Способ очистки газов

Изобретение относится к способам очистки газов в электрофильтрах и может быть использовано в металлургической, химической, энергетической и других отраслях промышленности. При осуществлении способа очищаемые газы пропускают через газовые каналы электрофильтра, образованные газопроницаемыми осадительными электродами с установленными между ними коронирующими электродами Очищаемые газы эжектируют из одного газового канала в смежный с ним канал и обратно через осадительные электроды, которые выполнены объемными. Живое сечение и объемность электродов устанавливают из математических выражений. Повышается эффективность очистки газов.

 

Изобретение относится к способам очистки газов в электрофильтрах и может быть использовано в металлургической, химической, энергетической и других отраслях промышленности.

Наиболее близким по совокупности признаков к предлагаемому объекту является выбранный в качестве прототипа способ очистки газов от взвешенных в них частиц в электрическом поле электрофильтра при пропускании очищаемых газов через газовые каналы электрофильтра, образованные осадительными электродами с установленными между ними коронирующими электродами. При этом взвешенные в газах частицы электрически заряжают в поле коронного разряда, организованном в межэлектродном пространстве электрофильтра между осадительными и коронирующими электродами и воздействуют на эти заряженные частицы сильным электрическим полем между электрически разноименными осадительными и коронирующими электродами. Под воздействием сил электрического поля заряженные частицы перемещают в направлении к осадительным электродам, имеющим потенциал, противоположный потенциалу заряженных частиц, на которых они и осаждаются. Уловленные частицы удаляются с осадительных электродов в бункер электрофильтра, а очищенные газы отводятся из электкрофильтра (Справочник по пыле- и золоулавливанию / М.И. Биргер, В.А. Вальдберг, Б.И. Мягков и др; Под общ. ред. А.А. Русанова. - М., 1983. - С. 198, 199).

У предлагаемого объекта и прототипа совпадают такие существенные признаки: оба способа включают очистку газов от взвешенных в них частиц в электрическом поле электрофильтра при пропускании очищаемых газов через газовые каналы электрофильтра, образованные осадительными электродами с установленными между ними коронирующими электродами.

Анализ технических свойств прототипа, обусловленных его признаками, показывает, что получению ожидаемого технического результата при использовании прототипа препятствуют такие причины.

В прототипе очистка газов происходит за счет воздействия на заряженные частицы сил электрического поля, при этом движение очищаемых газов в электрофильтре имеет турбулентный характер.

Турбулентное движение газов характеризуется вихревыми образованиями и турбулентными пульсациями в них.

По естественным причинам, обусловленным как движущимися газами, так и турбулентными пульсациями в них, в движущихся газах присутствуют аэродинамические силы газового потока, действие которых, соответственно, распространяется и на движущиеся с газами улавливаемые частицы.

Таким образом, на улавливаемые частицы в межэлектродном пространстве (в газовом канале) электрофильтра кроме электрических сил действуют также и аэродинамические силы движущихся газов и турбулентных пульсаций в них. При этом в прототипе эффект положительного влияния турбулентных пульсаций (и аэродинамических сил газового потока как таковых) на процесс улавливания частиц практически не работает, так как время взаимодействия в электрическом поле в приэлектродной (осадительный электрод) области электрически заряженных частиц с электрическим потенциалом осадительных электродов сведено к минимуму, в связи с относительно высокой, по сравнению со скоростью движения заряженных частиц под действием сил электрического поля, скоростью движения газового потока (и турбулентных пульсаций в нем) относительно осадительных электродов. В результате практически все частицы, подводимые к осадительным электродам турбулентными пульсациями газового потока, не успевают осесть на электродах и под воздействием тех же сил турбулентных пульсаций отводятся обратно от осадительных электродов к центральной области межэлектродного пространства. Лишь незначительная часть частиц, оказавшихся в непосредственной близости (в пограничном слое газа) к поверхности осадительных электродов, под действием сил электрического поля успевает осесть на электродах. Все это приводит к тому, что способ по прототипу характеризуется недостаточно высокой эффективностью очистки газов.

В основу предлагаемого объекта поставлена задача создать такой способ очистки газов, в котором усовершенствования путем введения новых действий и новых параметров их осуществления позволят при использовании предлагаемого объекта обеспечить достижение технического результата, заключающегося в повышении эффективности очистки газов в электрофильтре.

Поставленная задача решается за счет того, что в способе очистки газов от взвешенных в них частиц в электрическом поле электрофильтра при пропускании очищаемых газов через газовые каналы электрофильтра, образованные осадительными электродами с установленными между ними коронирующими электродами, согласно предлагаемому техническому решению, очищаемые газы дополнительно эжектируют из одного газового канала электрофильтра в смежный с ним другой газовый канал и обратно через осадительные электроды, которые выполнены газопроницаемыми, при этом эжектирование осуществляют через живое сечение газопроницаемых осадительных электродов, которое устанавливают исходя из выражения:

0,1≤Ks≤0,4,

где Ks - отношение суммарной площади живого (проходного) сечения отверстий на проекционной поверхности газопроницаемого осадительного электрода к площади его проекционной поверхности.

В отдельных случаях использования предлагаемый способ может характеризоваться тем, что эжектирование осуществляют через газопроницаемые осадительные электроды, которые выполнены объемными, при этом объемность устанавливают исходя из выражения:

Kv≤0,3,

где Kv - отношение объема газопроницаемого объемного осадительного электрода к объему газового канала электрофильтра.

При использовании предлагаемого объекта обеспечивается достижение технического результата, заключающегося в повышении эффективности очистки газов в электрофильтре.

Между совокупностью существенных признаков предлагаемого объекта и достигаемым техническим результатом существует такая причинно-следственная связь.

Осуществление при очистке газов от взвешенных в них частиц в электрическом поле электрофильтра дополнительного, за счет взаимодействия между собой потоков газа в смежных каналах с газопроницаемыми осадительными электродами, эжектирования очищаемых газов из одного газового канала электрофильтра в смежный с ним другой газовый канал и обратно через газопроницаемые осадительные электроды с предлагаемым живым сечением осадительных электродов (параметр Ks) позволяет обеспечить наиболее эффективное воздействие на заряженные частицы в очищаемых газах (по направлению к поверхности осадительных электродов) как сил электрического поля, так и, одновременно с ними, аэродинамических сил потоков газов в газовых каналах электрофильтра путем организации перетоков очищаемых газов через живое сечение газопроницаемых осадительных электродов из одного газового канала электрофильтра в смежный с ним другой газовый канал и обратно. В результате, за счет многократности перетока газов с содержащимися в них заряженными частицами из одного газового канала электрофильтра в смежный с ним другой газовый канал и обратно, значительно возрастает время пребывания заряженных частиц в непосредственной близости к поверхности осаждения осадительных электродов, что увеличивает вероятность их контакта с осадительными электродами и, таким образом, обеспечивает повышение эффективности очистки газов в электрофильтре в целом.

Осуществление при очистке газов от взвешенных в них частиц в электрическом поле электрофильтра эжектирования очищаемых газов из одного газового канала электрофильтра в смежный с ним другой газовый канал и обратно через газопроницаемые осадительные электроды в объемном исполнении (параметр Kv) и с живым сечением (параметр Ks), в соответствии с предлагаемыми выражениями, позволяет обеспечить дополнительное увеличение продолжительности пребывания очищаемых газов с содержащимися в них заряженными частицами в непосредственной близости к увеличенной, за счет объемности, поверхности осаждения осадительных электродов, что, в свою очередь, способствует дополнительному повышению эффективности осаждения взвешенных в газах частиц на поверхности газопроницаемых объемных осадительных электродов и, таким образом, способствует дополнительному повышению эффективности очистки газов в электрофильтре в целом.

За счет предлагаемого эжектирования обеспечиваются перетоки очищаемых газов между смежными каналами электрофильтра, что позволяет для очистки газов использовать как силы электрического поля в межэлектродном пространстве, определяющие “электрическую составляющую” скорости движения заряженных частиц к осадительным электродам, так и, дополнительно, аэродинамические силы газового потока, определяющие “аэродинамическую составляющую” скорости движения заряженных частиц к осадительным электродам, что в результате повышает общую скорость движения заряженных частиц к осадительным электродам и тем самым обеспечивает повышение эффективности очистки газов в электрофильтре в целом.

Проходные отверстия в газопроницаемом (плоском) осадительном электроде или газопроницаемом объемном осадительном электроде определяют живое сечение (параметр Ks) осадительного электрода, а сами отверстия размещают равномерно на его проекционной поверхности. При этом в некоторых случаях, в зависимости от технологических и аэродинамических особенностей, возможно отклонение от равномерного размещения отверстий.

Эжектирование очищаемых газов через живое сечение газопроницаемых осадительных электродов, которое устанавливают исходя из условия 0,1≤Ks≤0,4 (при неизменных длине, высоте и ширине газовых каналов электрофильтра), обеспечивает свободный переток очищаемых газов через осадительные электроды из одного газового канала в другой смежный канал и обратно, так как при этом условии аэродинамическое сопротивление осадительных электродов перетокам очищаемых газов является оптимальным, что позволяет продлить время пребывания заряженных частиц в непосредственной близости к осадительным электродам за счет многократности перетоков из канала в канал и обратно и тем самым обеспечивает наиболее эффективное. осаждение этих частиц. Все это способствует повышению эффективности очистки газов в электрофильтре.

При Ks<0,1 (живое сечение осадительного электрода составляет менее 10% от площади его проекционной (фронтальной) поверхности) за счет запредельного увеличения аэродинамического сопротивления газопроницаемого осадительного электрода перетокам через него очищаемых газов из одного газового канала в другой произойдет снижение интенсивности этих перетоков, что не позволит повысить эффективность очистки газов в электрофильтре. При этом одновременно возрастает вероятность зарастания живого сечения (проходных отверстий) газопроницаемого осадительного электрода слоем осевших частиц (при очистке газов от твердых частиц), что дополнительно обусловит уменьшение живого сечения и газопроницаемости электрода, что, в свою очередь, приведет к снижению эффективности очистки газов в электрофильтре.

При Ks>0,4 площадь осаждения осадительного электрода за счет запредельного увеличения площади его живого сечения уменьшится настолько, что это приведет к недопустимому снижению эффективности очистки газов в электрофильтре, а одновременное снижение аэродинамического сопротивления электрода в свою очередь обусловит нарушение равномерности перетоков очищаемых газов через осадительный электрод из канала в канал вдоль его длины и сократит время пребывания очищаемых газов и взвешенных в них заряженных частиц вблизи уменьшенной поверхности осаждения осадительного электрода, что также приведет к снижению эффективности очистки газов в электрофильтре.

Определение объемности газопроницаемых объемных осадительных электродов, исходя из предлагаемого выражения Kv≤0,3, способствует дополнительному увеличению поверхности осаждения осадительных электродов, увеличению времени пребывания заряженных частиц в непосредственной близости к осадительным электродам (с развитой за счет объемности поверхностью осаждения) и их более эффективному осаждению, а также обеспечивает достижение максимальной зарядки взвешенных частиц в межэлектродном пространстве электрофильтра, что в целом обеспечивает дополнительное повышение эффективности очистки газов в электрофильтре. Объемность газопроницаемых осадительных электродов усиливает положительный эффект от использования предлагаемого способа.

При Kv>0,3 произойдет уменьшение объема межэлектродного пространства в газовых каналах электрофильтра (при неизменных габаритах электрофильтра) между газопроницаемыми объемными осадительными электродами с сильным электрическим полем и коронным разрядом, в котором осуществляется эффективная зарядка взвешенных частиц и, соответственно, уменьшение объема очищаемых газов с улавливаемыми частицами, находящихся в этом пространстве газового канала (некоторая часть объема очищаемых газов в процессе их перетоков между каналами находится внутри объемного осадительного электрода, т.е. в области слабой зарядки), что в свою очередь обусловит недозарядку части улавливаемых частиц и приведет к снижению эффективности очистки газов в электрофильтре.

В конкретном примере предлагаемый способ осуществляли следующим образом. Отходящие от технологического агрегата газы с содержащимися в них взвешенными частицами пыли направляли на очистку в электрофильтр. Очистку осуществляли в электрическом поле электрофильтра путем пропускания газов через газовые каналы электрофильтра, которые образованы заземленными осадительными электродами с установленными между ними по осям газовых каналов высоковольтными коронирующими электродами. В электрофильтре использовали осадительные электроды, которые были выполнены газопроницаемыми с живым сечением, при котором отношение суммарной площади живого (проходного) сечения отверстий на проекционной поверхности газопроницаемого осадительного электрода к площади его проекционной поверхности составляло 0,25 (параметр Ks), и объемными, в которых отношение объема газопроницаемого объемного осадительного электрода к объему газового канала электрофильтра составляло 0,1 (параметр Kv).

В процессе движения очищаемых газов по газовым каналам частицам пыли, содержащимся в газах и подлежащим улавливанию, сообщали электрический заряд в поле коронного разряда, которое организовано в межэлектродном пространстве электрофильтра, и воздействовали на эти заряженные частицы сильным электрическим полем, создаваемым между газопроницаемыми объемными осадительными электродами и коронирующими электродами.

Кроме того, под воздействием аэродинамических сил турбулентных пульсаций потока очищаемых газов и сил электрического поля заряженные частицы перемещали в направлении к осадительным электродам. Одновременно с этим очищаемые газы с заряженными частицами в смежных газовых каналах электрофильтра, за счет взаимодействия потоков газов между собой через живое сечение газопроницаемых объемных осадительных электродов, эжектировали из одного газового канала электрофильтра в смежный с ним другой газовый канал и обратно, перемещая при этом заряженные частицы к осадительным электродам и далее, за счет эжектирования, внутри осадительных электродов. При этом заряженные частицы заводили в газопроницаемые объемные осадительные электроды, с одной стороны, под воздействием сил электрического поля и аэродинамических сил турбулентных пульсаций потока очищаемых газов в одном газовом канале, а с другой стороны, под воздействием сил, возникающих в результате эжектирования очищаемых газов из этого канала в смежный с ним другой газовый канал и обратно через живое сечение осадительных электродов, что обеспечивало значительное увеличение времени пребывания заряженных частиц в электрическом поле вблизи осадительных электродов с развитой, за счет объемности, поверхностью осаждения.

При таком увеличении времени пребывания в зоне действия электрического поля вблизи осадительных электродов заряженные частицы, подводимые к осадительным электродам турбулентными пульсациями газового потока, перетоками очищаемых газов через газопроницаемые осадительные электроды и силами электрического поля в межэлектродном пространстве, успевали оседать на осадительных электродах.

Таким образом, за счет эжектирования обеспечивали многократное приближение заряженных частиц, содержащихся в газах, к поверхности осадительных электродов при перетоке газов из одного газового канала в другой и обратно. Значительное увеличение времени пребывания заряженных частиц пыли вблизи осадительных электродов (параметр Ks=0,25), с одной стороны, и увеличенная за счет объемности (параметр Kv=0,1) поверхность осаждения газопроницаемых объемных осадительных электродов, с другой стороны, способствовали существенному возрастанию эффективности осаждения заряженных частиц на осадительных электродах, что способствовало повышению эффективности очистки газов в электрофильтре в целом.

Уловленные частицы удалялись с осадительных электродов в бункер электрофильтра, а очищенные газы отводились из электрофильтра.

Способ очистки газов от взвешенных в них частиц в электрическом поле электрофильтра при пропускании очищаемых газов через газовые каналы электрофильтра, образованные газопроницаемыми осадительными электродами с установленными между ними коронирующими электродами, отличающийся тем, что очищаемые газы дополнительно эжектируют из одного газового канала электрофильтра в смежный с ним другой газовый канал и обратно через газопроницаемые осадительные электроды, которые выполнены объемными, при этом эжектирование осуществляют через живое сечение газопроницаемых объемных осадительных электродов, которое устанавливают исходя из выражения:
0,1≤K5≤0,4,
где Ks - отношение суммарной площади живого сечения отверстий на
поверхности газопроницаемого объемного осадительного электрода к площади его поверхности, а их объемность устанавливают исходя из выражения:
Kv≤0,3,
где Κv - отношение объема газопроницаемого объемного осадительного электрода к объему газового канала электрофильтра.



 

Похожие патенты:

Изобретение относится к технике вентиляции, а именно к изготовлению и использованию электрофильтра для очистки воздуха, работающего на принципе электростатической очистки воздуха и имеющего оригинальную конструкцию.

Изобретение относится к электрической очистке газов от пыли в различных отраслях промышленности. .

Изобретение относится к технике изготовления газоочистных и пылеулавливающих аппаратов и может быть использовано в производстве минеральных удобрений, металлургической, химической, нефтехимической и других отраслях промышленности для очистки газов в электрофильтре.

Изобретение относится к электрофильтрам - аппаратам для улавливания твердых или жидких частиц из газа, и может применяться в теплоэнергетике, металлургии, нефтехимии, промышленности строительных материалов и других отраслях.

Изобретение относится к электрофильтрам - аппаратам для очистки газов от взвешенных частиц в различных отраслях промышленности, в частности цветной металлургии, в электродном и других производствах.

Изобретение относится к электрической очистке газов от пыли в различных отраслях промышленности, в частности в теплоэнергетике, химической промышленности, промышленности строительных материалов, металлургии и др.

Изобретение относится к электрофильтрам и может использоваться для очистки промышленных газов от твердых и жидких частиц. .

Изобретение относится к области очистки газов и может быть использовано в нефтехимической, нефтеперерабатывающей, металлургической, в производстве минеральных удобрений и других отраслях промышленности для очистки газов в электрическом поле.

Изобретение относится к области пылеулавливания и предназначено для очистки газопылевых выбросов в различных отраслях промышленности. .

Изобретение относится к области электростатических фильтрующих устройств и может быть использовано при проектировании средств очистки воздуха в помещениях небольшого объема (до нескольких кубических метров), в которых нежелательны или вредны устройства, влияющие на экологию помещения - создающие тепловые, акустические или вибрационные нагрузки.

Изобретение относится к устройствам обработки газа в системе выпуска отработавшего газа, преимущественно для мобильных двигателей внутреннего сгорания в автомобилях. Устройство для создания электрического поля в системе выпуска отработавшего газа включает выпускной трубопровод, в котором расположен по меньшей мере один электрод, который находится в контакте с блоком питания. Электрод выполнен с помощью по меньшей мере одного металлического листа и простирается в направлении потока отработавшего газа. Все электроды в направлении потока имеют несколько выступов, образованных за счет удаления материала по меньшей мере одного металлического листа около торцевой кромки. По меньшей мере, один электрод интегрирован в сотовое тело. Упрощается конструкция, повышается эффективность очистки. 3 з.п. ф-лы, 3 ил.

Изобретение предназначено для очистки газа от пыли в различных отраслях промышленности: в энергетике, черной и цветной металлургии, в цементной и в других отраслях промышленности. Устройство включает пластинчатые осадительные электроды, ленточно-игольчатые коронирующие электроды с ориентацией игл перпендикулярно осадительным электродам. У ленточно-игольчатых электродов отношение высоты игл к ширине ленты увеличивается с ростом расстояния между осадительными электродами и составляет 1,0 -7,0. Повышается эффективность работы электрофильтров за счет исключения бестоковых зон короны на поверхности осадительных электродов. 5 ил.

Изобретение относится к способам очистки газов и может быть использовано в энергетике, в черной и цветной металлургии, цементной, атомной и в других отраслях промышленности. Удаление заряженных микрочастиц из газового потока осуществляют электрическим полем электрофильтра. Для захвата микрочастиц используют переменное электрическое поле квадрупольного типа. Переменное поле формирует линейную электродинамическую ловушку, ось которой перпендикулярна направлению скорости газового потока. В ловушке происходит захват заряженных частиц без осаждения их на электроды и удаление захваченных частиц из газового потока вдоль оси ловушки под действием силы тяжести и/или дополнительного постоянного электрического поля. Обеспечивается увеличение степени очистки газа и упрощение системы сбора микрочастиц. 2 ил.

Группа изобретений относится к электрической сухой очистке от пыли неагрессивных газов с температурой до 425°С в цветной и черной металлургии, других отраслях промышленности. При осуществлении способа производят встряхивание коронирующих элементов в горизонтальном направлении посредством молотка встряхивающего механизма и наковальни коронирующего электрода. Коронирующие элементы встряхивают в режиме двух тактов, причем импульс удара встряхивания второго такта направлен навстречу импульсу удара встряхивания первого такта. Коронирующие элементы регенерируются в режиме резонанса, при котором частота собственных колебаний коронирующих элементов совпадает с частотой, обратно пропорциональной периоду времени между ударом молотка механизма встряхивания и ударом отбойного молоточка по наковальням коронирующего электрода. Электрофильтр включает коронирующие электроды, состоящие из вертикальных коронирующих элементов, натянутых при помощи грузов между горизонтальными опорной и направляющей рамами, пластину с наковальнями на обоих концах, установленную посередине коронирующих элементов, механизм встряхивания с молотком. Конструкция снабжена дополнительным отбойным молоточком в противоположном конце пластины и находится в соприкосновении с наковальней. Повышается эффективность регенерации электрофильтра, обеспечивается температурный зазор между пластиной и коронирующими элементами, что позволяет легко монтировать или демонтировать элементы в случае ремонта или замены. 2 н. и 3 з.п. ф-лы, 2 ил.

Изобретение относится к способам очистки газов от пыли в электрофильтрах и может быть использовано в металлургической, химической, энергетической и других отраслях промышленности. Электрофильтр содержит корпус, в котором расположены одно или несколько полей, каждое поле содержит несколько каналов (3). Каналы (3) содержат плоскости с газопроницаемыми осадительными электродами (1) из трубчатых элементов. Между ними на равном расстоянии размещена газопроницаемая плоскость коронирующих электродов (2). Заслонки (4) и диафрагмы (5), расположенные в каналах в шахматном порядке, имеют геометрическую форму вогнутой циклоиды и выполнены в виде спаренных интерцепторов. Задние кромки интерцепторов находятся в плоскости коронирующих электродов, передние - в плоскости осадительных электродов и установлены перпендикулярно к ним. Расстояние между двумя соседними диафрагмами (5) в канале (3) равно удвоенному промежутку (2H) между плоскостями осадительных электродов. Пылегазовый поток (7) изменяет направление движения от синусоидального (8) к круговому (9), проходит зону коронного разряда, где частицы пыли получают максимальный электрический заряд, далее поступает в зону квазиоднородного электростатического поля (6), где частицы пыли интенсивно осаждаются. Пылегазовый поток циклично и последовательно изменяет направление своего кругового движения, возвращается к синусоидальному движению, постадийно проходя по всей длине канала электрофильтра. Обеспечивается повышение эффективности очистки газов. 2 н. и 4 з.п. ф-лы, 2 ил.
Наверх