обеспечивается за счет того, что прокатку осуществляют в валках с шероховатостью 3,0-9,0 мкм Ra и логарифмическим коэффициентом вытяжки в каждом калибре не менее 0,4, при этом окружные скорости валков регламентированы математической зависимостью. Осуществление заявляемого способа позволяет создать сложную схему напряженно-деформированного состояния, включающую одновременно высокие деформации всестороннего сжатия и сдвига. 6 ил., 2 табл.

Изобретение относится к области металлургии. Для уменьшении шероховатости поверхности полосы, что приводит к уменьшению удельных магнитных потерь на 10%, способ производства полосы из электротехнической стали включает выплавку и разливку стали, горячую прокатку, две холодные прокатки полосы в рабочих валках клети прокатного стана, обезуглероживающий отжиг, нанесение термостойкого покрытия, высокотемпературный отжиг и выпрямляющий отжиг полосы с нанесением электроизоляционного покрытия, при этом после окончательной холодной прокатки осуществляют обжатие полосы со степенью не более 10% для уменьшения шероховатости ее поверхности путем протяжки холоднокатаной полосы через рабочие валки стана при отключенном приводе. Предложенный способ очень технологичен, так как обжатие можно провести путем протяжки полосы на стане для холодной прокатки при отключенном приводе рабочих валков с помощью моталок, без привлечения дополнительного оборудования. Операция обжатия обеспечивает весьма гладкую поверхность и необходимую планшетность полосы электротехнической стали. 1 табл.

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления высокопрочных тонких листов и полос из алюминиевых сплавов. Способ включает холодную прокатку полосы в двух валках при рассогласовании их окружных скоростей до суммарной степени деформации 75-95% с минимальной единичной степенью деформации 50%. Повышение прочностных свойств изделий за счет создания фрагментированной структуры металла с высокой плотностью дислокаций в условиях отсутствия термически активационных процессов разупрочнения при деформационном разогреве металла в очаге деформации обеспечивается путем проведения прокатки с регламентированными окружными скоростями валков, при этом максимальную единичную степень деформации при прокатке полосы задают не более 75%, а после каждого прохода полосу охлаждают до температуры 20-25°С. 2 табл.

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления высокопрочных тонких листов из металлических материалов, в том числе из алюминиевых сплавов. Повышение прочностных свойств металла одновременно как по длине, так и по ширине листа за счет создания в нем пространственно-равномерной фрагментированной структуры металла с высокой плотностью дислокаций обеспечивается путем осуществления прокатки тонкого листа в двух валках с рассогласованием их окружных скоростей по меньшей мере в два раза и с единичной степенью деформации не менее 50% до суммарной степени деформации 75-95%, при этом прокатку осуществляют за два или четыре прохода, причем в каждом проходе, начиная с первого, задают одинаковое рассогласование окружных скоростей валков и одинаковую единичную степень деформации металла, а между проходами осуществляют поворот листа в плоскости прокатки на угол 90°. 2 табл.

Изобретение относится к области металлургии. Для повышения коррозионной стойкости упаковочной ленты способ включает получение сляба из стали, содержащей, мас.%: C 0,003 или менее, N 0,004 или менее, Mn от 0,05 до 0,5, P 0,02 или менее, Si 0,02 или менее, S 0,03 или менее, Al 0,1 или менее, железо и неизбежные примеси - остальное, горячую прокатку сляба при конечной температуре выше или равной температуре фазового перехода Ar3, однократную или двукратную холодную прокатку ленты, причем при двукратной холодной прокатке проводят рекристаллизационный отжиг между стадиями холодной прокатки, электроосаждение слоя олова по меньшей мере на одну сторону ленты, причем масса покрытия слоя олова или слоев на одной или обеих сторонах ленты составляет не более 1000 мг/м2; отжиг ленты с покрытием путем ее нагрева со скоростью, превышающей 300°C/с, до температуры Та от 513 до 645°C с выдержкой при Та в течение времени ta с обеспечением преобразования слоя олова в слой сплава железо-олово, который содержит по меньшей мере 90 мас.%, предпочтительно 95 мас.% FeSn с 50 ат.% железа и 50 ат.% олова, с получением восстановленной микроструктуры стали при отсутствии рекристаллизации стальной ленты, подвергнутой холодной прокатке, и быстрое охлаждение ленты с покрытием со скоростью по меньшей мере 100°C/с. 2 н. и 8 з.п. ф-лы, 3 табл.
Наверх