Микро-опто-электромеханический датчик угловой скорости

Изобретение относится к области приборостроения и касается датчика угловой скорости. Датчик включает в себя волоконно-оптический ответвитель, связанный световодами с источником и приемником оптического излучения. Приемник излучения соединен с блоком обработки информации и с чувствительным элементом. Чувствительный элемент включает в себя центрально-закрепленную балку и четыре устройства ориентации оптического излучения, симметрично расположенных напротив двух противоположных горизонтальных плоскостей балки. Балка выполнена из пьезоматериала со светопоглощающим покрытием, нанесенным напротив горизонтальных плоскостей устройств ориентации оптического излучения. Устройства ориентации выполнены из кварцевого стекла и частично покрыты зеркальным напылением. Зеркальное напыление отсутствует на областях, соответствующих прямоугольной проекции балки на поверхности устройств ориентации. Технический результат заключается в расширении функциональных возможностей датчика. 2 ил.

 

Изобретение относится к области приборостроения и предназначено для измерения угловой скорости летательных аппаратов аэрокосмической техники.

Известен волоконно-оптический преобразователь давления, состоящий из источника оптического излучения, световода, передающего оптическое излучение от источника оптического излучения к волоконно-оптическому ответвителю, волоконно-оптического ответвителя, световода, передающего оптическое излучение от волоконно-оптического ответвителя к чувствительному элементу и обратно, чувствительного элемента, состоящего из призмы полного внутреннего отражения и отражательной мембраны, световода, передающего оптическое излучение от волоконно-оптического ответвителя к приемнику оптического излучения, приемника оптического излучения, блока обработки информации (прототип (Бусурин В.И., Жеглов М.А., Казаръян А.В. Волоконно-оптический преобразователь давления. Патент на изобретение №2457453 от 27 июля 2012 г., БИ № 21)).

Технический результат, создаваемый изобретением, - расширение функциональных возможностей волоконно-оптического преобразователя на основе оптического туннельного эффекта для обеспечения измерения угловой скорости.

Для достижения указанного результата предлагается микро-опто-электромеханический преобразователь, состоящий из основного канала приемо-передачи оптического излучения, включающего волоконно-оптический ответвитель, связанный световодами с источником оптического и приемником оптического излучения, соединенного электрически с блоком обработки информации и оптически, через световод, с чувствительным элементом, включающим в себя устройство ориентации оптического излучения, выполненное из кварцевого стекла в форме параллелепипеда, частично покрытое зеркальным напылением, отличающийся тем, что в чувствительный элемент введена центрально-закрепленная балка и три дополнительных устройства ориентации оптического излучения, расположенных симметрично относительно геометрического цента балки, при этом с каждой стороны горизонтальной плоскости балки расположены два устройства ориентации оптического излучения, прикрепленные зеркально расположенными малыми боковыми гранями к стойке, торцевая часть которой опирается на балку, центрально-закрепленная балка выполнена из пьезоматериала со светопоглощающим покрытием в местах, расположенных напротив горизонтальных плоскостей устройств ориентации оптического излучения, и электрическими контактами, расположенными с обоих торцов балки, между устройствами ориентации оптического излучения, расположенными с противоположных сторон относительно горизонтальной плоскости балки, введены прокладки, обеспечивающие зазор между устройствами ориентации оптического излучения, при этом зеркальное напыление отсутствует на областях устройства ориентации оптического излучения, соответствующих прямоугольной проекции балки на поверхности устройств ориентации оптического излучения, микро-опто-электромеханический датчик угловой скорости дополнительно содержит три канала приемо-передачи оптического излучения, каждый из которых соединен оптически, через световод, с одним из трех дополнительных устройств ориентации оптического излучения и электрически с блоком обработки информации, устройство управления, соединенное с блоком обработки информации и электрическими контактами центрально-закрепленной балки.

Применение вместо отражательной мембраны центрально-закрепленной балки из пьезоматериала со светопоглощающим покрытием, трех дополнительных устройств ориентации оптического излучения, трех дополнительных каналов приемо-передачи оптического излучения и устройства управления позволит обеспечить чувствительность микро-опто-электромеханического преобразователя к воздействию угловой скорости.

На фиг.1 представлена структурная схема микро-опто-электромеханического датчика угловой скорости.

На фиг.2 представлена конструкция чувствительного элемента микро-опто-электромеханического датчика угловой скорости.

Микро-опто-электромеханический датчик угловой скорости содержит четыре канала приемо-передачи оптического излучения А1-А4, включающие источник оптического излучения 1, световод 2, передающий оптическое излучение от источника 1 к волоконно-оптическому ответвителю 3, световод 4, осуществляющий передачу оптического излучения от волоконно-оптического ответвителя 3 к чувствительному элементу 5 и обратно, световод 6, передающий оптическое излучение от волоконно-оптического ответвителя 3 к приемнику оптического излучения 7, блок обработки информации 8, предназначенный для расчета измеренного значения угловой скорости Ωизм, соответствующего значению угловой скорости объекта Ωвх, блок управления 13, предназначенный для формирования управляющих импульсов, по командам от блока обработки информации 8, подающихся на устройство поглощения оптического излучения чувствительного элемента.

Чувствительный элемент 5 микро-опто-электромеханического датчика угловой скорости состоит из четырех устройств ориентации оптического излучения 9, выполненных в виде параллелепипедов из кварцевого стекла, покрытых зеркальным напылением, исключая области, расположенные под прямоугольной проекцией центрально-закрепленной балки 10 на поверхности параллелепипедов, центрально-закрепленной балки 10 из пьезоматериала со светопоглощающим покрытием, стоек 11, обеспечивающих зазор между двумя устройствами ориентации оптического излучения 9, расположенными с одной стороны относительно горизонтальной плоскости балки и балкой 10, прокладок 12, расположенных между устройствами ориентации оптического излучения.

Микро-опто-электромеханический датчик угловой скорости работает следующим образом. Источник оптического излучения 1 генерирует оптическое излучение заданной мощности и подает его в световод 2, который передает оптическое излучение к волоконно-оптическому ответвителю 3. Волоконно-оптический ответвитель 3 обеспечивает передачу оптического излучения из световода 2 в световод 4. По световоду 4 оптическое излучение вводится в устройство ориентации оптического излучения 9. В зависимости от зазора между устройством ориентации оптического излучения 9 и горизонтальной плоскостью центрально-закрепленной балки 10, граничащей с данным устройством ориентации оптического излучения, за счет оптического туннельного эффекта часть оптического излучения покинет устройство ориентации оптического излучения через области, где отсутствует зеркальное напыление. Зазор между горизонтальными плоскостями свободных концов центрально-закрепленной балки 10 и устройствами ориентации оптического излучения 9 может меняться под действием силы Кориолиса, возникающей из-за продольных колебаний балки, выполненной из пьезоматериала, возбуждаемых электрическим сигналом блока управления 13, по командам от блока обработки информации 8, и вращения свободных концов балки с угловой скоростью Ωвх, вызывающей деформацию свободных концов балки в плоскости вращения, что приводит к изменению потока оптического излучения, распространяющегося в каждом из устройств ориентации оптического излучения. Оптическое излучение, которое останется в устройстве ориентации оптического излучения, отразившись от грани, расположенной напротив световода 4, вернется обратно в световод 4 и через волоконно-оптический ответвитель 3 попадет в световод 6, а затем на приемник оптического излучения 7, где преобразуется в электрический сигнал. Блок обработки информации 8 преобразует электрический сигнал с четырех каналов в измеренное значение угловой скорости Ωизм.

Изобретение может быть использовано для измерения угловой скорости подвижных объектов.

Микро-опто-электромеханический датчик угловой скорости, состоящий из блока обработки информации, чувствительного элемента и основного канала приемо-передачи оптического излучения, включающего волоконно-оптический ответвитель, связанный световодами с источником и приемником оптического излучения, при этом канал приемо-передачи оптического излучения соединен электрически с блоком обработки информации и оптически, через световод, с чувствительным элементом, включающим в себя устройство ориентации оптического излучения, выполненное из кварцевого стекла в форме параллелепипеда, частично покрытого зеркальным напылением, отличающийся тем, что в датчик дополнительно введены три дополнительных канала приемо-передачи оптического излучения и блок управления, в чувствительный элемент введена центрально-закрепленная балка и три дополнительных устройства ориентации оптического излучения, расположенных симметрично относительно геометрического центра балки, при этом устройства ориентации оптического излучения соединены попарно малыми боковыми гранями через две стойки, а между стойками расположена центрально-закрепленная балка, между попарно соединенными устройствами ориентации оптического излучения расположены две прокладки, обеспечивающие зазоры между устройствами ориентации оптического излучения и балкой, центрально-закрепленная балка выполнена из пьезоматериала со светопоглощающим покрытием и снабжена электрическими контактами, расположенными с обоих торцов балки, на областях поверхностей устройств ориентации оптического излучения, соответствующих прямоугольной проекции балки на эти поверхности, отсутствует зеркальное напыление, волоконно-оптический датчик угловой скорости содержит три дополнительных канала приемо-передачи оптического излучения, каждый из которых соединен оптически, через световод, с одним из трех дополнительных устройств ориентации оптического излучения и электрически с блоком обработки информации, блок управления соединен электрически с блоком обработки информации и с электрическими контактами центрально-закрепленной балки.



 

Похожие патенты:

Изобретение относится к области волоконной оптики и может быть использовано при конструировании измерителей вектора угловой скорости на основе волоконно-оптических гироскопов с использованием одномодовых световодов.

Изобретение относится к оптоэлектронным устройствам для определения параметров движения объектов и может быть использовано для измерения составляющих вектора скорости движения летательных и плавательных аппаратов различного назначения относительно подстилающей поверхности.

Способ включает детектирование отраженных импульсов света, оцифровывание принятых сигналов, расчет дальностей до объектов и скоростей движущихся объектов, определение угловых координат.

Изобретение относится к измерителям скорости интерферометрическим методом по доплеровскому смещению длины волны света, отраженного от исследуемого объекта, с использованием интерферометра Фабри-Перо и может быть использовано для увеличения яркости интерференционной картины на щелевой диафрагме на выходе оптической системы в 2-10 раз при малом увеличении габаритов.

Изобретение относится к оптике, в частности к методам определения скорости быстродвижущихся в пространстве тел. .

Изобретение относится к области измерительной техники, в частности к оптическим измерителям скорости, например, автомобиля, на котором закреплен измеритель, относительно дороги.

Изобретение относится к области измерительной техники и касается способа измерения угловой скорости. Для определения угловой скорости формируют два пучка когерентного оптического излучения. Каждый из двух пучков дополнительно делят на два части. С помощью кольцевого интерферометра изменяют интенсивность и фазу только одной из частей каждого пучка. Ввод измерительных пучков в резонатор интерферометра осуществляют во взаимно противоположных направлениях. Прошедшую через интерферометр часть первого пучка и оставшуюся исходную часть того же пучка направляют на первый фотоприемник. Прошедшую через интерферометр часть второго пучка и оставшуюся исходную часть того же пучка направляют на второй фотоприемник. Угловую скорость определяют по величине разности собственных частот резонатора интерферометра для волн, обходящих его по взаимно противоположным направлениям. Технический результат заключается в обеспечении возможности определения угловой скорости при отсутствии потерь в резонаторе кольцевого интерферометра или при их компенсации. 3 ил.

Изобретение относится к области оптических измерений и касается способа многоканального измерения смещения длины волны света. Измерения осуществляются с использованием интерферометра Фабри-Перо. Свет источников света через коллимирующую систему направляют на интерферометр Фабри-Перо и с помощью линзы фокусируют интерферометрическую картину на регистраторе. При этом на интерферометр Фабри-Перо направляют свет от нескольких независимых источников света, которые освещают различные области интерферометрической картины, а затем в каждой области интерферометрической картины компенсируют размытие интерферометрических колец, вызванное непараллельностью зеркал интерферометра, заменяя на регистраторе плоскость фокуса на плоскость, где лучи всех интерференционных картин непараллельного интерферометра Фабри-Перо пересекаются, создавая частичный псевдофокус. Технический результат заключается в обеспечении возможности одновременного измерения смещений частоты излучения от разных независимых источников в одном канале и повышении резкости интерференционных колец с обеих сторон от центра интерферограммы. 3 ил.

Изобретение относится к гравиметрии и может быть использовано для измерений абсолютных значений ускорения свободного падения. Баллистический гравиметр содержит вакуумную камеру, устройство сбрасывания пробного тела, источник излучения, фотоприёмник, устройство синхронизации и обработки сигнала. На пробном теле закреплён оптический элемент, который выполнен в виде дифракционной решётки. Штрихи указанной решётки расположены горизонтально. На пути лучей света, дифрагирующих на решётке при работе устройства, установлен оптический мультиплексор, выход которого подключён к фотоприёмнику. Технический результат заключается в увеличения временной разрешающей способности, уменьшения габаритов устройства и упрощения алгоритма обработки сигналов. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области точного приборостроения и может быть использовано при создании таких средств измерения угловой скорости вращения объектов, как гироскопы. В резонансном способе измерения частоты вращения объекта измеряемую частоту вращения определяют как разность между собственной частотой вращения полости на выбранном типе электромагнитного колебания и собственной частотой «неподвижной» полости на том же типе колебания, деленную на постоянное число, определяемое выбранным при расчете полости типом колебания, а направление вращения определяют знаком этой разности. Устройство, реализующее резонансный способ измерения частоты вращения объекта, содержит монохроматический автогенератор перестраиваемой частоты, зонд-возбудитель, детектор электромагнитного поля, устройство перестройки частоты автогенератора, частотомер и решающее устройство, которое вычисляет частоту вращения как разность между резонансной частотой вращения полости и резонансной частотой «неподвижной» полости, деленную на постоянное число, определяемое выбранным при расчете полости типом электромагнитного колебания, а направление вращения определяет знаком этой разности. 2 н.п. ф-лы, 1 ил.

Изобретение относится к измерителям смещений длины волны электромагнитного излучения интерферометрическим методом по допплеровскому смещению длины волны света, переданного по волокну, с использованием интерферометра Фабри-Перо и касается способа компенсации световых потерь. Указанный способ основан на том, что при помощи цилиндрических линз обеспечивают сечение предварительно коллимированного пучка на входном зеркале интерферометра Фабри-Перо, равное диаметру эффективной области интерферометра. Причём на расстоянии половины длины интерферометра между зеркалами обеспечивается минимальное сечение пучка. Указанное выше обеспечивает технический результат, заключающийся в компенсации световых потерь, вызванных сферическими аберрациями в системе с интерферометром Фабри-Перо. 11 ил.

Изобретение относится к области оптических средств измерения угловой скорости и ускорения вращающихся объектов. Интерференционный измеритель угловой скорости и ускорения включает в себя источник излучения, кольцевой интерферометр, светоприемное устройство. При этом источник излучения помещен в устройство регулирования температуры. Кольцевой интерферометр выполнен из оптических зеркал и светоделительных пластин, а также оптического отражателя, устанавливаемого на исследуемом вращающемся объекте и имеющего форму цилиндра, изготовленного из однородного оптического материала с нанесенным на его поверхность зеркальным покрытием. На входе интерферометра расположен телескопический расширитель. Последовательно со светоприемным устройством установлены аналого-цифровой преобразователь и вычислительное устройство с возможностью определения величины двукратного накопления разности фаз лучами, прошедшими через оптический отражатель в прямом и обратном направлениях по отношению к направлению вращения, для последующего определения угловой скорости и ускорения соответственно по скорости и изменению скорости перемещения интерференционных полос. Технический результат - расширение рабочих диапазонов температуры и изменения давления. 1 ил.

Изобретение относится к лазерной технике, в частности к гироскопии, и может быть использовано для прецизионного измерения угловых перемещений лазерного гироскопа. Способ прецизионной обработки сигналов лазерного гироскопа со знакопеременной частотной подставкой, при котором оцифровывают первичные квадратурные сигналы, отражающие перемещения интерференционной картины, образованные выведенными из кольцевого лазера встречными лазерными пучками, осуществляют аппроксимацию эллипсом множества точек на плоскости переменных, соответствующих отсчетам первичных сигналов, и восстановление временного ряда для изменений разности фаз интерферирующих волн (угловых перемещений кольцевого лазера) за равные интервалы времени, при этом частота дискретизации первичных сигналов определяется верхним пределом диапазона измеряемых угловых скоростей; частота обновления отсчетов угловых перемещений кольцевого лазера выбирается вблизи верхнего предела, обеспечивающего гарантированное определение параметров первичных квадратурных сигналов; полученный временной ряд угловых перемещений кольцевого лазера преобразуется в угловые перемещения лазерного гироскопа с помощью цифрового режекторного узкополосного фильтра с бесконечной импульсной характеристикой, центр полосы подавления которого соответствует частоте знакопеременной подставки. Технический результат - уменьшение погрешности при измерениях в реальном времени угловых перемещений. 6 ил.

Способ определения характеристик срабатывания детонирующего устройства относится к измерительной технике и может быть использован для определения характеристик срабатывания детонирующих устройств, обеспечивающих инициирование зарядов взрывчатого вещества (ВВ), в частности определения момента инициирования детонирующим устройством заряда ВВ относительно момента подачи задействующего импульса. Знание данных моментов времени облегчает проектирование и отработку систем инициирования, в которые входят детонирующие устройства, для расчета их газодинамических характеристик. Способ включает подачу задействующего импульса и формирование детонационной волны в заряде ВВ детонирующего устройства, которой задействуют инициируемый заряд ВВ. Определяют момент подачи задействующего импульса на детонирующее устройство и момент передачи инициируемому заряду детонационного импульса. Регистрацию второго момента осуществляют, по меньшей мере, с помощью одного оптического датчика, выполненного на основе оптоволоконной линии, установленной перпендикулярно оси детонирующего устройства и обращенной одним торцом к зоне передачи детонации, а другим - к регистрирующей аппаратуре. Регистрацию световых вспышек оптического излучения осуществляют путем преобразования светового сигнала в электрический, по которым и фиксируют момент передачи детонационного импульса инициируемому заряду ВВ, относительно времени подачи задействующего импульса на детонирующее устройство. Изобретение позволяет повысить достоверность информации при испытаниях. 2 ил.

Изобретение относится к области приборостроения, в частности к устройствам для измерения угловой скорости и линейного ускорения. Сущность изобретения заключается в том, что устройство поглощения оптического излучения микро-опто-электромеханического трехосевого датчика угловой скорости и линейного ускорения состоит из четырех скрещивающихся под прямым углом балок с квадратной боковой стороной, консольно закрепленных малыми гранями к центральной прокладке в зоне пересечения, каждая балка выполнена из пьезоматериала со светопоглощающим покрытием, содержит электрические контакты, расположенные с обоих торцов балки, и груз, закрепленный на ее свободном конце, чувствительный элемент содержит четырнадцать дополнительных устройств ориентации оптического излучения, при этом каждое из шестнадцати устройств ориентации оптического излучения расположено симметрично относительно геометрического центра скрещивающихся балок, параллельно длинным граням свободных концов четырех балок, прикреплено одной малой боковой гранью к центральной прокладке, а другой малой боковой гранью опирается на боковую прокладку, обеспечивающую зазор между четырьмя устройствами ориентации оптического излучения и консольно закрепленной балкой устройства поглощения оптического излучения, микро-опто-электромеханический трехосевой датчик угловой скорости и линейного ускорения дополнительно содержит четырнадцать каналов приемо-передачи оптического излучения, каждый из которых соединен оптически, через световод, с одним из четырнадцати дополнительных устройств ориентации оптического излучения и электрически с блоком обработки информации, устройство управления, соединенное с блоком обработки информации и электрическими контактами скрещивающихся балок. Технический результат – расширение функциональных возможностей волоконно-оптического преобразователя линейного ускорения на основе оптического туннельного эффекта для обеспечения измерения угловой скорости и линейного ускорения относительно трех осей инерциальной системы координат. 5 ил.

Изобретение относится к контрольно-измерительной технике и позволяет исследовать кинематические характеристики гидропотоков. В заявленном способе измерения полного вектора скорости в гидропотоках с помощью лазерного доплеровского анемометра (далее - ЛДА) ЛДА и иммерсионный оптический контейнер располагают относительно друг друга так, что оптическая ось прибора ЛДА расположена под углом 90 градусов к фронтальной стенке иммерсионного оптического контейнера, согласно изобретению применяют несколько приборов ЛДА, излучающих суммарно 6 лазерных пучков с одинаковыми длинами волн. При этом используют иммерсионный оптический контейнер, фронтальная стенка которого имеет количество граней, равное количеству приборов ЛДА. Технический результат - обеспечение возможности измерения одновременно трех компонент вектора скорости (полного вектора скорости) в одной и той же точке гидропотока. 1 ил.
Наверх