Электролит на водной основе для никелирования изделий из стали, алюминия, титана, меди и их сплавов

Изобретение относится к области гальванотехники и может быть использовано в авиационной промышленности, машиностроении и судостроении для увеличения коррозионной стойкости, паяемости и износостойкости деталей и узлов элементов систем управления, комбинированных конструкций из титана и алюминия. Электролит на водной основе содержит, г/л: никель сернокислый 35,0-55,0; ацетат натрия 25,0-30,0; уксусную кислоту 4,5-5,0 мл/л; натрий лаурилсульфат 0,1-1,0. В результате использования электролита получены высокотехнологичные сплошные никелевые покрытия на стали, алюминии, титане, меди и их сплавах с высокой адгезией, микротвердостью и коррозионной стойкостью покрытия без предварительной цинкатной - для алюминия или гидридной - для титана обработки. 3 табл., 8 ил., 1 пр.

 

Изобретение относится к электрохимии, в частности к созданию электролита на водной основе для получения никелевых покрытий на стали, алюминии, титане, меди и их сплавах, и может быть использовано в авиационной промышленности, машиностроении и судостроении с целью увеличения коррозионной стойкости и износостойкости деталей, узлов элементов систем управления, комбинированных конструкций в сочетании титан-алюминий, а также для пайки.

Известны электролиты для никелирования изделий из алюминия и его сплавов (Ажогин Ф.Ф. Гальванотехника. Справочник. М., Металлургия, 1987. 736 с.), состоящие из, г/л:

1) сульфат никеля 140-200
хлорид никеля 30-40
борная кислота 25-40
сульфат натрия 60-80
2) сульфат никеля 150-200
натрия хлорид 10-15
борная кислота 25-30
натрия сульфат 40-50
магния сульфат 50-60
3) сульфат никеля 400
борная кислота 25-40
фторид натрия 2-3

Недостатком известных электролитов для никелирования изделий из алюминия и его сплавов является невозможность нанесения покрытия непосредственно на деталь без предварительной цинкатной обработки, сущность которой заключается в обработке изделия в растворе гидроксида натрия и оксида цинка для образования тонкой контактной пленки цинка на его поверхности, что является длительным и трудоемким процессом.

Известен также электролит для никелирования изделий из алюминия и его сплавов для антикоррозионной защиты, в котором не используется предварительная цинкатная обработка (патент РФ №2259429), состоящий из, г/л:

никель сульфаминовокислый 300-350
кислота борная 25-35
натрий фтористый 1,5-2,5
алкилсульфаты 0,05-1,0

Недостатком данного электролита является невозможность нанесения покрытия на изделия из стали, титана, меди и их сплавов.

Известен электролит для никелирования изделий из титана и его сплавов (Левинзон A.M. Электролитическое осаждение металлов подгруппы железа. Л.: Машиностроение, 1983. 96 с.), состоящий из, г/л:

никель сернокислый семиводный 20-25
аминоуксусная кислота (гликокол) 20-25
фтористый калий 2,5-10

Недостатком данного электролита никелирования изделий из титана и его сплавов является невозможность нанесения покрытия непосредственно на деталь без предварительной гидридной обработки, которая является длительным и трудоемким процессом, сущность которой заключается в травлении титана в активном состоянии при интенсивном выделении водорода, который в атомарном состоянии диффундирует в титановую основу и насыщает ее до образования гидридов.

Известен также электролит для никелирования изделий титана и его сплавов, в котором не используется предварительная гидридная обработка (патент РФ 2230138), состоящий из, г/л:

никель сернокислый 10-30
аммоний щавелевокислый 40-90
натрий фтористый 3-15
натрий уксуснокислый 3-20
натрий бромистый 1-2
вода до 1 л

Недостатком данного электролита является невозможность нанесения покрытия на изделия из стали, алюминия, меди и их сплавов.

Известен также электролит для никелирования изделий из сталей, меди и медных сплавов (патент РФ №2089675), взятый в качестве прототипа, состоящий из, г/л:

никель сернокислый 250-300
ацетат натрия 10-15
уксусная кислота 25-40
сахарин 0,7-1,1
1,4-бутиндиол (35%-ный раствор) 0,3-0,7 мл/л

Недостатком данного электролита является невозможность нанесения покрытия на изделия из алюминия, титана и их сплавов, а также долгое (более суток) время приготовления.

Техническим результатом изобретения является создание универсального электролита для никелирования изделий из стали, алюминия, титана, меди и их сплавов для получения никелевого покрытия непосредственно на детали без предварительной цинкатной (для алюминия) и гидридной (для титана) обработок.

Технический результат достигается тем, что электролит на водной основе для никелирования изделий из стали, алюминия, титана, меди и их сплавов, содержащий никель сернокислый, ацетат натрия и уксусную кислоту, согласно изобретению он дополнительно содержит натрий лаурилсульфат при следующем соотношении компонентов, г/л:

никель сернокислый 35,0-55,0
ацетат натрия 25,0-30,0
уксусная кислота 4,5-5,0 мл/л
натрий лаурилсульфат 0,1-1,0

Ацетат натрия и уксусная кислота создают ацетатный буфер, что позволяет эффективно поддерживать pH электролита и предотвращать образование в процессе нанесения покрытия гидроксидов никеля даже при высоких плотностях тока. Кроме того, уксусная кислота играет роль активирующего агента и освобождает поверхность алюминиевых и титановых изделий от природных оксидных пленок в процессе осаждения. Благодаря этому, при следующем режиме обработки: плотность тока - 1,0-3,0 А/дм2, температура - 60-70°C, никель осаждается непосредственно на ювенильную поверхность стали, алюминия, титана, меди или их сплавов, что способствует высокой адгезии покрытия без предварительной гидридной (для титана) или цинкатной (для алюминия) обработки.

Нижняя граница концентрации никеля сернокислого обусловлена тем, что при этом электролит работает без значительных диффузионных затруднений. При меньшей концентрации выход по току никеля неудовлетворителен, что приводит к высоким внутренним напряжениям в металле. Превышение верхней границы приводит к образованию крупнокристаллического покрытия, что способствует снижению микротвердости. Количество ацетата натрия определяется необходимостью добиться ювенильной поверхности при погружении металла в электролит. При содержании в электролите ацетата натрия менее 25,0 г/л невозможно достичь ювенильной поверхности на титане, содержание данного компонента свыше верхней границы приводит к нецелесообразному использованию ресурсов. Указанная концентрация уксусной кислоты в паре с ацетатом натрия служит для обеспечения стабильности pH и обеспечивает ювенильную поверхность металла. Натрий лаурилсульфат служит для смачиваемости поверхности образца. При содержании данного компонента менее 0,1 г/л снижается качество поверхности и образуется водородный питтинг, содержание более 1,0 г/л является необоснованным с экономической точки зрения.

Пример

Проведено нанесение никелевого покрытия на алюминиевую подложку по следующей технологии:

1. Подготовка поверхности образца:

Титан ВТ1-0 Алюминий Медь Сталь
Обезжиривание спиртом + + + +
Промывка в теплой проточной воде + + + +
Травление в водном растворе HF - 20 г/л, HNO3 - 200 г/л NaOH - 50 г/л H2SO4 - 200 г/л -
Промывка в проточной воде + + + +
Промывка в дистиллированной воде + + + +

2. Нанесение никелевого покрытия из электролитов, г/л:

I II
Никель сернокислый 35,0 55,0
Ацетат натрия 25,0 30,0
Уксусная кислота 4,5 4,0
Натрий лаурилсульфат 0,1 1,0
pH электролита 4,2
Температура,°C 65
Плотность тока, А/дм2 1
Время, мин 10

3. Промывка в теплой проточной воде.

4. Сушка.

5. Результаты

Титан ВТ1-0 Алюминий Медь Сталь
Предлагаемый электролит Внешний вид Ровные, сплошные, без питтингов, без вздутий, без отслаиваний
Адгезия, ГПа 3,0-3,5 4,5-5,4 4,6-5,3 3,2-3,8
Микротвердость, ГПа 2,2 2,7 2,4 2,7
Толщина, мкм 5,6 5,3 6 6
Прототип Внешний вид Покрытие наносится неравномерно, отшелушивание, непригодно для использования Ровные, сплошные, без питтингов, без вздутий, без отслаиваний
Адгезия, ГПа 4,7-5,1 3,2-3,7
Микротвердость, ГПа 2,1 2,8
Толщина, мкм 6 6

Внешний вид покрытий представлен на фиг.1-8 соответственно.

Технико-экономическое преимущество изобретения по сравнению с прототипом выражается в том, что предлагаемый электролит можно использовать для никелирования деталей из указанных материалов в одной ванне и, следовательно, сократить количество гальванических линий в цехе и трудоемкость их обслуживания.

Электролит на водной основе для никелирования изделий из стали, алюминия, титана, меди и их сплавов, содержащий никель сернокислый, уксусную кислоту и ацетат натрия, отличающийся тем, что он дополнительно содержит натрий лаурилсульфат при следующем соотношении компонентов, г/л:

никель сернокислый 35,0-55,0
ацетат натрия 25,0-30,0
уксусная кислота, мл/л 4,5-5,0
натрий лаурилсульфат 0,1-1,0



 

Похожие патенты:
Изобретение относится к нанесению покрытий и может быть использовано при получении жаростойких и антифрикционных покрытий на детали из углеродистых и легированных сталей, работающих в условиях повышенных температур до 1600°C и сухого трения.
Изобретение относится к технологии металлизации поверхности, а именно к способу нанесения никель-боридного покрытия на изделия из металлов методом автокаталитического осаждения из щелочного раствора.

Изобретение относится к электротехнической промышленности и может быть использовано при производстве щелочных никель-кадмиевых аккумуляторов. .

Изобретение относится к области гальваностегии, а именно: к процессам нанесения никелевого покрытия на поверхность металлического изделия. .

Изобретение относится к области гальваностегии. .
Изобретение относится к гальваностегии и может быть использовано для получения кобальта электролитическим способом, а также может найти применение в областях техники, в которых предъявляются требования высокой коррозионной стойкости, твердости и магнитных свойств.
Изобретение относится к области гальванотехники и может быть использовано в радиотехнической промышленности, приборостроении, авиационной промышленности и в других областях народного хозяйства для антикоррозионной защиты алюминия и его сплавов и придания им специальных свойств.
Изобретение относится к области металлургии, а именно к способам нанесения износостойких карбидохромовых покрытий, и может быть использовано для защиты поверхности изделий из титана и его сплавов от воздействия агрессивных сред, абразивного износа и высоких температур.

Изобретение относится к области электролитического нанесения покрытий с помощью химических реакций на поверхности, например, формирования преобразованных слоев, а именно к процессам микроплазменного оксидирования вентильных металлов и может быть использовано для получения функциональных покрытий, в том числе электропроводных покрытий в электронике и микроэлектронике. Способ получения композиционного металлокерамического покрытия на подложке из вентильного металла или его сплава, преимущественно на подложке, выполненной из алюминия, магния, титана, циркония или их сплавов, включает три этапа. На первом этапе осуществляют формирование на подложке тонкого керамического подслоя толщиной от 7 до 12 мкм. На втором этапе осуществляют формирование на полученном подслое пористого керамического слоя требуемой толщины, состоящего преимущественно из оксидов материала основы и дополнительно из оксидов меди и/или никеля. На третьем этапе выполняют операцию восстановления меди и/или никеля до металла из их соединений для формирования в пористом керамическом слое, полученном на втором этапе, металлической фазы. Получается композиционное металлокерамическое покрытие, обладающее поверхностной электропроводностью. 10 з.п. ф-лы, 3 ил., 4 пр.

Изобретение относится к области гальваностегии и может быть использовано в различных областях для изготовления декоративно-блестящих деталей, защищенных от коррозии. Электролит содержит никель сернокислый, натрий хлористый, борную кислоту, блескообразователь и воду, при этом в качестве блескообразователя электролит содержит одну из ненасыщенных изотиурониевых солей следующей структуры: при следующем соотношении компонентов, г/л: никель сернокислый 270; натрий хлористый 12, кислота борная 40; изотиурониевая соль 1,5-2; вода до 1 л. Технический результат: получение блестящих покрытий с высоким выходом по току и низкой пористостью покрытия. 3 пр.

Изобретение относится к области осаждения износостойких комбинированных покрытий для защиты поверхностей алюминиевых сплавов от воздействия агрессивных сред и износа, в частности для защиты алюминиевых литейных сплавов с высоким содержанием кремния, и может быть использовано в авиационной промышленности, станко-, судо- и моторостроении. Осаждают износостойкое покрытие на алюминиевый сплав, в котором формируют промежуточный слой с последующим нанесением на него слоя карбида хрома путем химического осаждения из паровой фазы бисаренхроморганического соединения, при этом промежуточный слой формируют из никель-кобальтового сплава электрохимическим способом. Обеспечивается сплошность покрытия и его прочность сцепления с подложкой из алюминиевого сплава с высоким содержанием кремния, а также снижение времени, энерго- и трудоемкости процесса осаждения. 5 з.п. ф-лы, 2 табл., 9 пр.

Изобретение относится к области гальванотехники и может быть использовано для обработки деталей в приборостроении и машиностроении, при изготовлении предметов домашнего обихода, хирургических и лабораторных инструментов. Способ включает использование стандартного электролита, содержащего никель сернокислый, никель хлористый, борную кислоту и блескообразователь. Электролиз проводят при температуре 50°C и плотности тока 5,0-6,0 А/дм2, а в качестве блескообразователя в электролит вводят в концентрации 0,3-0,7 г/л производные трихлорэтиламидов следующей структуры: Технический результат: получение блестящих покрытий с высоким выходом по току и низкой пористостью покрытия и расширение ассортимента блескообразующих добавок. 3 пр.

Изобретение относится к области металлургии, а именно к химико-термической обработке металлических деталей, и может быть использовано для защиты металлических деталей от коррозии. Способ диффузионного цинкования металлических деталей включает предварительную подготовку поверхности деталей и нанесение слоя защитного покрытия методом диффузионного цинкования в вакууме. Цинковый слой наносят в среде инертного газа, причем перед нанесением цинкового покрытия на подготовленную поверхность металлических изделий гальваническим методом наносят подслой из никеля толщиной не более 3-5 мкм, а после нанесения упомянутого цинкового слоя осуществляют охлаждение металлических изделий в среде инертного газа. Обеспечивается снижение необходимой эффективной толщины защитного покрытия за счет повышения степени антикоррозионной защиты покрытия, снижения риска наводораживания покрытия при эксплуатации изделий в условиях воздействия агрессивного фактора среды за счет снижения пористости пленки. 2 ил., 1 табл., 2 пр.

Изобретение относится к покрытию деталей турбины, а именно к гидрофобному эрозионно-стойкому покрытию, нанесенному на деталь аксиально вращающегося механизма, используемую под воздействием насыщенного водой газа, и к способу нанесения этого покрытия. Упомянутое покрытие имеет металлическую матрицу с полисилоксановым наполнителем, распределенным по толщине покрытия. После нанесения упомянутого покрытия проводят отжиг наполнителя с обеспечением повышенной температуростойкости полисилоксанового наполнителя. Обеспечивается требуемый баланс температуростойкости и гидрофобности покрытия, и повышается его долговечность. 2 н. и 12 з.п. ф-лы, 3 ил.

Изобретение относится к области гальваностегии и может быть использовано при изготовлении стальных деталей, которые эксплуатируются в агрессивных средах. Способ включает электрохимическое осаждение никеля на предварительно подготовленную стальную пластину из электролита, содержащего кристаллогидрат сульфата никеля (II), кристаллогидрат хлорида никеля (II), борную кислоту и воду, при этом перед электрохимическим осаждением никеля проводят выдержку предварительно подготовленной стальной пластины в электролите при температуре 20-25 °С и потенциале -0,45 В относительно хлоридсеребряного электрода сравнения, при этом в качестве электролита используют электролит, содержащий: 140 г/л кристаллогидрата сульфата никеля (II), 70 г/л кристаллогидрата хлорида никеля (II), 25 г/л борной кислоты и воду до 1 л, а электрохимическое осаждение никеля из упомянутого электролита проводят при температуре 20-25 °С, катодной плотности тока 3,5-5,5 А/дм2 и рН 5,5. Технический результат: повышение экологической чистоты процесса за счет уменьшения испарения электролита с поверхности ванны, при этом способ позволяет получить равномерное полублестящее никелевое покрытие с высоким значением выхода по току и микротвердости. 1 табл., 13 пр.

Изобретение относится к промышленной экологии и может быть использовано для утилизации жидких отходов гальванических производств. Способ утилизации отработанного раствора анодного оксидирования алюминия и его сплавов включает смешивание указанного раствора с реагентом, образование осадка и отделение его от раствора. Отработанный раствор анодного оксидирования алюминия и его сплавов содержит в качестве основных компонентов алюминий(+3), щавелевую кислоту и, необязательно, серную кислоту. В качестве реагента используют отход получения покрытий никелем - отработанный раствор никелирования. При этом могут быть использованы отработанные растворы химического никелирования, гальванического никелирования или их смеси. Изобретение позволяет утилизировать отработанные растворы с получением товарного продукта – дигидрата оксалата никеля и снизить затраты на охрану окружающей среды. 5 з.п. ф-лы, 8 пр.
Наверх