Способ изготовления арматурной стали

Изобретение относится к металлургии, в частности к производству стальной высокопрочной проволочной арматуры. Способ изготовления арматуры из стали включает выплавку стали, содержащей: мас.%: углерод 0,78-0,82, марганец 0,70-0,90, кремний 0,20-0,30, сера не более 0,010, фосфор не более 0,025, хром 0,20-0,30, никель не более 0,10, медь не более 0,10, алюминий не более 0,005, бор 0,0010-0,0030, азот не более 0,008, титан не более 0,005%, железо остальное, при этом поддерживают суммарное содержание Cr+Mn+Ni+Cu<1,4, а соотношение Al/B - в пределах <1,67. Термическую обработку катанки производят путем нагрева в печи до температуры 900-940°C с последующей изотермической закалкой в течение 85-110 c в расплаве свинца при температуре 530-560°C и окончательным охлаждением водой. Холодное волочение катанки производят с суммарной степенью обжатия 57-62%. Технический результат заключается в получении холоднодеформированной высокопрочной арматуры с прочностью не менее 1670 H/мм2, условным пределом текучести не менее 1500 H/мм2 и относительным удлинением при разрыве не менее 6%. 1 пр.

 

Изобретение относится к металлургии, в частности к производству стальной высокопрочной проволочной арматуры, производимой методом холодного волочения и термомеханической обработки.

Известен способ производства стальной высокопрочной наноструктурированной арматуры, включающий выплавку стали, прокатку в катанку, термическую обработку катанки, травление, холодное волочение, нанесение периодического профиля, термомеханическую обработку и порезку арматуры на мерную длину. Выплавляют сталь следующего химического состава, масс.%:

углерод 0,77-0,85; марганец 0,50-0,80; кремний 0,20-0,37; сера 0,016-0,020; фосфор 0,016-0,025; хром не более 0,10; никель не более 0,10; медь не более 0,10; алюминий 0,01-0,03; бор 0,001-0,003; железо - остальное, в которой поддерживают суммарное содержание Cr+Ni+Cu<0,14, а соотношение алюминия к бору Al/B - в пределах 10-20, термическую обработку катанки осуществляют путем нагрева в печи до температуры 900-940°C с последующей изотермической закалкой в течение 85-110 с в расплаве свинца при температуре 530-560°C и окончательным охлаждением водой, а волочение катанки производят с суммарной степенью обжатия 57-62%. Выбранные пределы содержания углерода (0,77-0,85%) в сочетании с марганцем (0,50-0,80%), хромом, никелем и медью (до 0,10 каждого, но при соотношении Cr+Ni+Cu<0,14) при введение алюминия и бора в сталь позволят измельчать микроструктуру стали при ее термообработке. Соотношение содержания алюминия к бору Al/B в пределах 10-20 обеспечивает в конечном продукте - холоднодеформированной высокопрочной арматуре - прочность не менее 1570 Н/мм2, условный предел текучести не менее 1400 Н/мм и относительное удлинение при разрыве не менее 6%. (патент RU 2471004 от 16.12.2011, МПК C2D 8/08, C21D 9/52, C22C 38/54, B82Y 40/00, B82B 3/00 опубликовано: 27.12.2012, бюл. №36).

Недостатком известного способа производства стальной высокопрочной арматуры является то, что готовая арматура имеет недостаточную прочность, и обрывность арматурных стержней составляет 0,10% до 0,03%. Причиной является высокое (выше 2 баллов) содержание неметаллических включений, в частности окислов алюминия, имеющих высокую твердость, практически не разрушающихся при прокатке.

Технический результат, на достижение которого направлено изобретение, заключается в получении в холоднодеформированной высокопрочной арматуре прочности не менее 1670 Н/мм2, условного предела текучести не менее 1500 Н/мм2 и относительного удлинения при разрыве не менее 6%.

Указанный технический результат достигается тем, что в способе изготовления арматурной стали, включающем выплавку стали, прокатку в катанку, термическую обработку катанки, травление, холодное волочение, нанесение периодического профиля, термомеханическую обработку и порезку арматуры на мерную длину, выплавляют сталь следующего химического состава, масс.%:

углерод 0,78-0,82
марганец 0,70-0,90
кремний 0,20-0,30
сера не более 0,010
фосфор не более 0,025
хром 0,20-0,30
никель не более 0,10
медь не более 0,10
алюминий не более 0,005
бор 0,0010-0,0030
титан не более 0,005
азот не более 0,008
железо остальное

суммарное содержание Cr+Mn+Ni+Cu<1,4 и соотношение Al/B в пределах <1.67. Термическую обработку катанки производят путем нагрева в печи до температуры 900-940°C с последующей изотермической закалкой в течение 85-110 с в расплаве свинца при температуре 530-560°C и окончательным охлаждением водой, а волочение катанки производят с суммарной степенью обжатия 57-62%.

Изобретение позволит получить в холоднодеформированной высокопрочной арматуре прочность не менее 1670 Н/мм2, условный предел текучести не менее 1500 Н/мм2 и относительное удлинение при разрыве не менее 6%.

Пример осуществления способа изготовления арматурной стали.

По разработанному ОАО «БЭТ» химическому составу была выплавлена сталь в 180-тонной электропечи ОАО «ММК», обработана в агрегате «печь-ковш», разлита на МНЛЗ в заготовку сечением 150×150 мм и прокатана в катанку круглого сечения диаметром 15,5 мм на сортовом стане «170», имеющая следующий химический состав, масс.%):

углерод 0,786
марганец 0,730
кремний 0,247
сера 0,005
фосфор 0,012
хром 0,271
никель 0,019
медь 0,030
алюминий 0,002
бор 0,0019
азот 0,005
титан 0,005
железо остальное

Соотношение Cr+Ni+Cu+Mn составило 1,05, а соотношение Al/B составило 1,0.

Внесенные изменения в химический состав, а именно микролегирование хромом и марганцем и исключение алюминия при раскисление предлагаемой стали, позволили получить условный предел текучести выше 1500 Н/мм2; временное сопротивление разрыву выше 1670 Н/мм2 и относительное удлинение при разрыве не ниже 6%.

Термообработанную катанку проволочили в проволоку диаметром 9,6-0,1 мм, после чего нанесли на ее поверхность трехсторонний периодический профиль, подвергли отпуску под натяжением при температуре 400°C, охладили проточной водой и порезали на мерные длины. Механические испытания полученной стальной высокопрочной арматуры номинальным диаметром 9,6-0,1 мм показали следующие свойства:

временное сопротивление разрыву 1704-1740 Н/мм;

условный предел текучести 1551-1609 Н/мм2;

относительное удлинение при разрыве 7,3-7,7%;

твердость 41,5-43,0 HRC,

что полностью соответствует техническим требованиям, предъявляемым к высокопрочной стержневой холоднодеформированной арматуре периодического профиля диаметром 9,6 мм для армирования железобетонных шпал.

Способ изготовления арматуры, включающий выплавку стали, прокатку в катанку, термическую обработку катанки, травление, холодное волочение, нанесение периодического профиля, термомеханическую обработку и порезку арматуры на мерную длину, отличающийся тем, что выплавляют сталь следующего химического состава, мас. %:

углерод 0,78-0,82
марганец 0,70-0,90
кремний 0,20-0,30
сера не более 0,010
фосфор не более 0,025
хром 0,20-0,30
никель не более 0,10
медь не более 0,10
алюминий не более 0,005
бор 0,0010-0,0030
азот не более 0,008
титан не более 0,005
железо остальное

при этом устанавливают суммарное содержание Cr+Mn+Ni+Cu≤1,4, а соотношение Al/B - в пределах <1,67, термическую обработку катанки производят путем нагрева в печи до температуры 900-940 °C с последующей изотермической закалкой в течение 85-110 с в расплаве свинца при температуре 530-560 °C и окончательным охлаждением водой, а холодное волочение катанки производят с суммарной степенью обжатия 57-62%.



 

Похожие патенты:
Изобретение относится к области черной металлургии, а именно к производству рессорно-компрессорных штанг нефтяных насосов, выполненных из среднеуглеродистой легированной конструкционной стали.

Изобретение относится к металлургии и может быть использовано при получении толстолистовой стали для изготовления деталей транспортных и горнодобывающих машин, обладающих высокой стойкостью против абразивного износа (истирания).

Изобретение относится к области металлургии, а именно к износостойкому сплаву, используемому для получения формованных продуктов, отлитых продуктов, покрытий, а также проволок, электродов, порошков и смесей.
Изобретение относится к области металлургии, а именно к горячекатаной стальной плите, не склонной к растрескиванию при снятии напряжений, применяемой для изготовления корпусов реакторов, штампованных изделий или трубопроводов.
Изобретение относится к области металлургии, а именно к жаропрочным хромистым сталям мартенситного класса, используемым для изготовления поковок роторов большого диаметра с высокими характеристиками прочности, выносливости и жаропрочными свойствами при температуре 650°С, а также для изготовления паропроводов и котлов энергетических установок с рабочими температурами до 650°С.
Изобретение относится к области металлургии, а именно к коррозионно-стойкой легированной нейтронно-поглощающей стали, используемой в атомном энергомашиностроении в качестве материала чехловых труб - поглотителей нейтронов в средствах транспортировки и уплотненного хранения отработанного ядерного топлива в бассейнах выдержки.
Изобретение относится к области металлургии, а именно к малоактивируемым жаропрочным радиационно стойким сталям, используемым в ядерной энергетике, в частности, для изготовления деталей активных зон атомных реакторов на быстрых нейтронах и оборудования термоядерных реакторов.
Изобретение относится к металлургии, а именно к составу стали, используемой при производстве арматурного периодического профиля для железобетонных конструкций. Сталь содержит, в мас.%: углерод 0,20-0,29, марганец 1,20-1,60, кремний 0,60-0,90, фосфор не более 0,040, сера не более 0,010, хром 0,01-0,25, никель не более 0,30, медь не более 0,30, бор 0,001-0,005, азот не более 0,008, железо остальное.
Сталь // 2502822
Изобретение относится к области металлургии, а именно к производству сталей, используемых в машиностроении. Сталь содержит, мас.%: углерод 0,2-0,25, кремний 0,2-0,25, марганец 0,2-0,25, никель 13,0-15,0, хром 0,2-0,25, молибден 0,2-0,25, медь 1,3-1,7, кобальт 0,5-0,7, цирконий 0,2-0,25, бор 0,05-0,1, алюминий 0,2-0,25, ниобий 1,3-1,7, вольфрам 0,1-0,15, железо остальное.

Изобретение относится к области металлургии, а именно к коррозионно-стойким аустенитным сталям с повышенным содержанием кремния для использования в ядерной энергетике при изготовлении теплообменного оборудования, работающего при высокой температуре в контакте с пароводяной средой и тяжелым свинцовым жидкометаллическим теплоносителем, в частности, для изготовления теплообменных тонкостенных труб, работающих при 550°С.

Изобретение относится к производству профилированной проволоки из низколегированной углеродистой стали, предназначенной для использования в качестве компонента в гибких трубах для морской нефтедобычи.

Изобретение относится к линиям обработки стальных полос. Линия содержит последовательно расположенные станцию разматывания и промывки, станцию нагрева, станцию выдержки и станцию замедленного охлаждения, после которых параллельно расположены станция охлаждения водородом и станция водной закалки, при этом после станции охлаждения водородом последовательно расположены станция повторного нагрева, станция перестаривания, станция конечного охлаждения, станция правки, станция доводки, смазочная станция и станция наматывания, а после станции водной закалки последовательно расположены станция кислотной промывки и гальваническая станция.
Изобретение относится к металлургии, в частности к метизному производству, и может быть использовано при производстве из высокоуглеродистой стали проволоки больших диаметров, преимущественно 9-12 мм, предназначенной для изготовления, например, высокопрочной арматуры для железобетонных шпал.

Изобретение относится к металлургии, в частности к производству стальной высокопрочной арматуры. .

Изобретение относится к области металлургии, конкретно к технологии производства горячеоцинкованной полосы повышенной прочности, предназначенной для изготовления деталей автомобиля методом штамповки Для повышения прочностных характеристик стали с сохранением высокой пластичности проводят аустенитизацию (3) углеродистой стали (1) при температуре, превышающей температуру аустенитизации, затем вводят сталь (1) в ванну (2) с закалочной средой (21) для охлаждения до температуры, меньшей температуры аустенитизации, доводят сталь (1) до температуры бейнитного превращения и выдерживают в течение определенного времени при этой температуре, при этом количество закалочной среды (21) и длительность контакта стали с закалочной средой (21) таковы, что в общей структуре углеродистой стали (1), находящейся в ванне (2) с закалочной средой (21), образуется заданная доля бейнитной структуры, при выходе углеродистой стали (1) из ванны (2) остатки закалочной среды (21) удаляют с ее поверхности воздействием газа, затем углеродистую сталь (1) перемещают через расположенную после ванны станцию (13) изотермической выдержки, в которой проводят превращение остальных составляющих структуры углеродистой стали (1) в бейнит, протекающее при температуре бейнитного превращения и без отклонения углеродистой стали (1) при ее перемещении до полного формирования в ней бейнитной структуры и окончательно охлаждают сталь (1) на станции (17, 18) охлаждения.

Изобретение относится к технологии термической обработки длинномерных металлических изделий, в частности при закалке ножей для дорожных машин, предназначенных для очистки дорожного покрытия.

Изобретение относится к области металлургии, в частности к охлаждению рулона горячекатаной полосы. .

Изобретение относится к области обработки металлов давлением, в частности к охлаждению рулонов горячекатаной металлической полосы. .

Изобретение относится к прокатному производству, в частности к технологии изготовления стальной упаковочной ленты. .

Изобретение относится к способу и установке для охлаждения металлической полосы при ее протягивании при проведении термообработки. .
Изобретение относится к металлургии, в частности к метизному производству, и может быть использовано при производстве из высокоуглеродистой стали проволоки больших диаметров, преимущественно 9-12 мм, предназначенной для изготовления, например, высокопрочной арматуры для железобетонных шпал.
Наверх