Применение трехкомпонентных композиций

Настоящее изобретение относится к применению трехкомпонентной композиции, в содержащей 2,3,3,3-тетрафторпропен, 1,1,12-тетрафторэтан (ГФУ-134а) и дифторметан (ГФУ-32), в качестве жидкого теплоносителя в компрессионных холодильных установках, содержащих теплообменники, работающие в противоточном режиме или в поперечном режиме с уклоном в противоточный режим. Изобретение также относится к способу теплопередачи, в котором в качестве хладагента используют указанную трехкомпонентную композицию. Изобретение демонстрирует неожиданные преимущества относительно объемной производительности (% САР) и холодильного коэффициента (%СОР), что позволяет эксплуатировать их в устройствах с меньшим диаметром труб, и следовательно с большей эффективностью функционирования оборудования. 2н. и 7 з.п. ф-лы, 3 табл.

 

Настоящее изобретение относится к применению трехкомпонентных композиций, содержащих в качестве жидкого теплоносителя 2,3,3,3-тетрафторпропен, в частности для средней объемной холодопроизводительности за счет компрессора.

Проблемы, возникшие за счет веществ, уничтожающих озоновый слой (ОРП: озоноразрушающий потенциал), были рассмотрены в Монреале, где был подписан протокол, предписывающий снижение производства и применения хлорфторуглеродов (ХФУ). В данный протокол вносились поправки, требующие прекращения применения ХФУ и расширения нормативного регулирования других продуктов, включая гидрохлорфторуглероды (ГХФУ).

Холодильная промышленность и отрасль по производству оборудования для кондиционирования воздуха инвестировали огромные средства с целью замены данных хладагентов, и в результате на рынок были выведены гидрофторуглероды (ГФУ). (Гидро)хлорфторуглероды, используемые в качестве расширяющих добавок или растворителей, также были заменены на ГФУ.

В автомобильной промышленности системы для кондиционирования воздуха автомобилей, продаваемые в различных странах, были заменены с хлорфторуглеродного хладагента (ХФУ-12) на хладагент гидрофторуглерод (1,1,1,2-тетрафторэтан: ГФУ-134а), который является менее опасным для озонового слоя. Однако, с точки зрения выдвинутых требований в рамках Киотского протокола, ГФУ-134а (ПГП=1300) рассматривается, как обладающий высоким потенциалом потепления. Вклад в парниковый эффект жидкости определяется критерием ПГП (потенциал глобального потепления), который указывает потенциал потепления, принимая за 1 значение для диоксида углерода.

Так как диоксид углерода является нетоксичным и невоспламеняемым и имеет очень низкое значение ПГП, было предложено его использование в качестве хладагента для систем кондиционирования воздуха вместо ГФУ-134а. Однако использование диоксида углерода имеет несколько недостатков, в частности связанных с очень высоким давлением, при которых он применяется в качестве хладагента в существующих устройствах и технологиях.

Документ WO 2004/037913 раскрывает применение композиций, содержащих в качестве жидкого теплоносителя, по крайней мере, один фторалкен, имеющий три или четыре углеродных атома, в частности, пентафторпропен и тетрафторпропен, предпочтительно имеющие ПГП не более 150.

Документ WO 2005/105947 сообщает о добавке к тетрафторпропену, предпочтительно 1,3,3,3-тетрафторпропену, дополнительного газообразующего средства, такого как дифторметан, пентафторэтан, тетрафторэтан, дифторэтан, гептафторпропан, гексафторпропан, пентафторпропан, пентафторбутан, вода и диоксид углерода.

Документ WO 2006/094303 раскрывает двухкомпонентные композиции 2,3,3,3-тетрафторпропена (ГФО-1234yf) с дифторметаном (ГФУ-32), и 2,3,3,3-тетрафторпропена с 1,1,1,2-тетрафторэтаном (ГФУ-134а).

В данном документе были раскрыты четырехкомпонентные смеси, содержащие 1,1,1,2,3-пентафторпропен (ГФО-1225ye) в комбинации с дифторметаном, 2,3,3,3-тетрафторпропеном и ГФУ-134а. Однако 1,1,1,2,3-пентафторпропен является токсичным.

Также, в документе WO 2006/094303 были раскрыты четырехкомпонентные смеси, содержащие 2,3,3,3-тетрафторпропен в комбинации с иодтрифторметаном (CF3I), ГФУ-32 и ГФУ-134а. Однако CF3I имеет не нулевое значение ОРП и обладает проблемами стабильности и коррозии.

Теплообменник является устройством для переноса тепловой энергии от одной жидкости к другой без их смешения. Тепловой поток проходит через теплообменную поверхность, которая разделяет жидкости. Обычно данный способ используется для охлаждения или нагрева жидкости или газа, которые невозможно нагреть или охладить напрямую.

В компрессионных установках теплообмен между хладагентом и источниками тепла происходит за счет теплоносителей. Данные теплоносители находятся в газовой фазе (воздух в системах кондиционирования воздуха и охлаждения при непосредственном испарении), в жидком состоянии (вода в домашних тепловых насосах, вода с добавление гликолей) или в двухфазном состоянии.

Существуют различные режимы переноса:

- две жидкости расположены параллельно и двигаются в одном и том же направлении: прямоточный режим (антиметодический);

- две жидкости расположены параллельно, но двигаются в противоположных направлениях: противоточный режим (методический);

- две жидкости расположены перпендикулярно: режим поперечного обтекания. Поперечное обтекание может быть осуществлено с уклоном в прямоточный режим или противоточный режим

- одна из двух жидкостей делает U-образный поворот в более широкой трубе, по которой проходит вторая жидкость. Данная конфигурация сравнима с прямоточным теплообменником на половине длины и на другой половине с противоточным теплообменником: точечный режим.

Сейчас заявитель обнаружил, что трехкомпонентные композиции 2,3,3,3-тетрафторпропена, 1,1,1,2-тетрафторэтана и дифторметана являются особенно предпочтительными в качестве жидких теплоносителей в компрессионных установках теплообмена с теплообменниками, работающими в противоточном режиме или в поперечном режиме с уклоном в противоточный режим.

Таким образом, настоящие композиции могут быть использованы в качестве жидкого теплоносителя, возможно, в реверсивных тепловых насосах, при кондиционировании воздуха, при промышленном кондиционировании воздуха (помещения для хранения документации или серверные помещения), в портативных домашних системах кондиционирования воздуха, для бытового охлаждения или замораживания, для низкотемпературного и среднетемпературного охлаждения и охлаждения авторефрижераторов, используя компрессионные установки с теплообменниками, работающими в противоточном режиме или в поперечном режиме с уклоном в противоточный режим.

Таким образом, первый объект настоящего изобретения относится к применению трехкомпонентных композиций 2,3,3,3-тетрафторпропена, 1,1,1,2-тетрафторэтана и дифторметана в качестве жидкого теплоносителя в компрессионных установках теплообмена с теплообменниками, работающими в противоточном режиме или в поперечном режиме с уклоном в противоточный режим.

Предпочтительно, настоящие композиции в основном содержат от 2 до 80% вес. 2,3,3,3-тетрафторпропена, от 2 до 80% вес. ГФУ-134а и от 2 до 80% вес. ГФУ-32.

Преимущественно, композиции в основном содержат от 45 до 80% вес., предпочтительно от 65 до 80% , от 5 до 25% вес., предпочтительно от 5 до 10% вес. ГФУ-134а и от 15 до 30% вес. ГФУ-32. Композиции настоящего изобретения, используемые в качестве жидкого теплоносителя, не имеют вышеуказанных недостатков и имеют как нулевое значение ОРП, так и более низкие значения ПГП по сравнению с существующими жидкими теплоносителями, такими как R404A (трехкомпонентная смесь пентафторэтана (44% вес.), трифторэтана (52% вес.) и ГФУ-134а (4% вес.)) и R407C (трехкомпонентная смесь ГФУ-134а (52% вес.), пентафторэтана (25% вес.) и ГФУ-32 (23% вес.)).

Кроме этого композиции, в основном содержащие от 5 до 25% вес. 2,3,3,3-тетрафторпропена, от 60 до 80% вес. ГФУ-134а и от 15 до 25% вес. ГФУ-32, не являются легковоспламеняющимися.

Композиции, используемые в качестве жидкого теплоносителя в настоящем изобретении, имеют критическую температуру выше 90°С (критическая температура R404A является 72°С). Данные композиции могут быть использованы в тепловых насосах для обеспечения тепла при средних значениях температур между 40 и 65°С и также при более высоких значениях температур от 72 и 90°С (температурный диапазон, при котором R404A не может быть использован).

Композиции, используемые в качестве жидкого теплоносителя в настоящем изобретении, имеют меньшие значения давления насыщенного пара, чем значения давления насыщенного пара R404A. Объемные производительности, обеспечиваемые данными композициями, равны или больше объемной производительности R404A (между 90 и 131%, в зависимости от области применений). На основании данных свойств, данные композиции могут эксплуатироваться с меньшим диаметром труб и, следовательно, меньшим падением давления в паропроводе, тем самым увеличивая степени эффективности оборудования.

Композиции, используемые в качестве теплоносителя по настоящему изобретению, могут быть стабилизированы. Предпочтительно, стабилизатор присутствует в количестве не более 5% вес. по отношению к трехкомпонентной композиции.

В частности, в качестве стабилизаторов можно упомянуть нитрометан, аскорбиновую кислоту, терефталевую кислоту, азолы, такие как толилтриазол или бензотриазол, соединения фенола, такие как токоферол, гидрохинон, т-бутил-гидрохинон или 2,6-ди-трет-бутил-4-метилфенол, эпоксиды (алкильные, возможно фторированные или перфторированные, алкенильные или ароматические), такие как н-бутилглицидиловый эфир, глицидиловый эфир гександиола, аллилглицидиловый эфир или бутилфенилглицидиловый эфир, фосфиты, фосфаты, фосфонаты, тиолы и лактоны.

Второй объект настоящего изобретения относится к способу теплопередачи, в котором трехкомпонентные композиции 2,3,3,3-тетрафторпропена, 1,1,1,2-тетрафторэтана и дифторметана, как указано выше, применяются в качестве хладагентов в компрессионных установках теплообмена с теплообменниками, работающими в противоточном режиме или в поперечном режиме с уклоном в противоточный режим.

Способ по второму объекту может быть проведен в присутствии смазывающих веществ, таких как минеральное масло, алкилбензол, полиалкилированный гликоль и поливиниловый эфир.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Средства вычисления

Для расчета плотностей, энтальпий, энтропий и данных равновесия жидкость-пар для смесей используется уравнение Соаве-Редлиха-Квонга. Применение данного уравнения требует знания свойств чистых компонентов, используемых в рассматриваемой смеси и также коэффициенты взаимодействия для каждой двухкомпонентной смеси.

Данными, необходимыми для каждого чистого компонента, являются:

точка кипения, значение критической температуры и критического давления, кривая давления, как функция температуры, от точки кипения до критической точки, и плотности жидкости и насыщенного пара, как функция температуры.

ГФУ-32, ГФУ-134а:

Данные для данных продуктов опубликованы в ASHRAE Handbook 2005 глава 20 и также доступны в Refrop (программное обеспечение, разработанное NIST для расчета свойств хладагентов).

ГФО-1234yf:

Данные по кривой температура-давление для ГФО-1234yf измеряются с помощью статического метода. Значения критической температуры и критического давления измеряются с использованием калориметра С80, поставляемого Setaram. Значения плотности при насыщении, как функции температуры, измеряются с использованием технологии денситометра с вибрирующей трубкой, разработанной Парижской лабораторией Ecole des Mines.

Коэффициент взаимодействия двухкомпонентных смесей

В уравнении Соаве-Редлиха-Квонга используются коэффициенты бинарного взаимодействия, отражающие поведение продуктов в смесях. Коэффициенты рассчитываются как функция на основе экспериментальных данных равновесия жидкость-пар. Метод, используемый для измерений равновесия жидкость-пар, является аналитическим методом статической ячейки. Равновесная ячейка включает сапфировую трубку и снабжена двумя электромагнитными самплерами ROLSITM. Она погружена в баню криотермостата (HUBER HS50). Для ускорения достижения состояния равновесия используется магнитная мешалка, вращающаяся под действием поля при различных скоростях. Анализ образцов проводится за счет газовой хроматографии (HP5890 series II) с использованием газоанализатора (TCD).

ГФУ-32/ГФО-1234yf, ГФУ-134а/ГФО-1234yf:

Измерения равновесия жидкость-пар двухкомпонентной смеси ГФУ-32/ГФО-1234yf проводят по следующим изотермам: -10°С, 30°С и 70°С.

Измерения равновесия жидкость-пар двухкомпонентной смеси ГФУ-134а/ГФО-1234yf проводят по следующим изотермам: 20°С.

ГФУ-32/ГФО-134а:

Данные равновесия жидкость-пар двухкомпонентной смеси ГФО-134а/ГФУ-32 доступны от Refprop. Для расчета коэффициентов взаимодействия для данной двухкомпонентной смеси используются две изотермы (-20°С и 20°С) и одна изобара (30 бар).

Компрессионная установка

Рассматривается компрессионная установка, оборудованная противоточным конденсатором и испарителем с винтовым компрессором и расширительным вентилем. Установка работает при перегреве 15°С и переохлаждении 5°С. Считается, что минимальная разница температур между вторичной жидкостью и хладагентом составляет около 5°С. Изоэнтропийная эффективность компрессоров зависит от степени сжатия. Данная эффективность рассчитывается согласно следующему уравнению:

Для винтового компрессора, константы а, b, c, d и е уравнения для изоэнтропийной эффективности (1) рассчитываются по стандартным значениям, опубликованным в «Handbook of air conditioning and refrigeration, с. 11.52». % САР является процентным отношением объемной производительности, достигаемой каждым продуктом, относительно производительности R404A. Холодильный коэффициент (СОР) определяется как энергия, восполненная системой, относительно энергии, направленной или потребленной системой. Холодильный коэффициент цикла Лоренца (СОРЛоренц) является относительным холодильным коэффициентом. Он является функцией температуры и используется для сравнения СОР различных жидкостей. Холодильный коэффициент цикла Лоренца определяется, как приведено далее

(Температура Т указана в градусах по шкале Кельвина)

В случае кондиционирования воздуха и охлаждения СОР Лоренца является

В случае нагревания СОР Лоренца является

Для каждой композиции рассчитывается холодильный коэффициент цикла Лоренца как функция соответствующих температур. % СОР/СОРЛоренц является отношением СОР системы к СОР соответствующего цикла Лоренца.

Результаты режима нагрева

В режиме нагрева компрессионная установка работает между температурой входящего хладагента в испаритель -5°С и температурой входящего хладагента в конденсатор 50°С. Система обеспечивает тепло при 45°С.

Уровни производительности композиций настоящего изобретения при использовании в режиме нагрева приведены в таблице 1. Значения компонентов (ГФО-1234yf, ГФУ-32, ГФУ-134а) для каждой композиции приведены в виде весовых процентов.

Результаты режима охлаждения или кондиционирования воздуха

В режиме охлаждения компрессионная установка работает между температурой входящего хладагента в испаритель -5°С и температурой входящего хладагента в конденсатор 50°С. Система обеспечивает охлаждение при 0°С.

Уровни производительности композиций настоящего изобретения при использовании в режиме охлаждения приведены в таблице 2. Значения компонентов (ГФО-1234yf, ГФУ-32, ГФУ-134а) для каждой композиции приведены в виде весовых процентов.

Результаты режима низкотемпературного охлаждения

В режиме низкотемпературного охлаждения компрессионная установка работает между температурой входящего хладагента в испаритель -30°С и температурой входящего хладагента в конденсатор 40°С. Система обеспечивает охлаждение при -25°С.

Уровни производительности композиций настоящего изобретения при использовании в режиме низкотемпературного охлаждения приведены в таблице 3. Значения компонентов (ГФО-1234yf, ГФУ-32, ГФУ-134а) для каждой композиции приведены в виде весовых процентов.

1. Применение трехкомпонентной композиции 2,3,3,3-тетрафторпропена, 1,1,1,2-тетрафторэтана и дифторметана в качестве жидкого теплоносителя в компрессионных установках теплообмена с теплообменниками, работающими в противоточном режиме или в поперечном режиме с уклоном в противоточный режим.

2. Применение по п.1, отличающееся тем, что композиция в основном содержит от 2 до 80 вес.% 2,3,3,3-тетрафторпропена, от 2 до 80 вес.% ГФУ-134а и от 2 до 80 вес.% ГФУ-32.

3. Применение по п.1, отличающееся тем, что композиция в основном содержит от 5 до 25 вес.% 2,3,3,3-тетрафторпропена, от 60 до 80 вес.% ГФУ-134а и от 15 до 25 вес.% ГФУ-32.

4. Применение по п.1, отличающееся тем, что композиция в основном содержит от 45 до 80 вес.%, предпочтительно от 65 до 80вес.% 2,3,3,3-тетрафторпропена, от 5 до 25 вес.%, предпочтительно от 5 до 10 вес.% ГФУ-134а и от 15 до 30 вес.% ГФУ-32.

5. Применение по любому из пп.1-4, отличающееся тем, что композиция стабилизирована.

6. Способ теплопередачи, в котором трехкомпонентная композиция 2,3,3,3-тетрафторпропена, 1,1,1,2-тетрафторэтана и дифторметана применяется в качестве хладагента в компрессионных установках теплообмена с теплообменниками, работающими в противоточном режиме или в поперечном режиме с уклоном в противоточный режим.

7. Способ по п.6, отличающийся тем, что композиция в основном содержит от 5 до 25 вес.% 2,3,3,3-тетрафторпропена, от 60 до 80 вес.% ГФУ-134а и от 15 до 25 вес.% ГФУ-32.

8. Способ по п.6, отличающийся тем, что композиция в основном содержит от 45 до 80 вес.%, предпочтительно от 65 до 80 вес.% 2,3,3,3-тетрафторпропена, от 5 до 25 вес.%, предпочтительно от 5 до 10 вес.% ГФУ-134а и от 15 до 30 вес.% ГФУ-32.

9. Способ по любому одному из пп.6-8, отличающийся тем, что он проводится в присутствии смазывающего вещества.



 

Похожие патенты:

Изобретение относится к использованию двухкомпонентных композиций 2,3,3,3-тетрафторпропена и дифторметана в качестве теплопередающей текучей среды в низкотемпературных и среднетемпературных холодильных системах компрессорного типа с теплообменниками, работающими в противоточном режиме или в режиме разделенного потока с противоточной тенденцией, а также к способу теплопередачи.
Изобретение относится к теплопередающей композиции, содержащей E-1,3,3,3-тетрафторпроп-1-ен (R1234ze(E)), 3,3,3 трифторпропен (R-1243zf) и дифторметан (R32). Описывается использование указанной композиции в теплообменнике, в составе вспениваемой композиции, распыляемой композиции, для охлаждения или нагрева изделия, в способах очистки или экстракции материалов, снижения воздействия на окружающую среду продукта эксплуатации существующего хладагента.

Изобретение относится к вариантам композиции для передачи тепла. Один из вариантов композиции содержит (i) от около 20 до около 90% масс.
Настоящее изобретение относится к композиции рабочей жидкости для холодильной машины, при этом она содержит масло для холодильных машин, содержащее смесь по меньшей мере двух сложных эфиров, выбранных из группы сложных эфиров по меньшей мере одного многоатомного спирта, и жирной кислоты с содержанием C5-C9 жирной кислоты 50-100% мол., фторпропеновый хладагент и/или трифторйодметановый хладагент (варианты).
Изобретение относится к охлаждающей композиции для применения в холодильной установке, обеспеченной мерой противодействия для предотвращения тепловых потерь вследствие температурного скольжения в теплообменнике.

Изобретение относится к теплопередающим составам, используемым в системах охлаждения и теплопередающих устройствах. Теплопередающий состав содержит транс-1,3,3,3-тетрафторпропен (R-1234ze(E)), дифторметан (R-32) и 1,1-дифторэтан (R-152a) в качестве хладагентов.

Изобретение относится к холодильному маслу и к композиции рабочего вещества для холодильной установки. .

Изобретение относится к композициям хладагента, которые применяются в качестве теплопередающих композиций, используемых в холодильном оборудовании. .

Изобретение относится к индустрии охлаждения и кондиционирования воздуха. .

Изобретение может быть использовано в холодильных системах компрессорного типа. Способ теплопередачи с использованием трехкомпонентных композиций, содержащих 2,3,3,3-тетрафторпропен, 1,1-дифторэтан и дифторметан, в качестве теплопередающей текучей среды в холодильных системах, включающих теплообменники, работающие в противоточном режиме или в перекрестном режиме с противоточной тенденцией. Изобретение позволяет повысить КПД установок. 2 н. и 2 з.п. ф-лы, 2 табл.

Изобретение относится к составу хладагента, состоящему по существу из гидрофторуглеродного компонента, состоящего из: ГФУ 134а 15-45%, ГФУ 125 20-40%, ГФУ 32 25-45%, ГФУ 227еа 2-12%, ГФУ 152а 2-10% вместе с необязательным углеводородным компонентом; где количество приведено по весу и в сумме составляет 100%. Также изобретение относится к составу указанного хладагента, дополнительно содержащему смазочный материал компрессора, и к двум вариантам холодильного контура, использующим указанные хладагенты. Предлагаемая композиция является невоспламеняющейся, энергоэффективной и низкотоксичной. 4 н. и 17 з.п. ф-лы, 4 табл., 4 пр.

Изобретение относится к применению в качестве теплопередающей текучей среды в компрессорных системах с теплообменниками, работающими в противоточном режиме или в режиме разделенного потока с противоточной тенденцией, двухкомпонентной композиции 2,3,3,3-тетрафторпропена и дифторметана. Изобретение также относится к способу теплопередачи, в котором указанную композицию используют в качестве хладагента в компрессорных системах с теплообменниками в противоточном режиме или в перекрестном режиме с противоточной тенденцией. 2 н. и 9 з.п. ф-лы, 2 табл.

Изобретение относится к композициям, содержащим 2,3,3,3-тетрафторпропен, и их применению в качестве жидких теплоносителей, агентов расширения, растворителей и аэрозолей. Композиция содержит от 15 до 50 мас.% 2,3,3,3-тетрафторпропена, от 5 до 40 мас.% HFC-134a и от 45 до 60 мас.%, предпочтительно от 45 до 50 мас.%, HFC-32. Предложенная композиция имеет критическую температуру выше 87оС, температуру на выходе из компрессора, эквивалентную для R-410A, и может заменить R-410A без изменения технологии, используемой в компрессорах. 5 н. и 5 з.п. ф-лы, 2 табл.

Изобретение относится к композициям, содержащим 2,3,3,3-тетрафторпропен, и их применению в качестве жидких теплоносителей. Описывается применение трехкомпонентной композиции 2,3,3,3-тетрафторпропена в качестве теплопередающей текучей среды в холодильных системах вместо смеси R-410A. Указанная композиция содержит от 40 до 58 мас. % 2,3,3,3-тетрафторпропена, от 2 до 10 мас. % 1,1-дифторэтана и от 40 до 50 мас. % дифторметана. Описывается также способ теплопередачи с использованием указанной композиции. Изобретение обеспечивает нулевое значение истощения озонового слоя (ODP) и пониженное по сравнению с R-410A значение потенциала потепления (GWP) при повышенном коэффициенте полезного действия. 2 н. и 7 з.п. ф-лы, 3 табл.

Изобретение относится к композициям, способам и системам, используемым во многих областях, включая в частности системы теплопереноса, например системы охлаждения, пенообразователи, пенные композиции, пены и изделия, включающие пены или изготовленные из пены, способы получения пен, в том числе и однокомпонентных, аэрозоли, пропелленты, очищающие композиции. Композиции, используемые для указанных систем, содержат, по меньшей мере, около 5 мас.% 1-хлор-3,3,3-трифторпропена (HFCO-1233zd) и 1,3,3,3-тетрафторпропен (HFO-1234ze). Предложенные композиции имеют преимущества для широкого спектра применений и свободны от недостатков известных композиций. 16 н. и 70 з.п. ф-лы, 14 табл., 54 пр.

Изобретение относится к теплообменным композициям, используемым в системах охлаждения и теплопередающих устройствах. Теплообменная композиция включает, по меньшей мере, приблизительно 45 мас.% транс-1,3,3,3-тетрафторпропена (R-1234ze(E)), до приблизительно 10 мас.% двуокиси углерода (R-744) и от приблизительно 2 до приблизительно 50 мас.% 1,1,1,2-тетрафторэтана (R-134a). Техическим результатом является сочетание необходимых свойств хорошей холодопроизводительности, низкой горючести, низкого потенциала парникового эффекта WGP при улучшенной смешиваемости со смазочными материалами (любрикантами) по сравнению с существующими хладагентами, такими как R-134a и R-1234yf. 17 н. и 42 з.п. ф-лы, 1 ил., 30 табл.

Изобретение относится к композициям, содержащим 2,3,3,3-тетрафторпропен, применяемым в качестве теплопередающей жидкости. Описывается применение композиции, содержащей от 10 до 90 мас. % 2,3,3,3-тетрафторпропена, от 5 до 80 мас. % HFC-134a и от 5 до 10 мас. % HFC-32, в качестве теплопередающей текучей среды в компрессионных системах охлаждения с теплообменниками, функционирующими в противоточном режиме. Изобретение обеспечивает озонобезопасную теплопередающую композицию, имеющую нулевое значение истощения озонового слоя (ODP) и пониженное по сравнению с HFC-134a значение потенциала глобального потепления (GWP) при повышенном коэффициенте полезного действия. 5 з.п. ф-лы, 2 табл.

Изобретение относится к области теплопередающих композиций. Теплопередающая композиция содержит по существу из от около 60 до около 85 мас.% транс-1,3,3,3-тетрафторпропена (R-1234ze(E)) и от около 15 до около 40 мас.% фторэтана (R-161). Также изобретение касается теплопередающей композиции, включающей R-1234ze(E), R-161 и 1,1,1,2-тетрафторэтан (R-134a). Изобретение обеспечивает понижение токсичности, горючести и GWP теплопередающей композиции при КПД в пределах 10% от величин, достигаемых при использовании существующих холодильных агентов. 21 н. и 32 з.п. ф-лы, 11 табл., 1 ил.
Изобретение относится к теплопередающей композиции, включающей транс-1,3,3,3-тетрафторпропен (R-1234ze(E)), фторэтан (R-161) и третий компонент, выбранный из дифторметана (R-32) и/или 1,1-дифторэтана (R-152a). Указанная теплопередающая композиция используется в смазочной композиции, в композиции, включающей антипирен, в теплообменнике, при получении вспенивающего агента, и во вспенивающей композиции, в пене, при охлаждении или нагреве изделий, в способе экстракции веществ из биомассы, из водного раствора с растворителем, из дисперсной твердой матрицы, в способе очистки изделий. Указанная композиция используется также в механическом устройстве для получения энергии, в способе модификации теплообменника (холодильного аппарата), в способе получения квот на выбросы парниковых газов. Технический результат достигается за счет замены существующих холодильных агентов, таких как R-134a, R-152a, R-1234yf, R-22, R-410, R-407A, R-407B, R-507 и R-404a. 21 н. и 36 з.п. ф-лы,16 табл.
Наверх