Способ очистки тетрафторида урана

Изобретение относится к технологии получения соединений урана и, в частности к очистке тетрафторида урана от соединений углерода, фосфора, азота и других примесей. Способ очистки тетрафторида урана от примесей летучих фторидов заключается в термообработке тетрафторида урана при температуре от 350 до

520°С газообразным фторидом водорода, который получают терморазложением бифторида щелочного металла, в смеси с осушенным воздухом, взятых в соотношении от 1:7 до 1:2, после чего газовую смесь направляют в аппарат, в котором осуществляют термическое разложение бифторида щелочного металла. Изобретение обеспечивает повышение качества тетрафторида урана, снижение расхода фторида водорода. 1 з.п. ф-лы, 4 пр., 2 табл.

 

Изобретение относится к технологии получения соединений урана и, в частности, очистке тетрафторида урана от соединений углерода, фосфора, азота и других примесей.

При получении тетрафторида урана различными способами он может быть загрязнен выше допустимых норм какими-либо примесями, чаще всего углеродом, фосфором или азотом. Кроме того, для некоторых специальных целей необходим тетрафторид урана особой чистоты, в частности по содержанию углерода при переработке обедненного гексафторида урана.

Известен способ очистки тетрафторида урана на стадии обезвоживания кристаллогидрата тетрафторида урана (Гагаринский Ю.В., Хрипин Л.А. Тетрафторид урана. - М. : Атомиздат, 1966). Тетрафторид урана прокаливают при температуре не ниже 550°С в токе фторида водорода, при этом происходит очистка тетрафторида урана от некоторых примесей не более чем на 60%, но одновременно повышается содержание окисленного до оксидов урана (см. ниже). Основным недостатком этого способа является необходимость использования значительных концентраций фторида водорода (выше 50 об.%) в газовой смеси, высокой температуры, равной 550°С и выше. Кроме того, повышенная концентрация фторида водорода в этих условиях ведет к сильной коррозии аппаратуры.

Наиболее близкими по технологической сущности является способ очистки тетрафторида урана (патент №1047185, ФРГ), по которому тетрафторид урана обрабатывают газообразным фторидом водорода при давлении выше атмосферного и температуре 550°С. Недостатком этого способа является использование дорогостоящих газов-разбавителей (неон, гелий) или взрывоопасного водорода, значительная температура процесса, применение сложной аппаратуры и работа при повышенном давлении.

Нами установлено, что при прокалке тетрафторида урана в соответствии с условиями прототипа в атмосфере фторида водорода, полученного по ГОСТ 14023-78, практически не наблюдается очистка тетрафторида урана от фосфора; очистка от углерода составляет около 55%, а от азота до 96%. Кроме того, тетрафторид урана может загрязняться присутствующими в качестве примесей в технологическом фториде водороде, соединениями кремния и фосфора.

Фторид водорода, образующийся при терморазложении бифторида натрия при температуре 190-230°С (или бифторида лития при 80-100°С), не содержит примесей фосфора, углерода, азота и кремния, так как при этих температурах из бифторида натрия (соответственно, из бифторида лития) выделяется только фторид водорода. Для выжигания примесных летучих компонентов необходимы значительно более высокие температуры. Например, для выделения кремния в виде тетрафторида из фторида натрия требуется температура выше 550°С.

При прокаливании тетрафторида урана в атмосфере фторида водорода, полученного терморазложением бифторидов щелочных металлов, значительно увеличивается степень очистки тетрафторида урана от углерода, азота, фосфора и других примесей.

Технический результат предлагаемого изобретения заключается в повышении качества тетрафторида урана, снижении расхода фторирующего агента, уменьшении коррозионной активности последнего и исключении процессов улавливания и утилизации отработанного фторида водорода, а также в удешевлении процесса очистки.

Технический результат достигается путем контактирования при температуре от 350 до 520°С тетрафторида урана и фторида водорода, образующегося при терморазложении бифторидов щелочных металлов - лития, натрия, в смеси с осушенным воздухом, взятых в отношении HF: воздух от 1:7 до 1:2. Далее газовую смесь, содержащую фторид водорода, воздух и фториды примесей, направляют на очистку от примесей в аппарат, в котором осуществляют терморазложение бифторида лития или бифторида натрия.

Процесс очистки тетрафторида урана ведут при температуре от 350 до 520°С в зависимости от вида примеси. При температуре ниже 350°С существенно уменьшается очистка практически от всех примесей, за исключением азота (см. табл.1 и 2): с другой стороны, значительно увеличивается время обработки. При увеличении температуры свыше 520°С резко увеличивается массовая доля окисляемого кислородом воздуха урана.

Принятый интервал соотношения в газовой смеси воздуха и фторида водорода обуславливается тем, что при отношении менее 7:1 существенно увеличивается роль окислительных процессов на счет кислорода воздуха, а увеличение соотношения более чем 2:1 не ведет к заметному влиянию фторида водорода на процесс очистки.

При температуре 190-230°С происходит разложение бифторида натрия (соответственно, при 80-100°С для бифторида лития) на фторид натрия и фторид водорода. В аппарате терморазложения - сорбционная колонна с обогревом - газовая смесь после контактирования с тетрафторидом урана очищается от примесей, а фторид водорода, не сорбируясь фторидом натрия (фторидом лития), вновь поступает на обработку тетрафторида. Удаляемые из тетрафторида урана примеси после их гидрофторирования и превращения в летучие фториды с потоком фтороводорода направляют на поглощение сорбентом - фторидом натрия или фторидом лития.

В случае прекращения процесса термообработки тетрафторида урана аппарат терморазложения охлаждают до температуры помещения. В этом случае фторид водорода, находящийся в замкнутом контуре, полностью поглощается сорбентом, образуя бифторид натрия (или бифторид лития).

Таким образом, предлагаемый способ от прототипа отличается тем, что очистку тетрафторида урана от примесей ведут при более низкой температуре, равной от 350 до 520°С, значение которой зависит от удаляемой примеси, фторидом водорода с разбавленным воздухом до более низкой концентрации. Фторид водорода получают терморазложением бифторидов щелочных металлов - лития или натрия - при соответствующей температуре разложения, а после контакта с тетрафторидом урана его вновь пропускают через аппарат, в котором происходит терморазложение бифторида.

При последовательном пропускании смеси осушенного воздуха и фторида водорода через тетрафторид урана и бифторид натрия (лития) происходит переход примесей из тетрафторида в газовую фазу в форме фторидов, а затем из газовой фазы в твердую - бифторид натрия (бифторид лития). Проведение процесса выделения из газовой смеси на бифториде (фториде) натрия при 190-230°С или бифториде (фториде) лития при 80-100°С и циркуляции газа обеспечивает высокую степень извлечения примесей из газовой смеси на фторидах натрия или лития вследствие образования активных центров на их поверхностях в местах, из которых десорбировались молекулы HF. На активных центрах происходит эффективная физическая сорбция молекул примесей с последующей химической реакцией адсорбированных веществ. Подобного не происходит при выделении примесей из газовой смеси на обычном фториде натрия.

При этом из бифторида натрия не извлекаются такие химически связанные примеси, как гексафторосиликат натрия (температура разложения >550°С), монофторфосфат натрия (≥620°С), гексафторфосфат натрия (600°С) («Фтор и его соединеия» / Под ред. Дж. Саймонса, т.1 - М.: Иностранная литература, 1953).

Предельное наполнение примесей во фториде (бифториде) натрия, после которого сорбент не будет работать по назначению, составляет Si - 14,9; N - 15,4; Р - 21,5 масс.%.

Применение осушенного воздуха и фторида водорода позволили исключить возможность протекания следующей реакции:

UF4+H2O+1/2O2=UO2F2+2HF (реакция осуществима при температуре >400°С).

В интервалах предлагаемых температур и содержаниях кислорода образования оксидов урана по следующей реакции не происходит:

2UF4+O2=UO2F2+UF6 (реакция осуществима при температуре ≥800°С).

Положительный эффект дает совокупность всех перечисленных существенных признаков.

Пример 1

Для того чтобы подтвердить влияние фторида водорода на процесс очистки, обрабатываем тетрафторид урана в течение 60 мин при различной температуре от 300°С до 550°С при давлении воздуха 740 мм рт.ст.

В этих условиях наблюдается лишь небольшая очистка тетрафторида урана от углерода (менее 10%), титана (16,6%). Хорошо выжигаются лишь соединения азота и хрома, а очистки тетрафторида урана от фосфора не происходит вовсе. Кроме того, содержание окисленного урана увеличивается до 7,7% в пересчете на уранилфторид.

Пример 2

Тетрафторид урана, содержащий азот 6,0 10-3 масс.%, прокаливают в атмосфере фторида водорода, получаемого терморазложением бифторида лития при 80°С, и воздуха, взятых в отношении 1:7, при температуре 550°С в течение 60 мин. В результате образуется продукт с массовой долей азота 1 10-4 масс.%.

Пример 3

Тетрафторид урана, содержащий (масс. доля): углерод - 3,3 10-2%,

фосфор - 4,2 10-3 %, азот - 4,9 10-3 %, обрабатывают газовой смесью, состоящей из фторида водорода и воздуха в отношении 1:2 при различной температуре и давлении, равном 760 мм рт.ст., в течение 30 мин (см. табл.1).

Таблица 1
Очистка тетрафторида урана от примесей
Примесь Степень очистки в зависимости от температуры, %
300°С 350°С 400°С 460°С 500°С 520°С 540°С
Углерод 38,1 48,5 51,5 57,6 78,8 85,3 87,8
Фосфор 0,5 4,8 16,7 73,6 90,5 95,5 97,6
Азот 56,8 63,3 32,2 93,9 95,9 96,7 96,9

Очистка тетрафторида урана от примесей в заметной степени наблюдается по отношению к углероду при температуре выше 350-400°С, фосфора - выше 460°С, азота - при 300°С и выше.

Пример 4

Тетрафторид урана обрабатывают фторидом водорода, образовавшимся в результате терморазложения бифторида натрия при температуре 190-230°С в смеси с воздухом (отношение 1:3) в течение 60 мин при различной температуре и очищают тетрафторид от примесей углерода, азота, фосфора, титана и хрома (см. табл.2).

Таблица 2
Очистка тетрафторида урана
Примесь Степень очистки в зависимости от температуры, %
300°С 350°С 400°С 460°С 500°С 520°С 540°С
Углерод 30,5 54,6 63,6 66,7 84,8 86,9 87,9
Фосфор 0,7 9,5 33,3 76,2 95,2 97,3 97,8
Азот 60,9 69,4 92,5 94,6 96,4 96,9 97,0
Титан 0,2 4,2 62,9 96,8 95,8 96,0 96,2
Хром 52,2 54,1 54,5 54,9 59,1 81,0 90,9

Заметная очистка тетрафторида урана от соединений углерода и азота начинается уже при температуре 350°С, фосфора - при 460°С, титана - выше 400°С. Очистка тетрафторида от соединений хрома наблюдается наиболее полно при температуре 500°С и выше.

Предлагаемый способ очистки тетрафторида урана по сравнению с известными способами имеет следующие преимущества:

- увеличивается степень очистки тетрафторида от соединений углерода, фосфора и других примесей;

- получаемый продукт не загрязняется примесями, присутствующими во фториде водорода (ГОСТ 14022-78);

- в зависимости от удаляемой примеси снижается температура обработки тетрафторида урана;

- снижается расход фторида водорода на единицу продукции и предусматривается его многоразовое использование путем циркуляции смеси в замкнутом объеме;

- не требуется разрабатывать специальные методы улавливания и переработки отработавшего фторида водорода;

- не требует применения сравнительно дорогостоящих инертных газов-разбавителей;

- упрощается обслуживание процесса.

Применение предлагаемого способа позволит:

- повысить качество тетрафторида урана за счет снижения в нем количества примесей;

- уменьшить расход фторида водорода за счет уменьшения его концентрации в реакционной газовой смеси и многоразового использования путем циркуляции;

- удешевить процесс очистки за счет использования в качестве газа-разбавителя атмосферного воздуха;

- уменьшить потери от коррозии аппарата за счет снижения концентрации фторида водорода в газовой смеси и уменьшения температуры процесса.

1. Способ очистки тетрафторида урана от примесей летучих фторидов путем обработки газообразным фторидом водорода, при повышенной температуре, отличающийся тем, что термообработку тетрафторида урана ведут при температуре от 350 до 520°С фторидом водорода, получаемым терморазложением бифторида щелочного металла, в смеси с осушенным воздухом, взятых в соотношении от 1:7 до 1:2, после чего газовую смесь направляют в аппарат, в котором осуществляют термическое разложение бифторида щелочного металла.

2. Способ по п.1, отличающийся тем, что фторид водорода получают терморазложением бифторида натрия при температуре 190-230°С или бифторида лития при температуре 80-100°С.



 

Похожие патенты:

Изобретение относится к способам переработки уран-фторсодержащих растворов, полученных от растворения огарков фторирования в производстве гексафторида урана. Способ включает растворение огарков в растворе азотной кислоты, извлечение урана из фторсодержащего азотнокислого раствора путем восстановления его гидразином на платиновом катализаторе, при постоянной очистке поверхности катализатора от осадка тетрафторида урана, отделение катализатора от азотнокислого раствора и осадка тетрафторида урана, обеспечение эквимолярного отношения фторид-ионов к урану (IV) в полученном растворе и разделение осадка тетрафторида урана и азотнокислотного раствора, при этом азотнокислотный раствор повторно используют для растворения огарков фторирования, предварительно доукрепив по азотной кислоте.
Изобретение относится к области химической технологии неорганических веществ и может быть использовано при переработке обедненного гексафторида урана. .

Изобретение относится к способам получения тетрафторида урана, а именно к способам получения тетрафторида урана на переделе гидрофторирования диоксида урана, и может быть использовано в производстве гексафторида урана или металлического урана.
Изобретение относится к технологии рециклирования ядерных энергетических материалов, а именно к способам очистки гексафторида урана от фторидов рутения, и может быть использовано для возврата урана, выделенного из отработавшего ядерного топлива, в топливный цикл легководных реакторов.

Изобретение относится к ядерному топливному циклу, а именно к технологии получения разбавителя для переработки гексафторида оружейного высокообогащенного урана (ВОУ) в гексафторид низкообогащенного урана (НОУ).

Изобретение относится к технологии очистки гексафторида урана от легколетучих примесей и может быть использовано для улучшения качества и снижения себестоимости продукции газоразделительных производств.

Изобретение относится к устройствам для проведения низкотемпературного порционного гидролиза твердого гексафторида урана в водном растворе фтороводорода и может быть использовано при переработке обедненного (отвального) гексафторида урана до порошкообразного диоксодифторида урана и безводного фтороводорода.
Изобретение относится к области химической технологии неорганических веществ и может быть использовано для получения тетрафторида урана. .

Изобретение относится к технологии фторирования порошкообразного сырья, а именно к способу и реактору для получения гексафторида урана. .

Изобретение относится к области экологии и направлено на предупреждение загрязнения окружающей среды и отравления радиоактивными веществами. .

Изобретение может быть использовано при получении чистых солей и окислов из гексафторида урана (ГФУ). Аппарат для гидролиза гексафторида урана содержит корпус, в верхней части которого установлены средства для подачи гексафторида урана и орошающего раствора. В корпусе расположено устройство для перемешивания гексафторида урана и орошающего раствора. В нижней части корпуса имеется отверстие 4 для слива полученного раствора. Средства для подачи гексафторида урана и орошающего раствора включают расширительную воронку 5, установленную в верхней части корпуса с возможностью подачи газообразного гексафторида урана через ее внутреннюю часть, а орошающего раствора - по ее внешней поверхности. Корпус выполнен в виде колонны 1. Устройство для перемешивания гексафторида урана и орошающего раствора представляет собой неподвижное завихрительное устройство 8, выполненное в виде лопастей, размещенных ярусами в периферийной зоне колонны. Лопасти изогнуты таким образом, что верхняя вогнутая поверхность каждой лопасти обращена к нижней выпуклой поверхности соседней лопасти. Длина лопастей в радиальном направлении увеличивается от яруса к ярусу в направлении сверху вниз. В аппарате процесс гидролиза газообразного гексафторида урана осуществляют с использованием раствора азотнокислого алюминия. Изобретение позволяет упростить конструкцию аппарата путем исключения вращающихся элементов, повысить надежность аппарата за счет исключения возможности локального перефторирования орошающего раствора и забивания аппарата и вентиляционного патрубка продуктами гидролиза ГФУ. 2 з.п. ф-лы, 4 ил.
Изобретение относится к области экологии и направлено на предупреждение возможности загрязнения окружающей среды и отравления населения радиоактивными веществами. Способ конверсии отвального гексафторида урана в металлический уран включает взаимодействие гексафторида урана с металлическим натрием, при этом исходные компоненты подают в реактор в стехиометрическом соотношении в виде газообразного гексафторида урана и жидкого металлического натрия, распыленного через форсунки, температуру поддерживают от 1133°С до 1705°С. Изобретение обеспечивает эффективную конверсию гексафторида урана. 1 пр.

Группа изобретений относится к области металлургии, а именно к способу получению порошка диоксида урана методом пирогидролиза и к установке для его осуществления. Способ включает подачу в предварительно разогретую первую реакционную зону реакционной камеры гексафторида урана и водяного пара, которые вступают в реакцию с образованием уранилфторида, подачу во вторую реакционную зону реакционной камеры смеси водяного пара и водорода для восстановления в ней полученного в первой реакционной зоне уранилфторида до диоксида урана. При этом подачу смеси водяного пара и водорода во вторую реакционную зону осуществляют через сопла, расположенные в ее конической части, в вертикальные трубы, расположенные соосно соплам, для создания в трубах восходящих прямоточных двухфазных потоков, которые преобразуются в криволинейные потоки дефлекторами в сепарационной зоне, для предварительного разделения твердой и газообразной фаз. После чего во вторую реакционную зону оседают отделенные в сепарационной зоне частицы, образуя циркулирующий слой смеси порошков уранилфторида и диоксида урана. После постепенного накопления объема смеси порошков диоксида урана и уранилфторида процесс подачи водяного пара и гексафторида урана прекращают, а вместо этого начинают подавать водород. Далее происходит процесс довосстановления уранилфторида в диоксид урана и затем выгрузка товарного порошка диоксида урана. Изобретение обеспечивает получение порошка диоксида урана с улучшенным качеством и повышение производительности. 2 н. и 2 з. п. ф - лы, 2 ил.

Изобретение относится к неорганической химии урана, в частности к технологии получения тетрафторида урана. Способ получения тетрафторида урана заключается в осаждении его из растворов, содержащих хлоридно-фторидный комплекс U+4, фтористоводородной кислотой, при температуре процесса 70-80°C, при этом используют фтористоводородную кислоту, содержащую четырехвалентный уран в количестве, не превышающем его растворимость. Изобретение обеспечивает получение крупнокристаллического, хорошо фильтрующегося осадка тетрафторида урана и исключение образования локальных перенасыщений. 1 з.п. ф-лы, 3 пр.

Изобретение относится к технологии урана, применительно к эксплуатации производств по разделению изотопов урана, и может быть использовано для очистки различных металлических поверхностей, работающих в среде гексафторида урана, от нелетучих отложений урана. Способ очистки металлических поверхностей от отложений урана включает обработку поверхностей газообразными фторирующими реагентами, содержащими ClF3 и F2 в массовом соотношении (1,7÷3,6):1, в условиях динамического течения процесса, путем циркуляции газов через отложения урана и слой фторида натрия, нагретого до 185-225°C. Изобретение обеспечивает интенсификацию процесса фторирования, селективное извлечение из газа гексафторида урана и исключение образования коррозионно-активных и легкоконденсирующихся продуктов реакций. 1 пр., 1 табл.

Изобретение относится к ядерной технике и химической промышленности и может быть использовано для очистки и восстановления металлических поверхностей установок, предназначенных для разделения изотопов урана. Способ включает последовательную циркуляцию газовой смеси, содержащей ClF3 и F2 в массовом соотношении (1,5÷3,5):1, через отложения урана и слой фторида натрия, нагретого до 190-220°C. Изобретение позволяет увеличить эффективность процесса фторирования, снизить расход ClF3, увеличить степень возврата UF6 в разделительный каскад и сократить период возврата UF6 в разделительный процесс. 3 ил., 1 табл.

Изобретение относится к переработке гексафторида урана (ГФУ) и может быть использовано для извлечения гексафторида урана из баллонов различной вместимости. Способ испарения гексафторида урана из баллона, включающий нагрев баллона двухсекционным индуктором, подачу азота в баллон в импульсном режиме. В конце процесса баллон вакуумируют через коллектор газообразного гексафторида урана до давления 50 кПа. В баллон через отсосную трубку подают нагретый азот при давлении, превышающем давление газа в баллоне на 30-50 кПа, причем подачу азота осуществляют в импульсном режиме при температуре боковой стенки 60-80°С и температуре днища 60-150°С и давлении образующейся газовой смеси 100-150 кПа, причем нагрев баллона дополнительно осуществляют путем включения донного нагревателя мощностью 4-8 кВт, при достижении верхней зоны индуктора 60°С, а нижней 65°С. Изобретение позволяет увеличить производительность баллона по газообразному гексафториду урана, полностью извлекать неиспарившийся остаток ГФУ из баллона, в 3-4 раза снизить удельное энергопотребление на единицу испаряемого сырья, стабилизировать расход азота, обеспечить высокое качество получаемых порошков диоксида урана. 3 з.п. ф-лы, 3 табл., 2 пр.

Изобретение относится к области разработки технологии конверсии обедненного гексафторида урана с получением тетрафторида урана и, далее, металлического урана для военных целей или оксидов урана для длительного хранения или использования в быстрых реакторах, а также безводного HF. Способ конверсии гексафторида урана включает нагревание гексафторида урана до температуры 100°С, смешивание его с сухим азотом до концентрации 25-30 об.% и контактирование полученной газообразной смеси с атомарным водородом, в качестве источника которого используют метанол в газовой фазе при температурах 350-650°С, при этом дополнительно тетрафторид урана превращают в диоксид урана и безводный фторид водорода. Изобретение обеспечивает эффективное получение химически активного тетрафторида урана, не загрязненного конструкционными материалами, и оксидов урана, не загрязненных фтором. 3 з.п. ф-лы, 1 ил., 6 пр.

Изобретение относится к атомной промышленности и химической технологии неорганических веществ и может быть использовано для получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ получения тетрафторида урана заключается в том, что смешивают диоксид урана с бифторидом аммония и карбамидом, проводят термообработку полученной смеси при температуре выше точки кипения карбамида, но ниже температуры точки кипения бифторида аммония с последующей выдержкой при этой температуре до образования двойной соли, и затем осуществляют термообработку при температуре 500-600°C с выдержкой при этой температуре в вакууме или в инертной атмосфере до получения тетрафторида урана. Изобретение обеспечивает получение кондиционного тетрафторида урана с выходом не менее 98%, а также упрощение процесса его получения. 4 з.п. ф-лы, 2 табл.

Изобретение относится к способам очистки загрязненного вредными изотопами сырья для использования его в дальнейшем для получении восстановленного урана для ядерного топлива. Способ очистки загрязненного сырья для разделительного производства от вредных изотопов заключается в снижении концентрации изотопов 232U, 234U, 236U путем переработки гексафторида урана загрязненного сырья в двойном каскаде газовых центрифуг. Гексафторид урана загрязненного сырья перерабатывают в двойном каскаде газовых центрифуг, предназначенных для получения низкообогащенного гексафторида 235U из чистого гексафторида урана, подаваемого на основное питание первого каскада, загрязненное сырье подают на дополнительное питание первого каскада. Очищенное сырье отбирают из первого или второго каскада. Изобретение позволяет получить качественное сырье с допустимым содержанием лимитирующих вредных изотопов. 5 з.п. ф-лы, 5 ил., 8 табл., 4 пр.
Наверх