Способ электрохимической обработки металлических деталей в рабочей среде с переменной проводимостью и устройство для его осуществления

Изобретение относится к электрохимической размерной обработке металлических деталей в рабочей среде с переменной проводимостью. Вначале межэлектродный зазор заполняют рабочей средой и на электрод-инструмент и деталь подают импульсы тока до достижения рабочей средой температуры порога проводимости, после чего включают прокачку рабочей среды в межэлектродном зазоре и продолжают подавать на электрод-инструмент и деталь импульсы тока с частотой обратно пропорциональной положительному градиенту между рабочей температурой и температурой порога проводимости рабочей среды. Устройство содержит электрод-инструмент, датчик температуры, установленный в рабочей среде, и два параллельно подключенных к детали и электроду-инструменту источника тока, один из которых является источником импульсного тока и связан с регулятором частоты импульсов тока с возможностью управления по сигналам датчика температуры, а на выходе из межэлектродного зазора между электродом-инструментом и деталью установлен клапан, выполненный с возможностью управления подачей рабочей среды в зону обработки посредством регулятора температуры по сигналам датчика температуры. Изобретение упрощает управление температурой рабочей среды и повышает точность измерения температуры относительно порога проводимости рабочей среды при осуществлении электрохимической размерной обработки металлических деталей. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к области машиностроения и может быть использовано при электрохимической размерной обработке металлических деталей, например объемном формообразовании участков облегчений в корпусных деталях двигателей летательных аппаратов.

Известен способ [1] электрохимической обработки по авторскому свидетельству 778981, где с целью повышения производительности обработки используют подогрев электролита импульсным током.

Указанный способ не позволяет управлять проводимостью электролитов с переменной проводимостью, т.к. в нем не контролируется изменение температуры электролита относительно порога проводимости.

Известен электрод-инструмент [2] по авторскому свидетельству 831484, включающий токопровод, расположенный параллельно рабочей поверхности инструмента.

К недостаткам электрода-инструмента относится большая инерционность и сложность конструкции системы подогрева электролита, невозможность контроля изменения температуры электролита относительно порога проводимости.

Известны способ и устройство [3] для электрохимической размерной обработки по патенту 2333821, где обработку ведут в среде с переменной проводимостью, где температуру среды поддерживают выше или ниже порога проводимости, а в электроде-инструменте выполняют каналы для подачи холодного и горячего электролита.

К недостаткам известных способа и устройства относятся необходимость создания сложной системы поддержания температуры электролита, высокая энергоемкость процесса из-за необходимости постоянно повышать и снижать температуру электролита.

В качестве прототипа принимаются способ и устройство по [3].

Предлагаемый способ и устройство имеют целью упрощение системы управления температурой рабочей среды и повышение точности измерения температуры относительно порога проводимости электролита.

Предложенный способ электрохимической размерной обработки металлических деталей в рабочей среде с переменной проводимостью, включающий подачу рабочей среды в зону обработки и технологического тока на электрод-инструмент и деталь и измерение температуры рабочей среды, отличается тем, что вначале межэлектродный зазор между электродом-инструментом и деталью заполняют рабочей средой и на электрод-инструмент и деталь подают импульсы тока до достижения рабочей средой температуры порога проводимости, после чего включают прокачку рабочей среды в межэлектродном зазоре и продолжают подавать на электрод-инструмент и деталь импульсы тока с частотой обратно пропорциональной положительному градиенту между рабочей температурой и температурой порога проводимости рабочей среды.

Устройство для электрохимической размерной обработки металлических деталей в рабочей среде с переменной проводимостью, содержащее электрод-инструмент и установленный в рабочей среде датчик температуры, отличается тем, что оно снабжено двумя параллельно подключенными к детали и электроду-инструменту источниками тока, один из которых является источником импульсного тока и связан с регулятором частоты импульсов тока с возможностью управления по сигналам датчика температуры, а на выходе из межэлектродного зазора между электродом-инструментом и деталью установлен клапан, выполненный с возможностью управления подачей рабочей среды в зону обработки посредством регулятора температуры по сигналам датчика температуры.

На фиг. 1 показана схема предлагаемого способа и устройства.

Межэлектродный зазор 1 между электродом-инструментом 2 и деталью 3 заполнен рабочей средой 4 с переменной проводимостью. В рабочей среде 4 установлен датчик температуры 5, связанный с регулятором частоты импульсов 6, вырабатываемых источником импульсного тока 7. На выходе из межэлектродного зазора 1 установлен клапан 8 подачи рабочей среды в зону обработки, управляемый от регулятора температуры 9 по сигналам датчика температуры 5. Технологический ток поступает на электрод-инструмент 2 и деталью 3 от источника технологического тока 10. Деталь 3 перемещается вдоль электрода-инструмента 2 в направлении 11.

Способ осуществляется следующим образом: рабочую среду 4 с переменной проводимостью подают под давлением в межэлектродный зазор 1 при температуре рабочей среды ниже порога проводимости. Подключают источник технологического тока 10 так, чтобы деталь 3 являлась анодом. Закрывают клапан 8 и подают через межэлектродный зазор импульсы тока с наибольшей частотой, регулируемой регулятором частоты импульсов 6, от источника импульсного тока 7, у которого анод подключен к детали 3. За счет наведенного импульсного тока рабочая среда 4 в межэлектродном зазоре 1 между электродом-инструментом 2 и деталью 3 нагревается, температура среды 4 становится выше порога проводимости, что устанавливается датчиком температуры 5 рабочей среды 4, откуда поступает сигнал на открытие клапана 8 в магистрали подачи рабочей среды 4 в межэлектродный зазор 1. Температура в зазоре 1 поддерживается выше или ниже порога проводимости рабочей среды регулятором частоты импульсов 6, подаваемых в межэлектродный зазор 1 через рабочую среду 4. Если температура рабочей среды 4 в зазоре 1 ниже порога проводимости рабочей среды 4, то рабочая среда 4 становится диэлектриком и ток от источника технологического тока 10 через электрод-инструмент 2 и деталью 3 не проходит, съема материала с заготовки 3 не происходит. При этом клапан 8 закрывают.

После продвижения детали 3 в направлении 11 до участка детали 3, где требуется съем материала, происходит нагрев рабочей среды 4 в межэлектродном зазоре 1 (клапан 8 закрыт), рабочая среда 4 становится электролитом, клапан 8 посредством регулятора температуры 9 по сигналу датчика температуры 5 открывают, ток от источника технологического тока 10 поступает через электролит на деталь 3 и происходит съем материала на требуемую глубину, при этом состояние рабочей среды 4 в качестве электролита поддерживается по сигналам датчика температуры 5, регулятором частоты импульсов 6, поступающих от источника импульсов тока 7 при открытом клапане 8.

Пример осуществления способа.

Необходимо получить на заготовке детали 3 длиной 300 мм из нержавеющей стали углубления величиной 0,5±0,05 мм, длиной 30±0,3 мм с шагом 70 мм. В качестве рабочей среды используется состав:

спирт 96% - 45,5±5% по весу

глицерин - 45,5±5% по весу

остальное вода.

Устанавливается зазор (1) 0,25 мм. Источник технологического тока (10) В АКР 1300, источник импульсного тока (7) с силой тока в импульсе 120 А, с частотой до 120 Гц. Длина рабочей части электрода-инструмента (2) 30 мм. Время нагрева рабочей среды (4) до порога проводимости 61±1°С при закрытом клапане (8) не превышало 3 секунд, что устанавливалось по амперметру на источнике технологического тока 10. После этого клапан 8 открывался по сигналу от регулятора 9, а частота импульсов от источника 7 изменялась в диапазоне от 3 до 30 Гц. Через 118 секунд ток от источника 10 отключали, система управления температурой отключалась, деталь перемещали на 100 мм в направлении 11, после чего процесс повторяли.

В результате получены 3 углубления с размерами: длина 30±0,1 мм, глубина 0,48±0,03 мм, что доказывает повышенную точность регулирования температуры. За счет снижения затрат на подогрев и охлаждение рабочей среды без ее остановки достигнута экономия. За счет упрощения системы управления температуры рабочей среды была исключена ее подналадка в процессе эксплуатации и снижена трудоемкость операции.

1. Способ электрохимической размерной обработки металлических деталей в рабочей среде с переменной проводимостью, включающий подачу рабочей среды в зону обработки и технологического тока на электрод-инструмент и деталь и измерение температуры рабочей среды, отличающийся тем, что вначале межэлектродный зазор между электродом-инструментом и деталью заполняют рабочей средой и на электрод-инструмент и деталь подают импульсы тока до достижения рабочей средой температуры порога проводимости, после чего включают прокачку рабочей среды в межэлектродном зазоре и продолжают подавать на электрод-инструмент и деталь импульсы тока с частотой обратно пропорциональной положительному градиенту между рабочей температурой и температурой порога проводимости рабочей среды.

2. Устройство для электрохимической размерной обработки металлических деталей в рабочей среде с переменной проводимостью, содержащее электрод-инструмент и установленный в рабочей среде датчик температуры, отличающееся тем, что оно снабжено двумя параллельно подключенными к детали и электроду-инструменту источниками тока, один из которых является источником импульсного тока и связан с регулятором частоты импульсов тока с возможностью управления по сигналам датчика температуры, а на выходе из межэлектродного зазора между электродом-инструментом и деталью установлен клапан, выполненный с возможностью управления подачей рабочей среды в зону обработки посредством регулятора температуры по сигналам датчика температуры.



 

Похожие патенты:

Изобретение относится к электроэрозионной обработке и может быть использовано для электроэрозионной прошивки прецизионных отверстий малого диаметра широкой номенклатуры деталей, например топливных форсунок.

Изобретение относится к области машиностроения и может быть использовано при электрохимической размерной обработке металлических деталей. .

Изобретение относится к области машиностроения и может быть использовано при изготовлении закрытых каналов в заготовках с закладными деталями, установленными перед прессованием из порошка, перед штамповкой, литьем.

Изобретение относится к способу электрохимической обработки металлических деталей, к устройству для осуществления способа и их вариантам. .

Изобретение относится к электрофизическим и электрохимическим методам обработки и, в частности, касается электроэрозионной обработки. .

Изобретение относится к области технологии машиностроения, к электрофизикохимической обработке деталей машин и касается способа электрохимической обработки деталей непрофилированным электродом-проволокой.

Изобретение относится к машиностроению, а конкретно к электрофизикохимическим методам обработки и касается способа электрохимической обработки небольших деталей.

Изобретение относится к машиностроению, в частности к способам обработки диэлектрических материалов электрическими разрядами. .

Изобретение относится к очистке электролита и может быть использовано для подачи, регенерации и регулирования параметров электролита. .

Изобретение относится к области машиностроения и может быть использовано при электрохимической размерной обработке металлических деталей. .

Изобретение относится к электрохимической обработке и может быть использовано для электрохимической доводки форсунок жидкостных ракетных двигателей из токопроводящих материалов.

Изобретение относится к области электрофизических и электрохимических методов обработки, в частности к устройствам для электрохимического прошивания. .

Изобретение относится к машиностроению , в частности к станкам для электрохимической обработки. .

Изобретение относится к машиностроению , в частности к электрическим методам обработки токопроводящих материалов. .

Изобретение относится к металлообработке и, в частности, касается катодных устройств для электрохимической обработки трубчатых заготовок. .

Изобретение относится к области электрофизических и электрохимических методов обработки ,в частности, к устройству для подачи электролита в межэлектродный промежуток при обработке сложнофасонных полостей.

Изобретение относится к области машиностроения ,в частности, к оборудованию для размерной электрической обработки. .

Изобретение относится к электрофизическим и электрохимическим методам обработки , в частности к способу очистки электролита от шлама при размерной электрохимической обработке, основными компонентами которого являются диамагнитные гидроксиды металлов.

Изобретение относится к электрохимической обработке и может быть использовано при электрохимической доводке форсунок из токопроводящих материалов, преимущественно форсунок для жидкостных ракетных двигателей. Способ включает подачу токопроводящей жидкости через полый инструмент-катод и обрабатываемые отверстия, при этом первоначально подачу токопроводящей жидкости ведут без подключения тока к инструменту-катоду и регистрируют ее расход через каждое обрабатываемое отверстие, после чего определяют отверстие с минимальным расходом и заглушают все отверстия, кроме упомянутого. Далее включают ток и осуществляют прокачку токопроводящей жидкости через упомянутое отверстие до достижения расхода, равного ближайшему/или следующего за ним минимальному значению расхода через аналогичное отверстие, после чего отключают ток, снимают заглушки. Затем повторно регистрируют расход токопроводящей жидкости через каждое обрабатываемое отверстие и определяют неравномерность распределения жидкости по отверстиям, и, при необходимости, обработку повторяют до достижения требуемого распределения жидкости по отверстиям. Изобретение обеспечивает получение требуемой равномерности распределения жидкости по отверстиям форсунки без снижения перепада давления в ней. 1 ил.
Наверх