Способ доводки опытного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или несоответствующих требуемым параметрам модуль - от компрессора низкого давления до всережимного поворотного реактивного сопла, включающего регулируемое реактивное сопло и поворотное устройство, ось вращения которого выполнена повернутой относительно горизонтальной оси на угол не менее 30°. На стадии доводки опытный ГТД подвергают испытанию по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний на стадии доводки опытных ГТД и расширении репрезентативности оценки ресурса и надежности работы ГТД в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 5 з.п. ф-лы, 2 ил.

 

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям.

Известен двухконтурный, двухвальный газотурбинный двигатель (ГТД), включающий турбокомпрессорные комплексы, один из которых содержит установленные на одном валу компрессор и турбину низкого давления, а другой содержит аналогично объединенные на другом валу, соосном с первым, компрессор и турбину высокого давления, промежуточный разделительный корпус между упомянутыми компрессорами, наружный и внутренние контуры, основную и форсажную камеры сгорания, камеру смешения газовоздушных потоков рабочего тела и регулируемое сопло (Н.Н. Сиротин и др. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. Москва: «Наука», 2011 г., стр.19-46, рис.1.24).

Известен газотурбинный двигатель, который выполнен двухконтурным, содержит корпус, опертые на него компрессоры и турбины, охлаждаемую камеру сгорания, топливно-насосную группу, реактивные сопла, а также систему управления с командными и исполнительными органами (Конструкция и проектирование авиационных газотурбинных двигателей. Под редакцией Д.В. Хронина. М.: Машиностроение 1989, с.12-88).

Известен способ испытания газотурбинного двигателя по определению ресурса и надежности работы, заключающийся в чередовании режимов при выполнении этапов длительностью, превышающей время полета. Двигатель испытывают поэтапно. Длительность безостановочной работы на стенде и чередование режимов устанавливают в зависимости от назначения двигателя (Л.С. Скубачевский. Испытание воздушно-реактивных двигателей. Москва: Машиностроение, 1972, с.13-15).

Известен способ испытаний авиационных двигателей типа газотурбинных, включающий отработку заданных режимов, контроль параметров и оценку по ним ресурса и надежности работы двигателя. С целью сокращения времени испытаний при доводке двигателей 10-20% испытания проводят с температурой газа перед турбиной, превышающей максимальную рабочую температуру на 45-65°C (SU 1151075 А1, опубл. 10.08.2004).

Общими недостатками указанных известных технических решений являются повышенная трудо- и энергоемкость испытаний и недостаточно высокая оценка ресурса и надежности работы двигателя в широком диапазоне полетных режимов и условий эксплуатации вследствие неотработанности программы приведения конкретных результатов испытаний к результатам, отнесенным к стандартным условиям эксплуатации двигателя известными способами, которые не учитывают с достаточной корректностью изменение параметров и режимов работы двигателя. Это осложняет возможность приведения экспериментальных параметров испытаний к параметрам, максимально приближенным к реальной структуре и удельному соотношению режимов работы двигателя в процессе эксплуатации.

Задача изобретения заключается в разработке способа доводки опытного газотурбинного двигателя с улучшенными эксплуатационными характеристиками и повышенной достоверностью экспериментально проверенного ресурса и надежности двигателя в условиях, максимально приближенных к реальной структуре и удельному соотношению режимов работы двигателя в процессе эксплуатации.

Поставленная задача решается тем, что в способе доводки опытного газотурбинного двигателя согласно изобретению доводке подвергают опытный двигатель, выполненный двухконтурным, двухвальным при этом доводку двигателя производят поэтапно, для чего разрабатывают программу и алгоритмы доводочных испытаний опытного ГТД; на каждом этапе подвергают испытаниям на соответствие заданным параметрам статистически репрезентативное количество, преимущественно от одного до пяти экземпляров, и проводят обследование состояния каждого испытанного из упомянутого количества экземпляров опытного двигателя; для анализа и оценки состояния при необходимости производят разборку с последующей возможной доработкой и/или заменой деталей любого из модулей и/или узлов опытного двигателя, обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или несоответствующих требуемым параметрам модуль, в том числе компрессор низкого давления (КНД) с входным направляющим аппаратом (ВНА), содержащим силовые радиальные стойки, состоящие из неподвижного полого и управляемого подвижного элементов и равномерно разнесенные в плоскости входного сечения с угловой частотой размещения стоек в диапазоне (3,0÷4,0) ед./рад, а также ротор с валом, содержащим, предпочтительно, не более четырех рабочих колес с системой лопаток; газогенератор, включающий сборочные узлы - промежуточный корпус, компрессор высокого давления, основную камеру сгорания и турбину высокого давления; последовательно расположенные за газогенератором, соосно установленные турбину низкого давления; смеситель; фронтовое устройство, форсажную камеру сгорания и всережимное поворотное реактивное сопло, включающее поворотное устройство, предпочтительно, разъемно прикрепленное неподвижным элементом к форсажной камере сгорания, и регулируемое реактивное сопло, аналогично прикрепленное к подвижному элементу поворотного устройства с возможностью выполнения поворотов для изменения направления вектора тяги; а также установленный над основной камерой сгорания во внешнем контуре модуль воздухо-воздушный теплообменник, при необходимости обследуя любой не менее чем из шестидесяти трубчатых блок-модулей последнего, кроме того, обследуют и производят необходимую доводку коробки приводов двигательных агрегатов (КДА) и объединяющих указанные модули электрическую, пневматическую, гидравлические - топливную и масляную - системы, включая при необходимости замену датчиков, командных блоков, исполнительных механизмов и кабелей систем диагностики и автоматического управления двигателем; при этом подвергают доводке опытный ГТД, ось вращения указанного поворотного устройства реактивного сопла которого выполнена повернутой относительно горизонтальной оси на угол не менее 30°, предпочтительно на 32÷4°, по часовой стрелке (вид по н.п.) для правого двигателя и на угол не менее 30°, предпочтительно на 32÷34°, против часовой стрелки (вид по н.п.) для левого двигателя; при этом на стадии доводки не менее чем один, предпочтительно, упомянутое репрезентативное количество экземпляров опытного ГТД подвергают испытанию по многоцикловой программе; указанная программа испытаний включает чередование режимов при выполнении этапов испытания длительностью работы ГТД, превышающей программное время полета, для чего сначала формируют типовые полетные циклы и определяют повреждаемость наиболее нагруженных деталей, исходя из этого определяют необходимое количество циклов нагружения при испытании, а затем формируют и производят полный объем испытаний, включающий выполнение последовательности испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим «малого газа», останов и цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов работы газотурбинного двигателя, в совокупности превышающем время полета в 5-6 раз; при этом различный размах диапазона изменения режимов работы ГТД реализуют, изменяя уровень перепада газа в конкретных режимах испытания от начального до наибольшего - максимального или полного форсированного режима работы ГТД путем переноса начальной точки отсчета при выполнении соответствующего режима, принимая последнюю в одном из режимов в положении, соответствующем уровню «малый газ», а в других режимах - в промежуточных или конечном положениях, соответствующих различным процентным долям или полному значению уровня газа максимального или полного форсированного режима, причем быстрый выход на максимальный или форсированный режимы на части испытательного цикла осуществляют в темпе приемистости с последующим сбросом, после чего выполняют последующие этапы испытаний и доводки ГТД в количестве, необходимом и достаточном для приведения двигателя в состояние, пригодное для передачи на предъявительские или государственные испытания.

В составе коммуникационных систем могут подвергать доводке воздушную систему, выделяя подсистемы охлаждения перегреваемых узлов, антиобледенительного обогрева ВНА двигателя и подсистемы наддува опор роторов компрессоров и турбин.

Часть испытательных циклов могут осуществлять без прогрева на режиме «малый газ» после запуска.

Испытательный цикл могут формировать на основе полетных циклов для боевого и учебного применения ГТД.

Доводке могут подвергать опытный двигатель, ВНА КНД которого содержит, предпочтительно, двадцать три радиальные стойки, соединяющие наружное и внутреннее кольца ВНА с возможностью передачи нагрузок от внешнего корпуса двигателя на переднюю опору, причем, по меньшей мере, часть стоек совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора КНД.

Доводке могут подвергать опытный ГТД, площадь фронтальной проекции входного проема Fвx. пр ВНА КНД которого, геометрически определяющая поперечное сечение входного устья воздухозаборного канала, ограниченного на большем радиусе внутренним контуром наружного кольца ВНА, а на меньшем радиусе внутренним контуром внутреннего кольца ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока и радиальных стоек, в 2,54÷2,72 раза и составляет 0,67÷0,77 от полной площади круга Fплн, ограниченного радиусом внутреннего контура наружного кольца ВНА в плоскости входного проема.

Технический результат, обеспечиваемый приведенной совокупностью признаков, состоит в разработке способа доводки опытного газотурбинного двигателя, выполненного с улучшенными эксплуатационными характеристиками, а именно тягой, а также с повышенной надежностью двигателя в процессе эксплуатации. Повышение достоверности результатов испытаний, проводимых на этапе доводки опытных ГТД, достигается за счет разработанного в изобретении чередования режимов при выполнении этапов испытания, которые по длительности превышают программное время полета. При этом предварительно формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей, и исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный, либо полный форсированный режим до полного останова двигателя и затем формируют репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов. Это позволяет повысить корректность и расширить репрезентативность оценки ресурса и надежности работы двигателя на этапах создания и доводки и, как следствие, дальнейшего серийного промышленного производства и летной эксплуатации ГТД и обеспечивает повышенный ресурс двигателя в условиях, характерных для последующей реальной многорежимной работы ГТД в полетных условиях на высокоманевренных самолетах.

Сущность изобретения поясняется чертежами, где:

на фиг.1 изображен газотурбинный двигатель, продольный разрез;

на фиг.2 - входной направляющий аппарат КНД, вид сверху.

В способе доводки газотурбинного двигателя доводке подвергают опытный двигатель, выполненный двухконтурным, двухвальным. Доводку двигателя производят поэтапно, для чего разрабатывают программу и алгоритмы доводочных испытаний опытного ГТД. На каждом этапе подвергают испытаниям ГТД на соответствие заданным параметрам статистически репрезентативное количество, преимущественно от одного до пяти экземпляров двигателей, и проводят обследование состояния каждого испытанного из упомянутого количества экземпляров опытного двигателя. Для анализа и оценки состояния ГТД при необходимости производят разборку с последующей возможной доработкой и/или заменой деталей любого из модулей и/или узлов опытного двигателя. Обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или несоответствующих требуемым параметрам модуль.

ГТД содержит не менее восьми модулей - от компрессора 1 низкого давления до всережимного поворотного реактивного сопла. КНД включает входной направляющий аппарат 2, а также ротор с валом 3, содержащим, предпочтительно, не более четырех рабочих колес 4 с системой лопаток 5. ВНА 2 содержит силовые радиальные стойки 6, состоящие из неподвижного полого и управляемого подвижного элементов. Радиальные стойки 6 равномерно разнесены в плоскости входного сечения с угловой частотой размещения стоек в диапазоне 3,0÷4,0 ед./рад.

Газогенератор включает сборочные узлы, а именно промежуточный корпус 7, компрессор 8 высокого давления, основную камеру 9 сгорания и турбину 10 высокого давления. За газогенератором последовательно расположены и соосно установлены турбина 11 низкого давления, смеситель 12, фронтовое устройство 13, форсажная камера 14 сгорания и всережимное поворотное реактивное сопло. Указанное сопло включает поворотное устройство 15, предпочтительно, разъемно прикрепленное неподвижным элементом к форсажной камере 14 сгорания, и регулируемое реактивное сопло 16, аналогично прикрепленное к подвижному элементу поворотного устройства 15 с возможностью выполнения поворотов для изменения направления вектора тяги.

Над основной камерой 9 сгорания во внешнем контуре ГТД установлен модуль воздухо-воздушный теплообменник 17, при необходимости обследуют любой не менее чем из шестидесяти трубчатых блок-модулей последнего. Кроме того, обследуют и производят необходимую доводку коробки приводов двигательных агрегатов (на чертежах не показано) и объединяющих указанные модули электрическую, пневматическую, гидравлические - топливную и масляную - системы, включая при необходимости замену датчиков, командных блоков, исполнительных механизмов и кабелей систем диагностики и автоматического управления двигателем.

Подвергают доводке опытный ГТД, ось вращения поворотного устройства 15 реактивного сопла которого выполнена повернутой относительно горизонтальной оси на угол не менее 30°, предпочтительно на 32÷34°, по часовой стрелке (вид по направлению полета) для правого двигателя и на угол не менее 30°, предпочтительно на 32÷34°, против часовой стрелки (вид по направлению полета) для левого двигателя.

На стадии доводки не менее чем один, предпочтительно, упомянутое репрезентативное количество экземпляров опытного ГТД подвергают испытанию по многоцикловой программе. Многоцикловая программа испытаний включает чередование режимов при выполнении этапов испытания длительностью работы ГТД, превышающей программное время полета. Сначала формируют типовые полетные циклы и определяют повреждаемость наиболее нагруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Затем формируют и производят полный объем испытаний, включающий выполнение последовательности испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим «малого газа», останов и цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов работы газотурбинного двигателя, в совокупности превышающем время полета в 5-6 раз. Различный размах диапазона изменения режимов работы ГТД реализуют, изменяя уровень перепада газа в конкретных режимах испытания от начального до наибольшего - максимального или полного форсированного режима работы ГТД путем переноса начальной точки отсчета при выполнении соответствующего режима, принимая последнюю в одном из режимов в положении, соответствующем уровню «малый газ». В других режимах - в промежуточных или конечном положениях, соответствующих различным процентным долям или полному значению уровня газа максимального или полного форсированного режима. Быстрый выход на максимальный или форсированный режимы на части испытательного цикла осуществляют в темпе приемистости с последующим сбросом.

После этого выполняют последующие этапы испытаний и доводки ГТД в количестве, необходимом и достаточном для приведения двигателя в состояние, пригодное для передачи на предъявительские или государственные испытания.

В составе коммуникационных систем подвергают доводке воздушную систему, выделяя подсистемы охлаждения перегреваемых узлов, антиобледенительного обогрева ВНА двигателя и подсистемы наддува опор роторов компрессоров и турбин.

Часть испытательных циклов осуществляют без прогрева на режиме «малый газ» после запуска.

Испытательный цикл формируют на основе полетных циклов для боевого и учебного применения ГТД.

Доводке подвергают опытный двигатель, ВНА 2 КНД 1 которого содержит, предпочтительно, двадцать три радиальные стойки 6, соединяющие наружное и внутреннее кольца 18 и 19 соответственно ВНА 2 с возможностью передачи нагрузок от внешнего корпуса 20 двигателя на переднюю опору. По меньшей мере, часть стоек 6 совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора КНД.

Доводке подвергают опытный ГТД, площадь фронтальной проекции входного проема Fвх.пр ВНА 2 КНД 1 которого, геометрически определяющая поперечное сечение входного устья воздухозаборного канала 21, ограниченного на большем радиусе внутренним контуром наружного кольца 18 ВНА 2, а на меньшем радиусе внутренним контуром внутреннего кольца 19 ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока 22 и радиальных стоек 6, в 2,54÷2,72 раза и составляет 0,67÷0,77 от полной площади круга Fплн, ограниченного радиусом внутреннего контура наружного кольца 18 ВНА в плоскости входного проема.

Пример реализации испытания опытного газотурбинного двигателя по многоцикловой программе.

Испытанию подвергают ГТД с проектным ресурсом 500 часов общей наработки до первого капитального ремонта. В указанном ресурсе задана наработка 20 ч на максимальном режиме, из них 5 ч на полном форсированном режиме. Формируют типовые полетные циклы (ТПЦ) и устанавливают заданное время работы двигателя 1 ч, эквивалентное полетному времени летательного аппарата (ЛА) по принятому ТПЦ. На основании ТПЦ расчетным путем определяют повреждаемость наиболее нагруженных деталей. Исходя из этого определяют необходимое эквивалентное по повреждаемости количество циклов при испытаниях. В данном варианте принимают следующий состав нагрузочных испытательных циклов - выполнение 700 (400+300) запусков с выходом соответственно на максимальный и форсированные режимы, а также 400 приемистостей от режима «малый газ» (МГ) до максимального (Макс.) и 300 с режима 0,8 Макс. до форсированного (Фор.) режима.

Устанавливают коэффициент запаса на требуемое количество испытательных нагрузочных циклов и времени наработки К=1, 2.

Формируют полный объем ресурсных испытаний и разрабатывают программу проведения испытаний:

1. Общую наработку при проведении ресурсных испытаний принимают 500*1,2=600 ч, из них наработку на максимальном режиме принимают (20-5)* 1,2=18 ч, а на форсированном режиме 5*1,2=6 ч.

2. Принимают продолжительность этапа испытаний 5 ч и определяют количество пятичасовых этапов 600:5=120.

3. Устанавливают количество запусков с учетом коэффициента запаса 700*1,2=840, а также от МГ до Макс. 400*1,2=480 и от 0,8 Макс. до Фор. 300*1,2=360.

4. Каждый пятичасовой этап включает 840:120=7 приемистостей от режима МГ до Макс. 480:120=4 и приемистостей с режима 0,8 Макс. до Фор. 360:120=3, а также наработку на максимальном и форсированном режимах 18*60:120=9 мин, 360:120=3 мин.

5. Устанавливают последовательность испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим МГ и останов. Затем предусматривают цикл длительной работы с многократным чередованием нагрузочных циклов с размахом диапазонов изменения режимов от МГ до Макс. и 0,8 Макс. до Фор. в пределах установленного выше объема испытательных этапов.

Выполняют испытания ГТД по указанной программе. Затем проводят дефектацию двигателя и анализ результатов испытаний, по которым принимают решение о признании двигателя выдержавшим испытания.

1. Способ доводки опытного газотурбинного двигателя, характеризующийся тем, что доводке подвергают опытный двигатель, выполненный двухконтурным, двухвальным, при этом доводку двигателя производят поэтапно, для чего разрабатывают программу и алгоритмы доводочных испытаний опытного ГТД; на каждом этапе подвергают испытаниям на соответствие заданным параметрам статистически репрезентативное количество от одного до пяти экземпляров и проводят обследование состояния каждого испытанного из упомянутого количества экземпляров опытного двигателя; для анализа и оценки состояния при необходимости производят разборку с последующей возможной доработкой и/или заменой деталей любого из модулей и/или узлов опытного двигателя, обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или несоответствующих требуемым параметрам модуль, в том числе компрессор низкого давления (КНД) с входным направляющим аппаратом (ВНА), содержащим силовые радиальные стойки, состоящие из неподвижного полого и управляемого подвижного элементов и равномерно разнесенные в плоскости входного сечения с угловой частотой размещения стоек в диапазоне 3,0÷4,0 ед./рад, а также ротор с валом, содержащим не более четырех рабочих колес с системой лопаток; газогенератор, включающий сборочные узлы - промежуточный корпус, компрессор высокого давления, основную камеру сгорания и турбину высокого давления; последовательно расположенные за газогенератором, соосно установленные турбину низкого давления; смеситель; фронтовое устройство, форсажную камеру сгорания и всережимное поворотное реактивное сопло, включающее поворотное устройство, предпочтительно, разъемно прикрепленное неподвижным элементом к форсажной камере сгорания, и регулируемое реактивное сопло, аналогично прикрепленное к подвижному элементу поворотного устройства с возможностью выполнения поворотов для изменения направления вектора тяги; а также установленный над основной камерой сгорания во внешнем контуре модуль воздухо-воздушный теплообменник, при необходимости обследуя любой не менее чем из шестидесяти трубчатых блок-модулей последнего, кроме того, обследуют и производят необходимую доводку коробки приводов двигательных агрегатов (КДА) и объединяющих указанные модули электрическую, пневматическую, гидравлические - топливную и масляную - системы, включая при необходимости замену датчиков, командных блоков, исполнительных механизмов и кабелей систем диагностики и автоматического управления двигателем; при этом подвергают доводке опытный ГТД, ось вращения указанного поворотного устройства реактивного сопла которого выполнена повернутой относительно горизонтальной оси на угол не менее 30° по часовой стрелке для правого двигателя и на угол не менее 30° против часовой стрелки для левого двигателя; при этом на стадии доводки не менее чем один или упомянутое репрезентативное количество экземпляров опытного ГТД подвергают испытанию по многоцикловой программе; указанная программа испытаний включает чередование режимов при выполнении этапов испытания длительностью работы ГТД, превышающей программное время полета, для чего сначала формируют типовые полетные циклы и определяют повреждаемость наиболее нагруженных деталей, исходя из этого определяют необходимое количество циклов нагружения при испытании, а затем формируют и производят полный объем испытаний, включающий выполнение последовательности испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим «малого газа», останов и цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов работы газотурбинного двигателя, в совокупности превышающем время полета в 5-6 раз; при этом различный размах диапазона изменения режимов работы ГТД реализуют, изменяя уровень перепада газа в конкретных режимах испытания от начального до наибольшего - максимального или полного форсированного режима работы ГТД путем переноса начальной точки отсчета при выполнении соответствующего режима, принимая последнюю в одном из режимов в положении, соответствующем уровню «малый газ», а в других режимах - в промежуточных или конечном положениях, соответствующих различным процентным долям или полному значению уровня газа максимального или полного форсированного режима, причем быстрый выход на максимальный или форсированный режимы на части испытательного цикла осуществляют в темпе приемистости с последующим сбросом, после чего выполняют последующие этапы испытаний и доводки ГТД в количестве, необходимом и достаточном для приведения двигателя в состояние, пригодное для передачи на предъявительские или государственные испытания.

2. Способ доводки опытного газотурбинного двигателя по п.1, отличающийся тем, что в составе коммуникационных систем подвергают доводке воздушную систему, выделяя подсистемы охлаждения перегреваемых узлов, антиобледелительного обогрева ВНА двигателя и подсистемы наддува опор роторов компрессоров и турбин.

3. Способ доводки опытного газотурбинного двигателя по п.1, отличающийся тем, что часть испытательных циклов осуществляют без прогрева на режиме «малый газ» после запуска.

4. Способ доводки опытного газотурбинного двигателя по п.1, отличающийся тем, что испытательный цикл формируют на основе полетных циклов для боевого и учебного применения ГТД.

5. Способ доводки опытного газотурбинного двигателя по п.1, отличающийся тем, что доводке подвергают опытный двигатель, ВНА КНД которого содержит двадцать три радиальные стойки, соединяющие наружное и внутреннее кольца ВНА с возможностью передачи нагрузок от внешнего корпуса двигателя на переднюю опору, причем часть стоек совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора КНД.

6. Способ доводки опытного газотурбинного двигателя по п.5, отличающийся тем, что доводке подвергают опытный ГТД, площадь фронтальной проекции входного проема Fвх.пр ВНА КНД которого, геометрически определяющая поперечное сечение входного устья воздухозаборного канала, ограниченного на большем радиусе внутренним контуром наружного кольца ВНА, а на меньшем радиусе внутренним контуром внутреннего кольца ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока и радиальных стоек, в 2,54÷2,72 раза и составляет 0,67÷0,77 от полной площади круга Fплн, ограниченного радиусом внутреннего контура наружного кольца ВНА в плоскости входного проема.



 

Похожие патенты:

Изобретение относится к области авиадвигателестроения. В способе капитального ремонта турбореактивного двигателя (ТРД), вариантно осуществляемого способами, изложенными в группе изобретений, связанных единым творческим замыслом, последовательно выполняют операции, в совокупности вариантно позволяющие уменьшить трудозатраты, энергоемкость и длительность капитального ремонта, а также повысить эксплуатационные качества и надежность определения влияния климатических условий, оказываемого на изменение эксплуатационных характеристик ТРД.

Изобретение относится к области авиадвигателестроения. В способе эксплуатации турбореактивного двигателя (ТРД) перед каждым запуском двигателя, выполненного двухконтурным, двухвальным, осуществляют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на рабочие режимы, предусмотренные регламентом, останов двигателя, периодически производят профилактические осмотры и обслуживание модулей, узлов и коммуникационных систем, на завершающей стадии капитального ремонта после сборки двигатель подвергают испытаниям на стенде, снабженном входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно дистанционно управляемым выдвижным интерцептором, включающим отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж, и определяют запасы газодинамической устойчивости компрессора двигателя.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Газотурбинный двигатель выполнен двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства ТРД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства ТРД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства турбореактивного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства турбореактивного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства турбореактивного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя.

Изобретение может быть использовано для определения угла опережения впрыска топлива (УОВТ) двигателей внутреннего сгорания (ДВС) в эксплуатационных условиях. Способ основан на измерении частоты вращения Д при появлении максимума производных по частоте вращения (ЧВ) автокорреляционной функции (АКФ) или энергетического спектра средних за цикл ускорений (Уск) разгона (Р), смещения по времени максимума взаимокорреляционной функции (ВКФ) этих Уск Р и выбега (В) относительно максимума АКФ выбега, наклона фазочастотной характеристики (ФЧХ) взаимного энергетического спектра этих Уск.

Изобретение относится к области авиадвигателестроения. В способе эксплуатации турбореактивного двигателя (ТРД) типа АЛ-31Ф перед каждым запуском двигателя, выполненного двухконтурным, двухвальным, осуществляют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на рабочие режимы, предусмотренные регламентом, останов двигателя, периодически производят профилактические осмотры и обслуживание модулей, узлов и коммуникационных систем, на завершающей стадии капитального ремонта после сборки двигатель подвергают испытаниям на стенде, снабженном входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором, включающим отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж, и определяют запасы газодинамической устойчивости компрессора двигателя. Технический результат состоит в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ТРД на этапе эксплуатации при повышении достоверности определения границ допустимого диапазона варьирования тяги. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ГТД. Обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или несоответствующих требуемым параметрам модуль - от компрессора низкого давления до всережимного регулируемого реактивного сопла. В программу доводочных испытаний с последующей доводочной доработкой включают испытания двигателя на газодинамическую устойчивость работы компрессора. Опытный двигатель испытан на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ГТД в полетных условиях. Технический результат состоит в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ГТД на стадии доводки ГТД при повышении достоверности определения границ допустимого диапазона варьирования тяги. 5 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства газотурбинного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. Устанавливают на технологическом стапеле промежуточный корпус; газогенератор, включая компрессор высокого давления, основную камеру сгорания и турбину высокого давления. Перед промежуточным корпусом устанавливают компрессор низкого давления, а за газогенератором последовательно соосно устанавливают турбину низкого давления, смеситель, фронтовое устройство, форсажную камеру сгорания и всережимное реактивное сопло. После сборки производят испытания двигателя на газодинамическую устойчивость работы компрессора. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющей фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ГТД в полетных условиях. Технический результат состоит в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ГТД на этапе серийного промышленного производства при повышении достоверности определения границ допустимого диапазона варьирования тяги. 2 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Газотурбинный двигатель выполнен двухконтурным, двухвальным. Двигатель содержит не менее восьми модулей, смонтированных, предпочтительно, по модульно-узловой системе, включая компрессор высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания, воздухо-воздушный теплообменник, турбины высокого и низкого давления, смеситель, фронтовое устройство, форсажную камеру сгорания и всережимное реактивное сопло. Двигатель испытан по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающим время полета не менее чем в 5 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний и расширении репрезентативности оценки ресурса и надежности работы газотурбинного двигателя в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 6 з.п. ф-лы, 1 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства ТРД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного поворотного реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания двигателя по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающим время полета не менее чем в 5 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний на этапе серийного производства и расширении репрезентативности оценки ресурса и надежности работы турбореактивного двигателя в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 2 н. и 11 з.п. ф-лы, 2 ил.

Изобретение может быть использовано для усовершенствованной диагностики двигателя внутреннего сгорания (ДВС). При реализации способа получают сигналы от датчика угла поворота коленчатого вала (ДУПКВ) ДВС, датчика логической метки (ДЛМ) и датчика вибрации (ДВ). При каждом сигнале ДЛМ разделяют сигнал ДВ на множество циклов, причем каждый цикл соответствует углу 720° поворота коленчатого вала (КВ). Проверяют, что из указанного множества циклов исключены циклы с переменными параметрами. Определяют фактическое положение КВ с использованием стохастической фильтрации и квазинепрерывного представления сигнала ДУПКВ. Определяют фактическое положение КВ с использованием адаптивного фильтра Калмана или нелинейного стохастического фильтра. Определяют порождающую функцию базиса Рисса на основании характеристик ДУПКВ и аппроксимации импульсной характеристики ДВ. Обеспечивают вторичную дискретизацию сигналов с заменой аргумента; дискретизацию обратной функции; получение дискретного вейвлет-преобразования (ВП); получение непрерывного ВП; получение дискретного ВП обратной функции и вычисление выходных данных. Двумерные массивы разделяют по предварительно определенным индексам в дискретных преобразованиях и вычисляют эмпирическую функцию распределения вероятностей. Технический результат - повышение точности диагностирования. 2 з.п. ф-лы, 4 ил.

Изобретение может быть использовано в диагностике эффективности охладителя рециркуляции выхлопного газа (EGR) в дизельном двигателе. Способ диагностики эффективности охладителя системы (EGR) в дизельном двигателе заключается в том, что определяют значение температуры газа и давления в выпускном и впускном трубопроводах, осуществляют построение посредством управляющего блока двигателя модели для определения снижения температуры y=ΔТ в охладителе EGR, причем модель имеет параметр вектора θ и входной вектор x. Выполняют посредством управляющего блока двигателя фазу калибровки модели для оценки смещения h0 системы и расчет посредством управляющего блока двигателя группы первичных невязок ε (θ0, x, ΔТ), начиная от формулы модели и с использованием результатов фазы калибровки. Расчет группы улучшенных невязок εN (θ0) осуществляют по математическому выражению в зависимости от количества образцов, на которых выполняются диагностические испытания. Осуществляют расчет посредством управляющего блока двигателя диагностического показателя S по математическому выражению, использующему корреляционную матрицу R0, рассчитанную по исправной системе. Диагностический показатель S используют для диагноза эффективности охладителя EGR. Технический результат заключается в отказе от использования датчиков температуры в охладителе EGR. 5 з.п. ф-лы, 3 ил.,1 табл.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ГТД. Обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или не соответствующих требуемым параметрам модуль - от компрессора низкого давления до всережимного поворотного реактивного сопла, включающего регулируемое реактивное сопло и разъемно прикрепленное к форсажной камере сгорания поворотное устройство, ось вращения которого выполнена повернутой относительно горизонтальной оси на угол не менее 30°. В программу доводочных испытаний с последующей доводочной доработкой включают испытания двигателя на газодинамическую устойчивость работы компрессора. Опытный двигатель испытан на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ГТД в полетных условиях. Технический результат состоит в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ГТД на стадии доводки ГТД при повышении достоверности определения границ допустимого диапазона варьирования тяги. 5 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Газотурбинный двигатель выполнен двухконтурным, двухвальным. Двигатель содержит коробку приводов двигательных агрегатов. Двигатель проверен на газодинамическую устойчивость работы компрессора. Конкретный или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ГТД в полетных условиях. Технический результат состоит в повышении основных эксплуатационных характеристик двигателя, объемности и надежности обеспечения газодинамической устойчивости работы ГТД, основанной на высокой статической достоверности данных о допустимых границах частотных режимов вращения роторов компрессора, с одновременным упрощением технологии и сокращением трудо- и энергоемкости процесса испытания двигателя. 7 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного поворотного реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания двигателя на газодинамическую устойчивость работы компрессора. Конкретные или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ГТД в полетных условиях. Технический результат состоит в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ГТД на этапе серийного промышленного производства при повышении достоверности определения границ допустимого диапазона варьирования тяги. 2 н. и 10 з.п. ф-лы, 4 ил.
Наверх