Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде



Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде
Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде
Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде
Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде
Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде
Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде
Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде

Владельцы патента RU 2542487:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)

Изобретение относится к электрохимическим методам анализа, а именно к иммуноанализу, в частности к определению содержания патогенных микроорганизмов в различных объектах и средах. Изобретение может быть использовано в микробиологии, медицине, экологии для мониторинга содержания микроорганизмов в природных объектах и дифференциальной диагностики инфекционных заболеваний. Электрохимический способ определения содержания грамотрицательных патогенных бактерий предполагает использование в качестве сигналообразующей метки электроактивных магнитных нанокомпозитных частиц, которые перед стадией конъюгирования получают путем создания на поверхности магнитных наночастиц переходных металлов или их соединений электроактивного полимерного покрытия. Концентрацию патогенных микроорганизмов определяют путем получения электрохимического отклика, регистрируемого напрямую в результате электропревращения электроактивного полимерного покрытия. Изобретение направлено на упрощение анализа, увеличение чувствительности, экспрессности, воспроизводимости, а также на расширение круга электрохимически активных меток. Использование полимерного покрытия позволяет добиться высокой чувствительности и воспроизводимости анализа. 7 ил. 6 пр.

 

Изобретение относится к электрохимическим методам анализа, а именно к иммуноанализу, в частности к определению содержания патогенных микроорганизмов в различных объектах и средах. Изобретение может быть использовано в микробиологии, медицине, экологии для мониторинга содержания патогенных микроорганизмов в природных объектах и дифференциальной диагностики инфекционных заболеваний.

Недостатками используемых в настоящее время методов являются: низкая чувствительность (реакции агглютинации), высокая стоимость используемых реагентов и оборудования (иммуноферментный анализ), необходимость создания специальных условий (метод анализа, основанный на полимеразной цепной реакции) и длительность проведения анализа (бактериальный посев).

Для мониторинга колиформных бактерий, продуцирующих в результате своей жизнедеятельности фенол, предлагают использовать амперометрический тирозиназный сенсор и аминомодифицированный магнетит, осажденный на углеродных нанотрубках. Эту систему используют для детектирования фенола. Тирозиназа катализирует окисление фенольных соединений в присутствии кислорода с получением о-хинонов, которые могут быть восстановлены электрохимически при низких потенциалах без медиаторов. Однако в данном методе требуется ≈4 часа для предварительной активации β-D-галактрозидазы и другие длительные подготовительные процедуры. Отсутствие специфичности реакции также является недостатком данного метода (Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms/Yuxiao Cheng, Yajun Liu, Jingjing Huang et all//Electrochimica Acta, 2009, V.54, P.2588-2594).

Предложен метод обнаружения бактерий E.Coli при помощи кварцевого сенсора с использованием наночастиц магнетита, покрытых декстраном, и наночастиц золота, покрытых стрептавидином. Данный метод до момента непосредственного детектирования включает в себя 7 предварительных стадий (таких как инкубирование, сепарирование, декантирование). Помимо значительного увеличения продолжительности анализа, все эти стадии вносят огромный вклад в погрешность измерения (QCM immunosensor detection of Escherichia coli O157:H7 based on beacon immunomagnetic nanoparticles and catalytic growth of colloidal gold/Zhi-Qiang Shen, Jing-Feng Wang, Zhi-Gang Qiu et all/Biosensors and Bioelectronics, 2011, V.26, P.3376-3381).

Также для детектирования бактерий E.Coli предложено использовать магнитоэластичный сенсор, модифицированный полиуретаном и наночастицы магнетита модифицированные хитозаном. Подготовленный сенсор помещается в кювету с суспензией магнетита, модифицированного хитозаном, и E.Coli. Затем вся система помещается в катушку соленоида, от которой получают сигнал. Измеряется резонансная частота сенсора. При pH 5-6.5 бактерии электростатически притягиваются к наночастицам, затем наночастицы примагничиваются к сенсору, уменьшая его резонансную частоту. Однако данный метод также лишен специфичности (Detection of pathogen Escherichia coli O157:H7 with a wireless magnetoelastic-sensing device amplified by using chitosan-modified magnetic Fe3O4 nanoparticles/Hailan Lin, Qingzhu Lu, Shutian Ge, Qingyun Cai et all//Sensors and Actuators B, 2010, V.147, P.343-349).

Наиболее близким техническим решением, выбранным в качестве прототипа, служит способ определения патогенных микроорганизмов, включающий конъюгацию патогенного микроорганизма с магнитными наночастицами в анализируемой среде с последующим концентрированием конъюгатов и определением наличия и концентрации патогенных микроорганизмов с помощью электроактивной сигналообразующей метки. В качестве магнитных наночастиц и, одновременно, электроактивной сигналообразующей метки авторы использовали наночастицы переходного металла. Перед концентрированием меченых конъюгатов наночастицы, несвязанные с патогенными микроорганизмами, выводили из анализируемой среды. Концентрирование меченого конъюгата осуществляли путем формирования на электроде иммунокомлекса «меченный магнитной меткой патогенный микроорганизм - антитело» с последующим изъятием иммунокомплекса из среды на электроде. Далее проводили кислотную обработку электрода, содержащего меченый иммунокомплекс. Определение наличия и концентрации патогенных микроорганизмов осуществляли по сигналу, генерируемому ионами переходного металла, получаемых путем кислотного разрушения иммунокомплекса (Патент РФ №2397243 от 20.08.2010).

К недостаткам данного способа следует отнести многостадийность процесса анализа, низкий предел обнаружения, высокую трудоемкость процесса, большие временные затраты, а также высокие требования к квалификации операторов.

Предлагаемое техническое решение направлено на упрощение анализа, увеличение чувствительности, экспрессности, воспроизводимости, а также на расширение круга электрохимически активных меток.

Указанный технический эффект достигается тем? что предлагаемый способ электрохимического иммуноанализа включает в себя конъюгацию патогенных микроорганизмов с электроактивными магнитными нанокомпозитными частицами, магнитную сепарацию с последующим концентрированием конъюгатов и определением наличия и концентрации патогенных микроорганизмов с помощью сигналобразующей метки, локализованной путем образования иммунокомплекса на поверхности электрода, в качестве которой выступают электроактивные магнитные нанокомпозитные частицы. Концентрацию патогенных микроорганизмов определяют путем получения прямого электрохимического отклика от электроактивных магнитных нанокомпозитных частиц, регистрируемого в результате электрохимического превращения электроактивного полимерного покрытия (полимерного покрытия, модифицированного электроактивными соединениями) наночастиц.

Указанные отличительные признаки существенны. Получение электрохимического отклика от метки в результате разряда непосредственно электроактивного полимерного покрытия (полимерного покрытия, модифицированного электроактивными соединениями) электроактивных магнитных нанокомпозитных частиц позволит исключить из процедуры иммуноанализа стадию кислотного разложения иммунокомплекса и увеличить экспрессность и чувствительность способа определения патогенных микроорганизмов.

Кроме того, создание на поверхности магнитных наночастиц электроактивного полимерного покрытия (полимерного покрытия, модифицированного электроактивными соединениями) приводит к уменьшению поверхностной энергии наночастиц и позволит предотвратить их агрегацию, в результате чего размер частиц не изменяется в течение эксперимента. Таким образом, использование полимерного покрытия позволит добиться высокой чувствительности и воспроизводимости анализа.

Использование магнитных нанокомпозитных частиц с электроактивным полимерным покрытием (полимерным покрытием, модифицированным электроактивными соединениями) позволит расширить круг потенциальных электрохимически активных меток

Предложенный способ иммуноанализа позволит существенно снизить материало- и трудозатраты на проведение анализа, увеличить производительность и уменьшить себестоимость определения.

Таким образом, из патентной и научно-технической литературы не известен способ определения патогенных микроорганизмов заявляемой совокупности признаков.

На фигуре 1 изображен общий вид рабочего электрода, где 1 - подложка из стеклотекстолита, 2 - дорожка из токопроводящего материала (графитовая композиция, углеродные чернила), 3 - слой изолятора или цементита.

На фигуре 2 представлены циклические вольтамперограммы, зарегистрированные в модельных растворах, содержащих (а, 4-5) и не содержащих (б, 4-5) микроорганизмы Е.Coli (штамм O-12).

4 - вольтамперограмма фонового электролита, 5 - вольтамперограмма модельного раствора.

На фигуре 3 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 6-7) и не содержащих (б, 6-7) микроорганизмы Е.Coli (штамм O-12).

6 - вольтамперограмма фонового электролита, 7 - вольтамперограмма пробы.

На фигуре 4 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 8-9) и не содержащих (б, 8-9) микроорганизмы Е.Coli (штамм O-12).

8 - вольтамперограмма фонового электролита, 9 - вольтамперограмма пробы.

На фигуре 5 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 10-11) и не содержащих (б, 10-11) микроорганизмы Е.Coli (штамм O-12).

10 - вольтамперограмма фонового электролита, 11 - вольтамперограмма пробы.

На фигуре 6 представлены циклические вольтамперограммы, зарегистрированные в модельных растворах, содержащих (а, 12-13) и не содержащих (б, 12-13) микроорганизмы Salmonella typhimurium (штамм SL 7207).

12 - вольтамперограмма фонового электролита, 13 - вольтамперограмма модельного раствора.

На фигуре 7 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 14-15) и не содержащих (б, 14-15) микроорганизмы Salmonella typhimurium (штамм SL 7207).

14 - вольтамперограмма фонового электролита, 15 - вольтамперограмма пробы.

Способ иллюстрируется следующими примерами.

Пример 1.

Вытяжку анализируемой среды (модельного раствора) инкубируют в течение 30 минут с электроактивными магнитными нанокомпозитными частицами Fe3O4-полипиррол при температуре 37°С. После инкубации несвязавшиеся электроактивные магнитные нанокомпозитные частицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают ТГЭ (фиг.1), модифицированный антителами против Е.Coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°С. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор KNO3 в воде. В качестве аналитического сигнала используют электрохимический отклик окисления полипиррольного покрытия электроактивных магнитных нанокомпозитных частиц, локализованных в иммунокомплексе на поверхности ТГЭ. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Е.Coli (штамм O-12) (фиг.2). В модельном растворе обнаружили 5×103 клеток/мл микроорганизма Е.Coli (штамм O-12).

Пример 2.

Вытяжку анализируемой среды инкубируют в течение 30 минут с электроактивными магнитными нанокомпозитными частицами Fe-полипиррол при температуре 37°С. После инкубации несвязавшиеся электроактивные магнитные нанокомпозитные частицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают ТУЭ (фиг.1), модифицированный антителами против Е.Coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°С. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют 0,1 М раствор KNO3 в воде. В качестве аналитического сигнала используют электрохимический отклик окисления полипиррольного покрытия электроактивных магнитных нанокомпозитных частиц, локализованных в иммунокомплексе на поверхности ТУЭ. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Е.Coli (штамм O-12) (фиг.3). В пробе, взятой у пациента, обнаружили 2×104 клеток/мл микроорганизма Е.Coli (штамм O-12).

Пример 3.

Вытяжку анализируемой среды инкубируют в течение 30 минут с электроактивными магнитными нанокомпозитными частицами Fe3O4-модифицированный ферроценом оксид кремния при температуре 37°С. После инкубации несвязавшиеся электроактивные магнитные нанокомпозитные частицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают ТГЭ (фиг.1), модифицированный антителами против Е.Coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°С. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор KNO3 в воде. В качестве аналитического сигнала используют электрохимический отклик окисления ферроценовых групп полимерного покрытия электроактивных магнитных нанокомпозитных частиц, локализованных в иммунокомплексе на поверхности ТГЭ. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Е.Coli (штамм O-12) (фиг.2). В пробе, взятой у пациента, обнаружили 1,5×103 клеток/мл микроорганизма Е.Coli (штамм O-12).

Пример 4.

Пробу воды инкубируют в течение 30 минут с электроактивными магнитными нанокомпозитными частицами Fe3O4-модифицированный ферроценом оксид кремния при температуре 37°С. После инкубации несвязавшиеся электроактивные магнитные нанокомпозитные частицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают ТУЭ (фиг.1), модифицированный антителами против Е.Coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°С. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют 0,1 М раствор KNO3 в воде. В качестве аналитического сигнала используют электрохимический отклик окисления ферроценовых групп полимерного покрытия электроактивных магнитных нанокомпозитных частиц, локализованных в иммунокомплексе на поверхности ТУЭ. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Е.Coli (штамм O-12) (фиг.3). В пробе обнаружили 2,3×102 клеток/мл микроорганизма Е.Coli (штамм O-12).

Пример 5.

Вытяжку анализируемой среды (модельный раствор) инкубируют в течение 30 минут с электроактивными магнитными нанокомпозитными частицами Fe-модифицированный хинолином поливинилбензилхлорид при температуре 37°С. После инкубации несвязавшиеся электроактивные магнитные нанокомпозитные частицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают ТГЭ (фиг.1), модифицированный антителами против Salmonella typhimurium (штамм SL 7207), и выдерживают в течение 20 минут при температуре 37°С. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор KNO3 в воде. В качестве аналитического сигнала используют электрохимический отклик восстановления хинолиновых групп полимерного покрытия электроактивных магнитных нанокомпозитных частиц, локализованных в иммунокомплексе на поверхности ТГЭ. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Salmonella typhimurium (штамм SL 7207) (фиг.2). В модельном растворе обнаружили 6×103 клеток/мл микроорганизма Salmonella typhimurium (штамм SL 7207).

Пример 6.

Вытяжку анализируемой среды инкубируют в течение 30 минут с электроактивными магнитными нанокомпозитными частицами Fe3O4-модифицированный хинолином поливинилбензилхлорид при температуре 37°С. После инкубации несвязавшиеся электроактивные магнитные нанокомпозитные частицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают ТУЭ (фиг.1), модифицированный антителами против Salmonella typhimurium (штамм SL 7207), и выдерживают в течение 20 минут при температуре 37°С. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор KNO3 в воде. В качестве аналитического сигнала используют электрохимический отклик восстановления хинолиновых групп полимерного покрытия электроактивных магнитных нанокомпозитных частиц, локализованных в иммунокомплексе на поверхности ТУЭ. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Salmonella typhimurium (штамм SL 7207) (фиг.2). В пробе, взятой у пациента, обнаружили 3,7×102 клеток/мл микроорганизма Salmonella typhimurium (штамм SL 7207).

Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде, характеризующийся конъюгированием бактерий с электрохимической меткой, в качестве которой используют магнитные нанокомпозитные частицы на основе Fe, Fe3O4 с электроактивным полимерным покрытием из полипиррола, модифицированного хинолином поливинилбензилхлорида либо модифицированного ферроценом оксида кремния, осуществляемым в водной среде в течение 30 минут при температуре 37°С, отделением несвязавшихся нанокомпозитных частиц с использованием магнитного поля, помещением в среду рабочего электрода, изготовленного из графитсодержащих материалов, поверхность которого предварительно модифицируют антителами, специфичными к определяемому штамму бактерий, образованием иммунокомплекса на поверхности электрода в течение 20 минут при температуре 37°С с использованием магнитного поля, промыванием электрода буферным раствором, содержащим нормальную лошадиную сыворотку и твин-20, помещением извлеченного из анализируемой среды рабочего электрода в электрохимическую ячейку, содержащую фоновый электролит KNO3, растворенный в воде, и определением содержания определяемых бактерий по величине аналитического сигнала, в качестве которого используют электрохимический отклик окисления/восстановления нанокомпозитных частиц, локализованных в иммунокомплексе на поверхности рабочего электрода.



 

Похожие патенты:
Изобретение относится к медицине, а именно к неонатологии, и может быть использовано для ранней диагностики тяжелой формы инфекции, вызванной вирусом простого герпеса 1 и 2 типа у новорожденных детей.
Изобретение относится к области медицины, а именно к акушерству и неонатологии, и может быть использовано для прогнозирования перинатальных гипоксических поражений центральной нервной системы у новорожденных.
Изобретение относится к области медицины, а именно к иммунологии и гастроэнтерологии, и может быть использовано для прогнозирования развития язвенной болезни двенадцатиперстной кишки у европеоидов Республики Хакасия.
Изобретение относится к медицине, а именно к лабораторной диагностике разных патологических состояний человека. Для этого проводится измерение характеристик клеток крови пациента по определению их адгезивности к стеклу.

Изобретение относится к области медицинской иммунологии и предназначено для определения функциональной активности фактора D комплемента человека по его действию на инфузории в бескальциевой среде, содержащей ионы магния.

Изобретение относится к медицинской иммунологии, а именно к способам определения функциональной активности комплемента в сыворотке крови организма при диагностике ряда заболеваний.

Изобретение относится к медицинской иммунологии, а именно к способу определения функциональной активности комплемента в сыворотке крови организма при диагностике ряда заболеваний.

Изобретение относится к области медицинской иммунологии и предназначено для определения интегральной функциональной активности компонента С1 комплемента человека по его действию на инфузории.

Изобретение относится к области медицинской иммунологии и предназначено для определения интегральной функциональной активности компонентов мембраноатакующего комплекса комплемента человека по его действию на инфузории.
Изобретение относится к медицине, а именно к иммунологии и неврологии, и может быть использовано для выявления степени выраженности интоксикации парами металлической ртути.
Изобретение относится к медицине и может быть использовано для выявления продуцирующих уреазу микроорганизмов, в частности Helicobacter pylori. Для этого проводят экспресс-анализ на диагностических дисках для определения уреазной активности образцов.

Группа изобретений относится к биохимии. Предложен способ получения стандартного образца мутности бактерийных взвесей, стандартный образец мутности бактерийных взвесей, применение стандартного образца мутности бактерийных взвесей, а также набор, содержащий стандартный образец мутности бактерийных взвесей.

Представлены наборы олигонуклеотидных зондов и праймеров, биологический микрочип и тест-система для идентификации и типирования вируса гриппа А и В. Охарактеризованная тест-система содержит: набор реагентов для выделения РНК вируса гриппа из биологического материала человека; набор реагентов для проведения ПЦР-амплификации, совмещенной с обратной транскрипцией, с образованием флуоресцентно-меченных фрагментов генома вируса гриппа, содержащий описанные олигонуклеотиды-праймеры; набор реагентов для проведения гибридизации фрагментов ДНК, полученных после проведения амплификации на биочипе, содержащем элементы с иммобилизованными описанными олигонуклеотидными зондами; и при необходимости, отрицательный и положительный контрольные образцы.

Изобретение относится к биотехнологии, в частности к определению содержания микроорганизмов в различных объектах и средах. Способ предусматривает конъюгацию бактерий с электрохимической меткой, в качестве которой используют Fe0, MgFe2O4 или Fe3O4, осуществляемую в водной среде при заданных параметрах.
Изобретение относится к области медицинской микробиологии и биотехнологии, в частности к микробиологической лабораторной диагностике инфекционных болезней. Питательная среда содержит триптон, дрожжевой экстракт, глюкозу, хлорид натрия, эритроциты человека 0(I) группы Rh(+), сульфат железа(II), агар «Дифко» и дистиллированную воду при заданных соотношениях компонентов.
Изобретение относится к биотехнологии и может быть использовано при бактериологических исследованиях по выделению и идентификации бактерий рода Klebsiella, производстве питательных сред для этих исследований.
Изобретение относится к биотехнологии и может быть использовано для диагностики неспецифических инфекционных заболеваний мочеполовой системы. Питательная среда содержит питательный агар, сухой, из каспийской кильки, парааминобензойную кислоту, трис-(оксиметил) аминометан (трис-буфер), салицин, нейтральный красный, L-триптофан, 5-бром-4-хлор-3-индолил β-D-глюкуронид циклогексиламмонийной соли, 2-нитрофенил β-D-галактопиранозид и дистиллированную воду в заданном соотношении компонентов.

Группа изобретений относится к области биотехнологии и направлена на идентификацию микроорганизмов в тестируемом образце. В одном варианте способ идентификации неизвестного микроорганизма включает получение тестируемого образца, который может содержать неизвестный микроорганизм.

Изобретение относится к области лабораторной диагностики и может быть использовано для определения присутствия патогенных микроорганизмов в биологических образцах.
Изобретение относится к санитарной и клинической микробиологии. Питательная среда содержит панкреатический гидролизат казеина, пептон мясной, дрожжевой экстракт, натрий хлористый, калий фосфорнокислый двузамещенный, калий фосфорнокислый однозамещенный, магний сернокислый, цетримид, агар бактериологический, натрий углекислый, налидиксовую кислоту, глицерин и дистиллированную воду в заданном соотношении компонентов.

Изобретение относится к биотехнологии, в частности к определению содержания микроорганизмов в различных объектах и средах. Способ предусматривает конъюгацию бактерий с электрохимической меткой, в качестве которой используют Fe0, MgFe2O4 или Fe3O4, осуществляемую в водной среде при заданных параметрах.
Наверх