Активный гидролокатор

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов. Техническим результатом изобретения является повышение точности определения дистанции до цели. Это достигается за счет того, что определение дистанции до цели производится с использованием многоканального запоминающего устройства на выходе системы доплеровской фильтрации, на основе измерения времени задержки отклика на выходе согласованного фильтра для специально сформированного сложного сигнала, причем длительность этого отклика существенно (например, в десятки-сотни раз) меньше длительности сигнального отклика тонального сигнала. Сложный сигнал формируется с использованием сигнального отклика тонального эхо-сигнала на выходе того доплеровского канала, в котором этот эхо-сигнал был обнаружен, и модулирующей функции сложного сигнала. 2 ил.

 

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов.

Известен активный гидролокатор (патент РФ №2346295), содержащий акустические излучающую и приемную антенны, устройство формирования зондирующего сигнала, генераторное устройство, устройство управления, устройство формирования характеристик направленности, блок измерения времени задержки эхо-сигнала относительно момента излучения зондирующего сигнала, блок измерения угла прихода эхо-сигнала в вертикальной плоскости, блок измерения глубины цели.

Известен активный гидролокатор (патент США №3686669), содержащий генератор коротких импульсных сигналов, излучающую и приемную антенны, устройства формирования характеристик направленности, устройство обработки принятых сигналов, устройство обнаружения эхо-сигналов, устройство спектрального анализа сигнала.

Однако в этих гидролокаторах отсутствует устройство определения дистанции до цели.

По количеству общих признаков наиболее близким аналогом предлагаемого изобретения является активный гидролокатор, содержащий последовательно соединенные устройство синхронизации, устройство формирования тонального зондирующего сигнала, генераторное устройство и излучающую акустическую антенну, также содержащий последовательно соединенные приемную акустическую антенну, устройство формирования характеристики направленности, многоканальное устройство доплеровской фильтрации, устройство обнаружения эхо-сигнала и устройство определения радиальной скорости цели, также содержащий устройство определения дистанции до цели (Митько В.Б., Евтютов А.П., Гущин С.Е. Гидроакустические средства связи и наблюдения. -Л.: Судостроение, 1982. С.119-125, 138-141).

Недостатком этого гидролокатора-прототипа является то, что при большой длительности тонального зондирующего сигнала, необходимой для обеспечения значительных дальностей обнаружения эхо-сигналов, существенно снижается точность определения дистанции до цели. Это связано с тем, что в гидролокаторе-прототипе величины ошибок определения дистанции тем больше, чем больше длительность тонального сигнала.

Техническим результатом изобретения является повышение точности определения дистанции до цели для гидролокатора, содержащего многоканальное устройство доплеровской фильтрации и предназначенного для работы по подвижным целям.

Для достижения данного технического результата в активный гидролокатор, содержащий последовательно соединенные устройство синхронизации, устройство формирования тонального зондирующего сигнала, генераторное устройство и излучающую акустическую антенну, также содержащий последовательно соединенные приемную акустическую антенну, устройство формирования характеристики направленности, многоканальное устройство доплеровской фильтрации, устройство обнаружения эхо-сигнала и устройство определения радиальной скорости цели, также содержащий устройство определения дистанции до цели, введены новые признаки, а именно: последовательно соединенные многоканальное запоминающее устройство, устройство коммутации, устройство выделения сигнального отклика тонального сигнала, модулятор, согласованный фильтр, также введено устройство формирования модулирующей функции сложного сигнала и устройство выработки строба, при этом первый и второй входы устройства формирования модулирующей функции сложного сигнала соединены с выходом устройства определения радиальной скорости цели и вторым выходом устройства выделения сигнального отклика тонального сигнала соответственно, а первый и второй выходы устройства формирования модулирующей функции сложного сигнала соединены со вторыми входами модулятора и согласованного фильтра соответственно, вход устройства выработки строба соединен со вторым выходом устройства обнаружения эхо-сигнала, второй выход многоканального устройства доплеровской фильтрации соединен с первым входом многоканального запоминающего устройства, первый, второй и третий выходы устройства выработки строба соединены со вторым входом многоканального запоминающего устройства, вторым входом устройства выделения сигнального отклика тонального сигнала и первым входом устройства определения дистанции до цели соответственно, второй вход которого соединен с выходом согласованного фильтра, второй вход устройства обнаружения эхо-сигнала соединен со вторым выходом устройства синхронизации, третий выход устройства обнаружения эхо-сигнала соединен со вторым входом устройства коммутации.

Указанный технический результат достигается за счет того, что определение дистанции до цели производится с использованием многоканального запоминающего устройства на выходе системы доплеровской фильтрации, на основе измерения времени задержки отклика на выходе согласованного фильтра для специально сформированного сложного сигнала, причем длительность этого отклика существенно (например, в десятки-сотни раз) меньше длительности сигнального отклика тонального сигнала. Отметим, что точность определения дистанции до цели зависит от длительности того отклика, по которому эта дистанция определяется: в данном случае это отклик специально сформированного сложного сигнала на выходе согласованного фильтра. Следует сказать также, что сложный сигнал формируется с использованием сигнального отклика тонального эхо-сигнала на выходе того доплеровского канала, в котором этот эхо-сигнал был обнаружен, и модулирующей функции сложного сигнала. Это реализуется при совместной работе вновь введенных блоков, связей между ними и связей этих блоков с другими блоками гидролокатора.

Сущность изобретения поясняется фиг.1 и фиг.2, где на фиг.1 приведена блок-схема предложенного активного гидролокатора, а на фиг.2 представлены огибающая отклика сложного сигнала на выходе согласованного фильтра (сплошная линия) и огибающая сигнального отклика тонального сигнала (штриховая линия).

Активный гидролокатор (фиг.1) содержит последовательно соединенные устройство 3 синхронизации, устройство 4 формирования тонального зондирующего сигнала, генераторное устройство 5 и излучающую акустическую антенну 1. Гидролокатор (фиг.1) содержит также последовательно соединенные приемную акустическую антенну 2, устройство 6 формирования характеристики направленности, многоканальное устройство 7 доплеровской фильтрации, устройство 8 обнаружения эхо-сигнала. Также активный гидролокатор содержит последовательно соединенные многоканальное запоминающее устройство 9, устройство 10 коммутации, устройство 11 выделения сигнального отклика тонального сигнала, модулятор 12, согласованный фильтр 13. Устройство 8 образует последовательную цепь с устройством 16 определения радиальной скорости цели и устройством 17 формирования модулирующей функции сложного сигнала. Второй вход устройства 17 соединен с выходом устройства 11, а первый и второй выходы устройства 17 соединены со вторыми входами модулятора 12 и согласованного фильтра 13 соответственно. Вход устройства 15 выработки строба соединен с выходом устройства 8, второй выход устройства 7 соединен с первым входом устройства 9, первый, второй и третий выходы устройства 15 соединены со вторым входом устройства 9, вторым входом устройства 11 и первым входом устройства 14 соответственно. Второй вход устройства 14 соединен с выходом согласованного фильтра 14, второй вход устройства 10 соединен с третьим выходом устройства 8, а второй вход устройства 8 соединен со вторым выходом устройства 3.

Практическое исполнение блоков, входящих в изобретение, известно из практики гидроакустики и реализуется на основе применения цифровых устройств.

Блоки 9, 10 и согласованный фильтр 13 могут быть реализованы на основе технических решений, приведенных в книге Проектирование импульсных и цифровых устройств радиотехнических систем. /Гришин Ю.П., Казаринов Ю.М., Катиков В.М. и др./ Под ред. Ю.М. Казаринова. -М.: Высш. шк., 1985. на С.51 и С.147-150.

Блоки 12, 17 выполняются с использованием технических решений, приведенных в книге Проектирование импульсных и цифровых устройств радиотехнических систем. /Цифровые радионавигационные устройства / В.В. Барашенков, А.Е. Лутченко, Е.М. Скороходов и др./ Под ред. В.Б. Смолова. -М.: Сов. радио, 1980. С.196-206.

Блоки 11, 15 реализуются с использованием технических средств, описанных в книге Проектирование импульсных и цифровых устройств радиотехнических систем. /Гришин Ю.П., Казаринов Ю.М., Катиков В.М. и др./ Под ред. Ю.М. Казаринова. -М.: Высш. шк., 1985. С.155-163.

Работа устройства осуществляется следующим образом. Устройство 4 формирования тонального зондирующего сигнала вырабатывает зондирующие сигналы. Гидролокатор производит излучение зондирующего сигнала с помощью генераторного устройства 5 и излучающей акустической антенны 1. Отраженный от объекта эхо-сигнал с выхода приемной акустической антенны 2 поступает на устройство 6 формирования характеристики направленности. С выхода устройства 6 сигнальный массив поступает на устройство 7, обеспечивающее доплеровскую фильтрацию принятых сигналов, и далее на устройство обнаружения эхо-сигнала 8. С выхода блока 7 сигнальные процессы, соответствующие всем доплеровским каналам, поступают на вход многоканального запоминающего устройства 9, которое работает в режиме обновления запоминаемой информации. При обнаружении эхо-сигнала в устройстве выработки строба 15 вырабатывается стробирующий импульс, середина которого по времени соответствует моменту обнаружения эхо-сигнала, а длительность которого дает возможность, с учетом приборных ошибок сформировать в блоке 9 необходимый массив сигнального процесса, включающий на некоторой протяженности по времени как отклик тонального сигнала, так и шумы. Этот массив передается в устройство 11 выделения сигнального отклика тонального сигнала через устройство 10, которое коммутирует передачу из устройства 9 массива сигнального процесса из того доплеровского канала, в котором устройство 8 обнаружило эхо-сигнал. В блоке 11 происходит выделение сигнального отклика тонального сигнала из поступившего в этот блок массива. Из блока 11 поступает управляющая команда на первый вход блока 17. Устройство 16 по данным, поступившим из блока 8, производит определение радиальной скорости цели и передает эту величину на второй вход блока 17. На входы модулятора 12 поступают сигнальный отклик тонального сигнала в виде радиоимпульса (то есть импульса с высокочастотным заполнения) из блока 11 и модулирующая функция сложного сигнала из блока 17. С выхода блока 12 на вход согласованного фильтра 13 поступает сформированный, на основе отклика тонального сигнала и модулирующей функции, сложный сигнал. На другой вход блока 13 из блока 17 поступает модулирующая функция сложного сигнала, в качестве опорного сигнала согласованного фильтра. В результате на выходе блока 13 возникает сжатый по длительности отклик сформированного сложного сигнала в виде огибающей. Длительность отклика сложного сигнала существенно меньше сигнального отклика тонального сигнала. Этот эффект иллюстрируется на примере с помощью фиг.2. На фиг.2 представлено:

- огибающая сигнального отклика тонального сигнала (штриховая линия), длительность отклика по уровню (минус 3 дБ) от максимума равна приблизительно 0,6·Т, Т - длительность тонального зондирующего сигнала, в данном случае при Т=0,5 с, 0,6·Т=0,3 с;

- огибающая отклика сложного сигнала на выходе согласованного фильтра (сплошная линия), ширина полосы сформированного в данном случае сложного сигнала равна 100 Гц, длительность основного лепестка огибающей сигнального отклика сложного сигнала по уровню (минус 3 дБ) равна, соответственно, 10 мс.

Таким образом, в данном примере длительность отклика сформированного сложного сигнала в 30 раз меньше длительности отклика тонального сигнала, за счет этого и происходит существенное повышение точности определения дистанции до цели.

С выхода блока 13 огибающая отклика согласованного фильтра поступает на вход устройства 14 определения дистанции до цели. В блоке 14 производится определение интервала τ3 между моментом времени tи, соответствующим концу излучения зондирующего сигнала, и моментом времени tм, соответствующим максимуму выходного отклика блока 13. Далее в блоке 14 определяется дистанция до цели с использованием соотношения:

D=c·τ3/2,

где c - скорость звука в воде.

Величина τ3 определяется в блоке 14 по соотношению:

τ3стрм,

где τстр - интервал времени между концом излучения и моментом начала стробирующего импульса, измеряется в блоке 15;

τм - интервал времени между началом стробирующего импульса и моментом tм, измеряется в блоке 14.

Устройство 3 управляет во времени формированием зондирующего сигнала (блок 4) и соответственно работой генераторного устройства 5, а также обеспечивает через блок 8 синхронизацию работы блоков 9, 10, 11, 14, 15, 16 и 17.

Использование многоканального запоминающего устройства, устройства коммутации, устройства выделения сигнального отклика, устройства формирования модулирующей функции, модулятора, согласованного фильтра, устройства выработки строба с соответствующими связями между этими блоками и связями этих блоков с другими блоками активного гидролокатора, обеспечивает повышение точности определения дистанции до цели на основе измерения времени задержки отклика на выходе согласованного фильтра для специально сформированного сложного сигнала, причем длительность этого отклика существенно меньше длительности сигнального отклика тонального сигнала.

Таким образом, задача успешно решается.

Активный гидролокатор, содержащий последовательно соединенные устройство синхронизации, устройство формирования тонального зондирующего сигнала, генераторное устройство и излучающую акустическую антенну, также содержащий последовательно соединенные приемную акустическую антенну, устройство формирования характеристики направленности, многоканальное устройство доплеровской фильтрации, устройство обнаружения эхо-сигнала и устройство определения радиальной скорости цели, также содержащий устройство определения дистанции до цели, отличающийся тем, что в него введены последовательно соединенные многоканальное запоминающее устройство, устройство коммутации, устройство выделения сигнального отклика тонального сигнала, модулятор, согласованный фильтр, также введено устройство формирования модулирующей функции сложного сигнала и устройство выработки строба, при этом первый и второй входы устройства формирования модулирующей функции сложного сигнала соединены с выходом устройства определения радиальной скорости цели и вторым выходом устройства выделения сигнального отклика тонального сигнала соответственно, а первый и второй выходы устройства формирования модулирующей функции сложного сигнала соединены со вторыми входами модулятора и согласованного фильтра соответственно, вход устройства выработки строба соединен со вторым выходом устройства обнаружения эхо-сигнала, второй выход многоканального устройства доплеровской фильтрации соединен с первым входом многоканального запоминающего устройства, первый, второй и третий выходы устройства выработки строба соединены со вторым входом многоканального запоминающего устройства, вторым входом устройства выделения сигнального отклика тонального сигнала и первым входом устройства определения дистанции до цели соответственно, второй вход которого соединен с выходом согласованного фильтра, второй вход устройства обнаружения эхо-сигнала соединен со вторым выходом устройства синхронизации, третий выход устройства обнаружения эхо-сигнала соединен со вторым входом устройства коммутации.



 

Похожие патенты:
Изобретение относится к области использования систем технического зрения для обнаружения объектов и скорости их движения на гидролокационных изображениях. Техническим результатом изобретения является высокая точность определения координат объектов, окружающих подвижную подводную платформу, и скорости их движения за счет использования совместной обработки последовательности гидролокационных изображений и данных инерциальной системы самой движущейся платформы. .

Система для освещения подводной обстановки относится к специальной технике и может быть использована для обнаружения и опознания подводных объектов, а также для сигнализации и оповещения о появлении на акваториях морских объектов хозяйственной деятельности (акватории портов, морские терминалы по добыче и транспортировке углеводородов, гидротехнические сооружения и т.д.) неизвестных малогабаритных подвижных аппаратов (МПА) или подводных пловцов (ПП), а также для обнаружения и сопровождения айсбергов.

Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося заглубленного источника звука, измерения координат источника звуковых волн в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными.

Изобретение относится к области использования навигационных и промерных эхолотов и может быть применено для их тарировки. Техническим результатом изобретения является повышение точности тарирования эхолотов и снижение трудозатрат на ее проведение.

Использование: гидроакустика и может быть использовано для построения навигационных гидроакустических станций освещения ближней обстановки. Сущность: способ содержит излучение зондирующего сигнала, прием отраженного эхосигнала, формирование статического веера характеристик направленности, формирование цифрового массива данных с выхода тракта когерентной обработки по каждому пространственному каналу, последовательный вывод цифровых отсчетов на индикатор, определение порога автоматического обнаружения по среднему значению амплитуд цифровых отсчетов первого и второго циклов обработки по всем пространственным каналам, вывод цифровых отсчетов на индикатор осуществляется по правилу А=Аотсч/ (Г-К), где А амплитуда отсчета, выводимая на индикатор, Аотсч - амплитуда исходного цифрового отсчета, Г - параметр, определяемый оператором как глубина регулировки усиления, К - номер цикла обработки, порог автоматического обнаружения выбирается из условия минимума пропуска эхосигнала от цели, формирование общего цифрового массива данных с выхода тракта когерентной обработки по всем пространственным каналам от момента излучения до момента достижения зондирующим сигналом установленной шкалы работы, определение отсчетов, превысивших порог, определение номера пространственного канала М, определение временного положения отсчета Т, проведение классификации по цифровым отсчетам обнаруженной цели из общего цифрового массива по М пространственным каналам, средний канал из которых равен измеренному каналу, и во временном окне, равном Н циклам набора временной реализации, автоматическое определение классификационных признаков и автоматическое принятие решения о классе цели, вывод результата обработки по обнаруженной цели на индикатор с указанием номера цели, измеренных координат М и Т, классификационных признаков и класса обнаруженной цели, при очередном обнаружении превышения порога процедура повторяется до окончания шкалы дистанции и по совокупности всех обнаруженных целей формируется банк классификации.

Использование: гидроакустика. Сущность: способ содержит излучение зондирующего сигнала, прием эхосигнала веером статических характеристик, набор временной реализации последовательно по всем пространственным каналам, обработку последовательно по всем пространственным каналам, определение уровня помехи, как результат суммирования всех отсчетов по первому циклу приема по всем пространственным каналам, вычисляют порог обнаружения по среднему значению всех отсчетов Аср, производят выбор минимального значения в каждом наборе временных отсчетов огибающей последовательно по всем пространственным каналам по правилу 0≤Амин<Аср, запоминают номера пространственных каналов, в которых обнаружены минимальные значения огибающих, производят выбор максимального отсчета Амакс в каждом наборе отсчетов огибающей по всем пространственным каналам, проводят прореживания с оставлением минимального отсчета по правилу п последовательных отсчетов выбирают наименьший, и максимального отсчета по правилу из n последовательных отсчетов выбирают максимальный, в каждом наборе временных отсчетов огибающей по всем пространственным каналам, производят автоматическое обнаружения превышения эхосигналами выбранного порога обнаружения Амакс>Апорог=кАср последовательно по всем пространственным каналам статического веера характеристик направленности, измеряют и запоминают амплитуды и номера отсчетов сигналов, превысивших порог обнаружения, измеряют и запоминают номера пространственных каналов, в которых произошло обнаружение сигнала, измеряют угловую протяженность УПмак объекта по количеству пространственных каналов, превысивших порог обнаружения, определяют номера отсчетов и пространственных каналов, в которых не произошло превышение выбранного порога и уровень сигнала в которых близок к 0, определяют угловую протяженность УПмин области минимальных отсчетов по числу пространственных каналов, в которых 0≤Амин<Аср, и при совпадении угловых протяженностей принимают решения о наличии тени объекта.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов, классификации обнаруженных объектов.

Использование: гидроакустическая техника, а именно область активной гидролокации, включая активные гидролокаторы, предназначенные для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов, классификации обнаруженных объектов.

Изобретение относится к области гидролокации и предназначено для обнаружения газовой пелены и определения глубины местоположения начала утечек газа трубопроводов гидроакустическими средствами.

Изобретение относится к области авиации, в частности к системам бортового оборудования вертолетов. Система обнаружения помех для посадки и взлета вертолета включает ультразвуковые устройства сканирования (1), каждое из которых состоит, по меньшей мере, из средств для передачи ультразвукового сигнала в направлении вниз и получения отраженного ультразвукового сигнала.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов. Техническим результатом изобретения является то, что обеспечивается повышение точности определения дистанции до цели. Это достигается за счет того, что определение дистанции до цели производится на основе измерения времени задержки отклика на выходе второго согласованного фильтра для специально сформированного (на основе отклика эхо-сигнала на выходе первого согласованного фильтра) вспомогательного сложного сигнала, причем длительность отклика на выходе второго согласованного фильтра существенно меньше длительности отклика эхо-сигнала на выходе первого согласованного фильтра. 2 ил.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов. Техническим результатом изобретения является то, что обеспечивается повышение точности определения дистанции до цели. Это достигается за счет того, что определение дистанции до цели производится на основе измерения времени задержки отклика на выходе согласованного фильтра для специально сформированного (на основе отклика тонального сигнала) сложного сигнала, причем длительность этого отклика существенно меньше длительности сигнального отклика тонального сигнала. 2 ил.

Изобретение относится к автоматизированной регистрации в реальном времени морских млекопитающих. Техническим результатом является повышение точности регистрации в режиме реального времени морских млекопитающих. В способе на этапе предварительной обработки (FPP) изображений осуществляется коррекция изображения и невзвешенная полная сегментация (SEG) изображения на фрагменты, на этапе обнаружении (DET) используется алгоритм предельного значения на основе обнаруженного локального изменения контраста, на этапе классификации (CLA) выполняется контролируемое обучение с использованием метода опорных векторов (SVM) с гиперплоскостью (НЕ) для разделения на два класса, на этапе локализации (LOC) выполняется автоматическое вычисление расстояния до обнаруженной тепловой сигнатуры морского млекопитающего (TSMM) и его временных и пространственных изменений относительно судна (RV), на этапе верификации (VER) обеспечивается возможность мгновенной проверки решения оператором, и на этапе документировании (DOC) пользовательские данные (IRV) изображения обнаруженных тепловых сигнатур морских млекопитающих (TSMM) автоматически предоставляются в распоряжение. Для формирования данных используется система инфракрасной камеры (IRC) с регистрацией в пределах полного круга или части круга и с активной гироскопической стабилизацией относительно горизонта (HZ). 20 з.п. ф-лы, 9 ил.

Изобретение относится к освоению подводных месторождений полезных ископаемых, преимущественно жидких и газообразных, а именно к сооружению технологических комплексов, предназначенных для обустройства морских глубоководных нефтегазовых месторождений и работающих в экстремальных условиях. Способ обустройства морских глубоководных нефтегазовых месторождений заключается в сооружении ряда морских стационарных платформ, подводных донных комплексов, подводных внутрипромысловых и магистральных трубопроводов, емкостей хранения продукции скважин и отгрузочных установок, при этом, по крайней мере, одну из платформ выполняют в подводном исполнении с закрепленным ко дну опорным блоком, верхний габарит которого располагают ниже уровня воды на величину наибольшего габарита прохождения подводной части айсберга. Кроме этого все платформы в подводном исполнении конструктивно и технологически соединены между собой электрическими кабелями и трубопроводами для конденсата и газа. Выполняют регулярное глубинное сейсмическое зондирование в районе терминалов по добыче подводных залежей углеводородов, путем пассивного зондирования морского дна и последующего анализа микросейсмических колебаний земной коры, блок-модуль энергетической платформы выполняют с газовой турбинной установкой, выполняют прогноз состояния моря вблизи морских буровых платформ путем размещения на акватории волномерных буев и запуска беспилотных летательных аппаратов, оснащенных измерительной аппаратурой, величину наибольшего габарита прохождения подводной части айсберга определяют путем зондирования подводной части айсберга гидроакустическими сигналами с подвижного подводного аппарата, оснащенного параметрическим гидролокатором и управляемым по гидроакустическому каналу связи посредством автоматизированной системы управления и контроля, блок-модули опорных блоков платформы в подводном исполнении, служащие для размещения персонала в подводных воздушных камерах, выполнены со стыковочными устройствами, обеспечивающими стыковку со спасательными подводными аппаратами, размещенными в специальном подводном ангаре. Техническим результатом является повышение надежности строительства и эксплуатации, снижение стоимости капитальных и эксплуатационных затрат при обустройстве морских глубоководных нефтегазовых месторождений. 2 ил.

Изобретение относится к техническим средствам охраны объектов со стороны водной среды с прямой передачей информации в пункт приема об обнаруженных подводных целях через границу вода-воздух на основе эффекта параметрического взаимодействия электромагнитных и акустических колебаний, организованных на границе вода-воздух. Система охраны предназначена для использования в морских областях, озерах, в речных руслах и каналах. Использование в системе прямой передачи информации через границу вода-воздух позволяет оперативно развертывать систему охраны в зоне наблюдений, не прокладывать по дну кабели и не использовать радиобуи на водной поверхности, тем самым исключить возможность несанкционированных внешних воздействий на систему. Техническим результатом настоящего изобретения является увеличение надежности и эффективности системы охраны, упрощение и удешевление передачи в пункт приема информации о подводной обстановке в сложных условиях проведения подводных наблюдений и охранных мероприятий в реальных акваториях. 2 ил.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов. Техническим результатом изобретения является обеспечение возможности обнаружения с высокой вероятностью объектов на фоне реверберационной помехи, при неизвестной радиальной скорости отражающего объекта, определения с повышенной точностью координат и параметров движения обнаруженных объектов при излучении только одной посылки. 1 ил.

Изобретение относится к области гидроакустики, а именно к конструированию многоэлементных антенн гидроакустических комплексов надводных кораблей и подводных лодок. Предложена многоэлементная гидроакустическая антенна, содержащая основание, на котором закреплены секции, в которых размещены стержневые пьезокерамические преобразователи, каждая секция заключена в герметичный корпус и содержит на лицевой стороне пластину, в отверстиях которой установлены передние накладки стержневых пьезокерамических преобразователей, герметично соединенные со стенками отверстий резиновыми развязками-уплотнениями, и каждая секция имеет электрический вывод. В антенне каждая пластина представляет собой сегмент цилиндрической поверхности высотой h с центральным углом β, многоэлементная гидроакустическая антенна выполнена в виде сегмента толстостенного цилиндра толщиной b, где b - радиальный размер секции, высотой nh, где n - количество секций по высоте многоэлементной гидроакустической антенны, и центральным углом α=kβ, где k - количество секций по направляющей цилиндрической поверхности, причем основание многоэлементной гидроакустической антенны выполнено в виде круглого металлического фланца, снабженного стойками, перпендикулярными фланцу и имеющими форму сегмента цилиндрической поверхности конгруэнтной внутренней поверхности секции, стойки смещены от края основания на расстояние b, причем корпус каждой секции с ее тыльной поверхности скреплен разъемными соединениями с двумя стойками, ширина стойки b1 выполнена достаточной для размещения разъемного соединения, которое может быть выполнено резьбовым, а электрические выводы от секций выполнены с их тыльной стороны в промежутках между стойками и выведены из антенны через центральное отверстие во фланце. Это позволяет упростить транспортировку антенны на объект и ее сборку, что повышает ее технологичность, снижает стоимость и массогабаритные характеристики, а возможность замены секции непосредственно на корабле повышает ресурс и долговечность без снижения тактико-технических характеристик. 1 з.п. ф-лы, 2 ил.

Настоящее изобретение относится к области гидроакустики и может быть использовано для разработки гидроакустической аппаратуры различного назначения. Способ позволяет автоматически обнаруживать гидроакустические сигналы шумоизлучения объектов. Способ обработки гидроакустического сигнала шумоизлучения объекта, содержащий прием сигнала шумоизлучения, определение спектра шумового сигнала и помехи, накопление, сравнение результата, прием сигнала шумоизлучения производят с выхода единой антенны, производят выделение реальной части спектра, выделение мнимой части спектра, повторение процедуры выделения реальной части спектра и повторение процедуры выделения мнимой части спектра для N последовательных наборов, суммирование реальных частей по N наборам, суммирование мнимых частей по N наборам, возведение в квадрат суммы реальных частей, возведение в квадрат суммы мнимых частей, определение энергетического спектра сигнала суммы, одновременно с определением энергетического спектра суммы по тем же исходным данным определяется энергетический спектр разности, определяют энергетический спектр разности как сумму квадратов N наборов разности реальных частей и сумму квадратов N наборов разности мнимых частей, а решение о наличии сигнала шумоизлучения объекта принимается в том случае, если энергетический спектр суммы будет больше энергетического спектра разности. 1 ил.

Изобретение относится к области подводной навигации и, в частности, может быть использовано для определения собственных координат АНПА при его перемещении подо льдом в высоких арктических широтах. Технический результат заключается в повышении точности позиционирования АНПА при проведении подледных работ в высоких арктических широтах за счет исключения из системы датчика курса АНПА, т.е. исключения влияния ошибок его измерений на общую оценку горизонтальных координат аппарата. Предложенное техническое решение позволяет также исключить ограничивающие условия оценки координат аппарата из-за неблагоприятного геометрического (пространственного) расположения ГМ и АНПА. Использование радионавигационных приемников GPS/ГЛОНАСС, ГАНС-УКБ при определении местоположения ГМ, в качестве которого используется ТНПА, а также исключение измерения курса АНПА и ОС прямым путем, что является источником некорректных данных в высоких арктических широтах, а также повышение маневренности ГМ позволили решить задачу оценки собственных координат АНПА в условиях подледного плавания. 3 ил.

Изобретение относится к гидролокации, конкретно к пассивным способам акустического обнаружения и локации подводных пловцов в толще воды, и может быть использовано при проведении подводных поисковых и спасательных работ, осуществлении охраны береговых сооружений и пляжей со стороны водной среды или охраны подводных сооружений, а также охраны судов на якорной стоянке, морских нефтяных платформ, входов в порты, опор мостов, каналов, акваторий гидростанций. Способ основан на обнаружении и выделении из зарегистрированных шумов исследуемой акватории квазипериодических модуляций неустранимых низкочастотных дыхательных шумов подводного пловца, вызванных ритмом дыхательных маневров, частота которых лежит в диапазоне 0,1-1 Гц. Технический результат - увеличение дальности обнаружения. 2 з.п. ф-лы, 3 ил.
Наверх