Устройство обнаружения источника свч излучения



Устройство обнаружения источника свч излучения
Устройство обнаружения источника свч излучения
Устройство обнаружения источника свч излучения
Устройство обнаружения источника свч излучения
Устройство обнаружения источника свч излучения
Устройство обнаружения источника свч излучения
Устройство обнаружения источника свч излучения
Устройство обнаружения источника свч излучения
Устройство обнаружения источника свч излучения
Устройство обнаружения источника свч излучения
Устройство обнаружения источника свч излучения
Устройство обнаружения источника свч излучения
H03M1/66 - Кодирование, декодирование или преобразование кода вообще (с использованием гидравлических или пневматических средств F15C 4/00; оптические аналого-цифровые преобразователи G02F 7/00; кодирование, декодирование или преобразование кода, специально предназначенное для особых случаев применения, см. в соответствующих подклассах, например G01D,G01R,G06F,G06T, G09G,G10L,G11B,G11C;H04B, H04L,H04M, H04N; шифрование или дешифрование для тайнописи или других целей, связанных с секретной перепиской, G09C)

Владельцы патента RU 2544768:

Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования Военная академия Ракетных войск стратегического назначения имени Петра Великого МО РФ (RU)

Изобретение относится к радиотехнике, предназначено для обнаружения маломощного излучения в СВЧ диапазоне радиоволн и определения источника излучения. Технический результат - расширение полосы рабочих частот, повышение чувствительности и обеспечение низкой погрешности измерения направления на источник излучения. Для этого устройство представляет собой двухканальный детекторный приемник СВЧ, снабженный двумя вертикальными штыревыми антеннами, однотипными диодными детекторами с удвоением выходного напряжения, однотипными операционными усилителями с цепью отрицательной обратной связи в виде постоянного резистора и цепью стабилизации режима работы усилителей в виде постоянного резистора, а также схемой сравнения выходных напряжений, содержащей измеритель тока, переменные резисторы, переключатель режимов работы измерителя «обнаружение» и «поиск» и визир направления на источник излучения. 5 ил.

 

Изобретение относится к радиотехнике, предназначено для обнаружения маломощного излучения в СВЧ диапазоне радиоволн и определения источника излучения.

Известен приемник прямого усиления [1], состоящий из последовательно соединенных между собой приемной антенны, апериодической входной цепи, диодного детектора, усилителя постоянного тока либо усилителя звуковой частоты и оконечной нагрузки в виде измерителя постоянного тока либо громкоговорителя. Приемник имеет простую конструкцию и широкую полосу диапазона частот принимаемых излучений, однако стандартная структурная схема приемника прямого усиления имеет существенный недостаток - низкую чувствительность, обусловленную применением простейшего амплитудного детектора на кремниевых или германиевых диодах либо диодах на основе арсенида галлия с эффектом Шоттки (диод Шоттки), порог срабатывания (отпирания) которых находится в пределах 0,2-0,6 В. В связи с эти чувствительность детекторного приемника оказывается не выше 10-5-10-6 Вт [4]. Недостатком устройства также является большая погрешность измерения направления на источник излучения при использовании антенн простейшего типа, т.е. без усложнения конструкции устройства.

Наиболее близким по технической сущности устройством является [3]. Устройство представляет собой преобразователь тока в напряжение, содержащее операционный усилитель, цепь отрицательной обратной связи в виде постоянного резистора, второй постоянный резистор стабилизации режима работы операционного усилителя и два диода Шоттки. За счет применения детектора с удвоением выходного напряжения на двух диодах Шоттки, соединенных последовательно и однонаправленно, и включения его на входе операционного усилителя устройства чувствительность устройства может достигать 10-7-10-8 Вт. Недостатком устройства, как и в предыдущем аналоге, является большая погрешность измерения направления на источник излучения.

Технический результат изобретения выражается в разработке устройства, позволяющего обнаружить источник СВЧ излучения и обладающего максимально простой конструкцией, широкой полосой рабочих частот, высокой чувствительностью и малой погрешностью измерения направления на источник излучения.

Задача, направленная на достижение технического результата, решается путем введения в состав устройства второго дополнительного преобразователя тока в напряжение (второго канала преобразования тока в напряжение), полностью идентичного первому, а также двух идентичных друг другу штыревых антенн, визира, балансировочного резистора, резистора регулятора чувствительности, измерителя постоянного тока (микроамперметра) и переключателя режимов работы устройства.

Сущность поясняется чертежами.

Фиг.1. Принципиальная схема устройства обнаружения источника СВЧ излучения, где:

1 и 7 - антенны первого и второго каналов;

2, 3- детекторные диоды Шоттки первого канала;

4, 10 - операционные усилители первого и второго каналов;

5, 11 - резисторы цепи отрицательной обратной связи операционных усилителей первого и второго каналов;

6, 12 - резисторы цепи неинвертирующего входа операционных усилителей первого и второго каналов;

8, 9 - детекторные диоды Шоттки второго канала;

13 - измеритель постоянного тока (микроамперметр);

14 - переменный резистор баланса усилителей при отсутствии сигнала;

15 - переменный резистор регулятора чувствительности измерителя;

16 - переключатель на одно направление и два положения;

«О» - режим обнаружения излучения;

«П» - режим поиска (определение направления на источник излучения);

17 - визир направления на источник излучения;

Фиг.2. Конструкция предлагаемого устройства, где:

a - база антенны;

h - высота антенны;

1 и 7 - антенны первого и второго каналов;

13 - измеритель постоянного тока (микроамперметр);

14 - переменный резистор баланса усилителей при отсутствии сигнала;

15 - переменный резистор регулятора чувствительности измерителя;

16 - переключатель на одно направление и два положения;

17 - визир направления на источник излучения.

Фиг.3. Взаимное расположение антенн устройства:

а) антенны расположены на одой линии с источником излучения;

б) база антенны а располагается нормально к направлению на источник излучения (пунктирная линия со стрелкой указывает направление визирования), где:

O - точка размещения источника излучения;

P - мощность СВЧ излучения;

1 и 7 - антенны первого и второго каналов с диаграммами направленности излучения;

17 - визир;

R1 -расстояние от источника излучения до первой антенны;

R2 - расстояние от источника излучения до второй антенны;

a - база антенны.

Как следует из фиг.1, устройство представляет собой двухканальный детекторный приемник СВЧ, снабженный двумя вертикальными штыревыми антеннами 1 и 7, однотипными диодными детекторами с удвоением выходного напряжения 2, 3 и 8, 9, однотипными операционными усилителями 4 и 10 с цепью отрицательной обратной связи в виде постоянного резистора 5 (11) и цепью стабилизации режима работы усилителей в виде постоянного резистора 6 (12), а также схемой сравнения выходных напряжений, содержащей измеритель тока 13, переменные резисторы 14 и 15, переключатель режимов работы измерителя «обнаружение» и «поиск» 16, а также визир направления на источник излучения 17.

Взаимные связи элементов устройства осуществляются следующим образом. Антенна 1 (7) подключена к общей точке соединения катода диода 2 (8) и анода диода 3 (9), катод диода 3 (9) соединен с общей шиной питания, а анод диода 2 (8) подключен к инвертирующему входу операционного усилителя 4 (10), соединенному с выходом операционного усилителя 4 (10) через резистор цепи отрицательной обратной связи по току 5 (11). Постоянный резистор 6 (12) соединяет неинвертирующий вход усилителя 4 (10) с общей шиной питания. Переменный резистор 14 своими крайними выводами подключен к выходам операционных усилителей 4 и 10, а его подвижный (средний) вывод соединен с общей шиной питания. Переменный резистор 15 подключен первым крайним выводом к выходу операционного усилителя 4, а вторым крайним выводом со своим подвижным выводом и через микроамперметр 13 соединен с переключателем 16 таким образом, что в положении «О» (режим обнаружения) соединяет цепь 15 и 13 с общей шиной питания, а в другом «П» (поиск источника излучения) - с выходом усилителя 10. Обе антенны 1 и 7 расположены вертикально на одном уровне параллельно друг другу. Визир 17 расположен между антеннами, равноудалено от них, с продольной осью симметрии, расположенной перпендикулярно к плоскости расположения антенн.

Функционирование устройства по принципиальной электрической схеме на фиг.1 осуществляется следующим образом. Антенны 1 и 7 преобразуют электромагнитную энергию поля излучения СВЧ в электрический ток, который детектируется диодами 2 и 3 (8 и 9), далее усиливается операционными усилителями 4 и 10. Стабилизация режима работы усилителей 4 и 10 осуществляется резисторами 6 и 12, а балансировка каналов (выравнивание их усиления) осуществляется переменным резистором 14. В режиме обнаружения излучения переключатель 16 замыкает цепь измерения сигнала 15, 13 на общую шину, а при определении направления на источник излучения переключает к выходу второго канала. Чувствительность устройства регулируется переменным резистором 15.

Способ использования устройства следующий. При установлении переключателем 16, фиг.1, фиг.2, режима «О» (обнаружение) по отклонению стрелки измерителя 13 оценивают наличие поля СВЧ, добиваясь положения антенны 1 и 7, как показано на фиг.3а. Чувствительность устройства регулируется переменным резистором 15, фиг.1. Направление на источник излучения определяется путем оценки показаний измерителя 13 - максимальное значение соответствует направлению на источник. Затем переключатель 16 переводится в положение «П» (поиск) и добиваются минимального показания измерителя. Выполняется это путем поворота корпуса устройства вокруг оси антенны 1, добиваясь положения антенны 1 и 7, как показано на фиг.3б. Направление, при котором достигается минимум показаний, фиксируется визиром 17.

При проведении всех перечисленных выше операций подвижный контакт переменного резистора 14 должен находиться в среднем положении. Поскольку параметры обоих каскадов могут несколько различаться, то для уменьшения погрешностей измерений необходимо осуществить предварительную балансировку (выравнивание) коэффициентов усиления каскадов. С этой целью в режиме «П» требуется направить визир на источник излучения с известным местоположением и с помощью резистора 14 добиться минимума показаний измерителя 13.

Вертикальное положение штыревых антенн позволяет достаточно точно определять направление на источник излучения по азимуту, но дает большую ошибку по углу места. Этот недостаток можно устранить, если придать обеим антеннам горизонтальное положение и далее проводить измерения аналогичным способом, описанным выше.

Возможность осуществления изобретения подтверждается следующими теоретическими выкладками.

При реализации устройства в целях сохранения простоты конструкции применена малогабаритная штыревая вертикальная антенна.

Известно [2], что вертикальная штыревая антенна обладает изотропной (круговой) диаграммой приема излучения в горизонтальной плоскости, что удобно в режиме обнаружения излучения, но является серьезным недостатком в режиме поиска направления на источник излучения, что не позволяет добиться малой погрешности при оценке измерения направления на источник конкретного излучения.

В целях достижения малой погрешности оценки измерения направления на источник излучения предлагается ввести в состав устройства второй дополнительный преобразователь тока в напряжение, полностью идентичный первому, причем штыревые антенны размещаются вертикально на одном уровне на некотором расстоянии друг от друга а (фиг.2), называемом базой антенны.

В этом случае выходное напряжение каждой антенны может быть определено как

где hA - действующая высота антенны, м; E - напряженность поля, В/м.

Для источника излучения с изотропной (сферической) диаграммой направленности излучения напряженность поля составит [5]

где P - мощность излучения, Вт; R - расстояние от источника излучения до конкретной антенны, м.

Тогда, исходя из (1) и (2), имеем:

В данном случае обе антенны идентичны друг другу, поэтому их выходные напряжения будут различаться обратно пропорционально расстоянию до источника излучения. Если обозначить R1 - расстояние от источника излучения до первой антенны 1, фиг.3, a R2 - расстояние от источника излучения до второй антенны 7, то тогда (3) примет вид (рис.3):

С учетом (4) и (5) рассмотрим два характерных случая взаимного расположения источника излучения и обеих антенн. В первом случае обе антенны и источник излучения находятся на одной прямой линии, фиг.3а. Если антенна 1 размещена ближе к источнику излучения, чем антенна 7 на величину а (база антенны), тогда (5) можно записать в виде

Разность между (4) и (6) составит величину

Из (7) следует, что на достаточно большом расстоянии, когда R1>>a, можно считать, что R1+a≈R1 и тогда

Из (8) следует, что в первом случае разность выходных напряжений антенн 1 и 7 прямо пропорциональна базе a и обратно пропорциональна квадрату расстояния R1.

Выражение (8) можно представить, как

откуда согласно (4) следует, что

Из (10) видно, что первый сомножитель есть напряжение на выходе антенны 1, а второй сомножитель - поправочный коэффициент, указывающий во сколько раз разность сигнала ΔU меньше напряжения антенны U1.

Согласно (10) для увеличения разности напряжений ΔU желательно иметь большую базу антенны 1, 7, максимальное значение которой ограничено габаритами данного измерительного устройства.

Оптимальное значение базы а можно оценить исходя из инструментальной погрешности тока и максимальной расчетной дальности определения направления. Считается, что минимальное значение ΔU должно быть, по крайней мере, в 2-3 раза больше инструментальной погрешности. Например, если погрешность составляет ±2%, то тогда a/R1≥0,04-0,06, в среднем 0,05. При a=0,4 м максимальная дальность определения направления составит R1=0,4/0,05=8,0 м.

Второй вариант заключается в том, что обе антенны находятся на одинаковом расстоянии от источника измерения, то есть R1=R2, фиг.3б. Тогда согласно (4) и (5) U1=U2, a ΔU=U1=U2=0.

Такое положение антенн возможно в том случае, когда источник излучения находится в вершине равнобедренного (R1=R2) треугольника, основанием которого является база a. При этом медиана данного треугольника проходит через источник излучения (вершину угла) и середину базы а под прямым углом к ней, являясь линией визирования на источник излучения.

Таким образом, для однозначного определения направления на источник излучения необходимо дополнительно ввести в состав заявляемого устройства схему сравнения выходных напряжений обоих каналов, включающую в себя элементы, определяющие разность напряжений ΔU=U1-U2 согласно (7) и максимум напряжений U1 по формуле (4), с целью обеспечения работы устройства в режимах обнаружения и поиска (оценки направления) источника излучения, а также визир направления на источник излучения.

Для реализации заявленного устройства можно использовать стандартные элементы. Например, антенны 1 и 7 от портативных радиоприемников, телескопическая конструкция которых позволяет изменять высоту антенны в широких диапазонах. Операционные усилители желательно применять без внешней коррекции режима, например К140УД7. Постоянные резисторы 5, 11, 6, 12 типа С1-4 на 0,25 Вт. Номинал резисторов 5 и 11, стоящих в цепи отрицательной обратной связи в усилителях 4 и 10, определяет усиление по постоянному току и может составлять от 100 кОм до 1,0 МОм. Резисторы 6 и 12 стабилизируют нулевое выходное напряжение усилителей 4 и 10 при отсутствии сигнала и может достигать 47 кОм. Микроамперметр 13 желательно использовать с симметричной шкалой (нулем по середине), например - 100-0+100 мкА. Номинал переменного резистора 15 выбирается исходя из максимального выходного напряжения усилителя 4 (10), которое обычно не превышает ±5 В. Поэтому применительно к указанному выше примеру его номинал должен составлять около 50 кОм. Для обеспечения согласования цепи 15, 13 с нагрузкой каналов номинал переменного резистора 14 должен быть примерно в 5 раз меньше, чем 15, то есть около 10 кОм. Если известна длина волны излучения λ, то тогда оптимальная высота антенны 1 и 7 должна быть равна (0,25-0,3)/λ. В качестве детекторных диодов можно рекомендовать арсенид-галлиевые эпитаксиальные диоды с барьером Шоттки отечественного производства 3А530А и 3А530Б, как обладающие наибольшей крутизной детекторной характеристики [4]. Переключатель на одно направление и два положения может быть использован типа 1П2Н. Визир может быть простейшей конструкции, аналогичной прицелу стрелкового оружия, состоящего из целика и мушки, либо в виде источника узконаправленного видимого лазерного излучения, красного или зеленого света.

Источники, принятые во внимание

1. Радиоприемные устройства. Под общей редакцией доктора технических наук, профессора В.И. Сифорова. - М.: Советское радио, 1974. - 560 с. См. с.7-10, рис.1.3.

2. Проектирование радиоприемных устройств. Под общей редакцией А.П. Сиверса. - М.: Советское радио, 1976. - 487 с. См. с 156, рис.4.2, в.

3. RU №2226741. «Преобразователь тока в напряжение».

4. Полупроводниковые приборы: диоды, тиристоры, оптоэлектронные приборы. Справочник. Под общей редакцией Н.Н. Горюнова. - М.: Энергоиздат, 1982. - 744 с. См. с.163-233.

5. Грудинская Г.П. Распространение радиоволн. Издание второе. - М.: Высшая школа, 1975. - 280 с. См. с.11-15.

Устройство обнаружения источника СВЧ излучения, состоящего из канала преобразования тока в напряжение, включающего в себя операционный усилитель, два детекторных диода Шоттки и два постоянных резистора, связанных между собой таким образом, что анод первого диода соединен с инвертирующим входом операционного усилителя, неинвертирующий вход которого через первый резистор подключен к общей шине питания, к которой также подсоединен катод второго диода, а выход операционного усилителя соединен с его инвертирующим входом через второй постоянный резистор, причем точка соединения катода первого диода с анодом второго диода является входом канала, а выход операционного усилителя является выходом канала, отличающееся тем, что в состав устройства дополнительно введены второй канал, полностью идентичный первому, две идентичные друг другу штыревые антенны, причем обе антенны расположены вертикально на одном уровне параллельно друг другу, а также два переменных резистора, микроамперметр, переключатель на одно направление и два положения и визир, причем визир расположен между антеннами, равноудалено от них, с продольной осью симметрии, расположенной перпендикулярно к плоскости расположения антенн, при этом первая антенна подключена ко входу первого канала, вторая антенна подключена ко входу второго канала, крайние выводы первого переменного резистора соединены с выходами первого и второго каналов, а его подвижный вывод подключен к общей шине питания, выход первого канала соединен с крайним выводом второго переменного резистора, второй крайний вывод которого соединен со своим подвижным выводом и через микроамперметр с переключателем на одно направление и два положения, который подключается или к общей шине питания, или к выходу второго канала.



 

Похожие патенты:

Группа изобретений относится к области радиоэлектроники и может быть использовано при создании высокоскоростных модуляторов/демодуляторов радиотехнических систем проводной и беспроводной цифровой передачи данных.

Изобретение относится к области автоматики и вычислительной техники и может быть использовано для управления угловым положением подвижных частей объекта регулирования.

Изобретение относится к области устройств преобразования кода в частоту. Техническим результатом является реализация различных функциональных зависимостей выходной частоты от входного кода и улучшение способности преобразователя корректировать мультипликативную составляющую погрешности датчиков.

Фотоэлектрический преобразователь угловых перемещений относится к области автоматики и вычислительной техники и может быть использован в оптико-электронных приборах.

Изобретение относится к аналого-цифровым преобразователям. Технический результат заключается в расширении предельного частотного диапазона обрабатываемых сигналов.

Изобретение относится к области гидроакустики, радиотехники и электротехники и может быть использовано для построения синхронных многоканальных систем аналого-цифрового преобразования при использовании аналого-цифровых преобразователей с избыточной частотой дискретизации (АЦП-ИЧД).

Изобретение относится к области измерительной и вычислительной техники. Технический результат - расширение частотного диапазона обрабатываемых сигналов АЦП.

Изобретение относится к области автоматики и вычислительной техники и может быть использовано для связи аналоговых источников информации с цифровым вычислительным устройством.

Изобретение относится к области автоматики и вычислительной техники и может найти применение как в цифровых системах наведения и управления огнем, так и в системах определения углового положения.

Изобретение относится к области приборостроения, в частности к аналого-цифровому преобразованию, а именно к преобразователям угла поворота вала в код. Технический результат - повышение информационной надежности преобразователя угол-код.

Изобретение относится к технике прецизионного измерения однократных интервалов времени. Технический результат заключается в повышении точности цифрового преобразования интервала времени в цифровой код. Технический результат достигается за счет того, что в устройство, содержащее интерполирующий преобразователь время-код, своими первым и вторым входами связанный с зажимами сигналов начала и окончания интервала, введено множество дополнительных аналогичных интерполирующих преобразователей время-код. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области телекоммуникаций и может быть использовано для преобразования цифровых сигналов в аналоговые сигналы. Техническим результатом является повышение технологичности конструкции преобразователя. Устройство содержит первую резистивную лестницу, образованную резисторами, соединенными с ключами, управляющимися входным сигналом в двоичной кодировке, вторую резистивную лестницу, образованную резисторами, соединенными с ключами, управляющимися инвертированным входным сигналом в двоичной кодировке, причем обе лестницы соединены между собой таким образом, что резисторы в перемычках включены параллельно; отношение сопротивлений первой и второй лестницы выбрано в соответствии с выражением: (m+1)/(m-1), где m - отношение напряжения питания к двойной амплитуде выходного сигнала. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области измерительной и вычислительной техники и может быть использовано для быстрого преобразования аналоговых электрических сигналов в цифровой код в системах, функционирующих в системе остаточных классов (СОК). Технический результат - упрощение конструкции. Аналого-цифровой преобразователь в код СОК содержит вход, первый и второй блоки слежения-хранения, аналого-цифровой преобразователь, цифроаналоговый преобразователь, блок вычитания, источник напряжения смещения, регистры-защелки, выходные шины кодов остатков в СОК. Сущность изобретения заключается в объединении функций идентичных блоков в одном АЦП, одном ЦДЛ и одном блоке вычитания. 7 ил.

Изобретение относится к электроизмерительной и вычислительной технике и может быть использовано в системах управления электроприводами для преобразования аналогового напряжения в код. Техническим результатом является совмещение в одном устройстве преобразования входного напряжения в цифровой код с выполнением определенной математической операции, ускорение и упрощение обработки информации с различных датчиков, выходной сигнал которых имеет нелинейную зависимость от входной величины. Устройство содержит генератор тактовых импульсов, счетчик, цифроаналоговый преобразователь, компаратор, два набора резисторов, ключи. 2 ил.

Изобретение относится к технике первичного измерительного преобразования физических величин в электрические сигналы и касается способа формирования функционально-интегрированных/дифференцированных (ФИД) квадратурных опорных сигналов (КОС). Технический результат заключается в повышении быстродействия за счет простоты сопряжения как с цифровыми системами, так и с аналоговыми, с одновременным формированием КОС в аналоговой форме. Предлагается усовершенствовать известный способ путем одновременного формирования функциональных, интегрированных и дифференцированных производных КОС. Предлагается синхронно по частоте и фазе вращения объекта формировать сначала последовательности "меандров" переменного периода следования, формировать короткие счетные импульсы детектированием их фронтов и производить алгебраический счет импульсов одновременно по трем каналам функций, первообразных и производных, таким образом формируя высокоинформативные ФИД КОС. 6 ил.

Изобретение относится к области вывода линейно изменяющихся сигналов, аналого-цифрового преобразования этого сигнала и формирования изображений. Достигаемый технический результат - возможность выводить линейно изменяющиеся сигналы, имеющие потенциал, варьирующийся в зависимости от времени. Устройство содержит модуль подачи напряжения, выполненный с возможностью подавать множество напряжений, имеющих разные амплитуды, модуль подачи тока, интегральную схему, выполненную с возможностью выводить линейно изменяющиеся сигналы, и емкостной элемент, при этом модуль подачи напряжения подключен к одному контактному выводу емкостного элемента, а интегральная схема и модуль подачи тока подключены к другому контактному выводу емкостного элемента. 12 н. и 8 з.п. ф-лы, 19 ил.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в системе контроля энергонасыщенных объектов. Техническим результатом является повышение точности преобразования. Устройство содержит излучатель, передающий световод, оптический демультиплексор, две группы световодов, две группы граданов, излучающий световод, приемный световод, вал, кодовый диск, считывающий диск, две группы оптических аттенюаторов, два оптических мультиплексора, общий оптический кабель, фотоприемники, усилители, пороговое устройство, ключ, генератор тактового сигнала, аналого-цифровой преобразователь (АЦП), промежуточные регистры, элемент НЕ, регистр. 3 ил.
Устройство относится к области вычислительной техники и может использоваться в системах управления технологическими процессами, в частности в автоматизированном электроприводе. Техническим результатом является повышение надежности АЦП путем диагностики его работоспособности. Устройство содержит источник входного сигнала, первый и второй сумматоры, интегратор, релейный элемент, источник сигнала синхронизации, генератор пилообразного напряжения, программируемый контроллер, первый и второй преобразователи интервала времени в цифровой код, арифметико-логическое устройство, преобразователь «частота-аналоговый сигнал», пороговый элемент. 4 ил.

Изобретение относится к области аналого-цифрового преобразования с использованием кодовых шкал преобразователей угла поворота вала в код. Техническим результатом является повышение технологичности кодовой шкалы на основе нелинейных двоичных последовательностей. Кодовая шкала содержит информационную кодовую дорожку, выполненную в соответствии с символами нелинейной двоичной последовательности длиной N=2 n , посредством которой обеспечивается величина кванта шкалы δ=360°/N, и n считывающих элементов, определяющих выходную разрядность кодовой шкалы и размещенных вдоль информационной кодовой дорожки с возможностью получения с них N различных n разрядных кодовых комбинаций, где информационная кодовая дорожка выполнена в соответствии с символами инверсно-сопряженной нелинейной двоичной последовательности, а n считывающих элементов размещены вдоль информационной кодовой дорожки с постоянным, отличным от единичного, угловым шагом δ. 4 ил., 4 табл.

Изобретение относится к области автоматики и робототехники и может быть использовано в высокоточных следящих приводах с цифровыми датчиками угла (ЦДУ), в которых точность ЦДУ должна лежать в пределах нескольких угловых секунд. Техническим результатом является повышение точности. Устройство содержит двухотсчетный индукционный датчик угла типа СКВТ, состоящий из СКВТ точного отсчета и СКВТ грубого отсчета, аналого-цифровой преобразователь следящего типа, микропроцессорный контроллер с контроллером внешней системной шины с поддержкой микросхем памяти NAND Flash и с контроллером последовательного интерфейса для ввода кода угла эталонного ЦДУ, системную шину, энергонезависимую память NAND Flash, схему формирования сигнала считывания кода с АЦП в МПК по прерыванию. 2 ил.
Наверх