Способ экспериментального определения сопротивлений обмоток трансформаторов

Изобретение относится к области энергетики, а именно к измерению параметров обмоток трансформаторов. Сущность заявляемого изобретения состоит в том, что измерение параметров трехфазных двухобмоточных трансформаторов при коротком замыкании производится вначале при схеме соединения первичной обмотки в треугольник, а затем - в звезду. Далее по измеренным значениям мощности трех фаз, средних линейных значениях напряжения и тока короткого замыкания определяют по формулам полное сопротивление короткого замыкания, а также значения активного и реактивного сопротивления к.з., кроме того фазные значения сопротивления первичной обмотки трансформаторов определяют также по формулам. Техническим результатом заявляемого изобретения является повышение надежности работы трансформаторов путем получения информации о их состоянии. 2 ил.

 

Изобретение относится к измерению параметров обмоток трансформаторов. Известно устройство (см. патент РФ RU 2281522 С1, 2006 г., [Л-1]) для определения полного сопротивления короткого замыкания обмоток трехфазного силового трансформатора, содержащее трехканальный источник регулируемого переменного напряжения и трехфазный измеритель полного сопротивления. При помощи указанного выше устройства полное, активное и реактивное сопротивления первичной и вторичной обмоток трансформатора раздельно не определяются.

Известен способ (см. патент РФ RU 2364876 С1, 2009 г., [Л-2]) определения параметров Т-образной схемы замещения трехфазного трехобмоточного трансформатора в рабочем режиме, заключающийся в том, что после подключения обмотки высокого напряжения к источнику питания, а обмотки среднего и низкого напряжения к нагрузкам регистрируют для одних и тех же моментов времени мгновенные значения напряжений и токов в обмотках всех фаз. Затем определяют действующие значения напряжений всех обмоток и коэффициенты трансформации, при помощи которых приводят токи и напряжения обмоток среднего и низкого напряжения к цепи обмотки высокого напряжения. После этого определяют мгновенные приведенные значения напряжений обмотки среднего напряжения, которые принимаются равными напряжениям ветви намагничивания схемы замещения трансформатора. Затем одновременно формируют массивы мгновенных значений тока намагничивания как разность мгновенных значений тока в обмотке высокого напряжения и суммы мгновенных значений приведенных токов обмоток среднего и низкого напряжения и падения напряжения на сопротивлениях обмоток высокого и низкого напряжения как разность мгновенных значений напряжений соответственно обмотки высокого напряжения и ветви намагничивания, а также ветви намагничивания и приведенного на обмотке низкого напряжения. Далее определяют действующие значения токов обмотки высокого напряжения, ветви намагничивания и приведенного тока обмотки низкого напряжения по массивам мгновенных значений этих токов. Определяют потери активной мощности в обмотках высокого и низкого напряжения и в ветви намагничивания как средние за период значения мгновенных мощностей соответствующих обмоток, а также потери реактивной мощности в тех же обмотках, определяя их по массивам мгновенных значений токов и напряжений соответствующих обмоток через площади вольт-амперных характеристик этих обмоток. По известным действующим значениям токов и величине потерь активных и реактивных мощностей определяют для всех трех фаз активные и реактивные составляющие сопротивлений обмоток высокого и низкого напряжения и ветви намагничивания. Это изобретение не позволяет определять активное, реактивное и полное сопротивления обмотки среднего напряжения трансформатора, потому что за мгновенное приведенное значение электродвижущей силы ветви намагничивания принято мгновенное приведенное значение напряжения обмотки среднего напряжения, то есть не учтены потери напряжения в этой обмотке.

Наиболее близким по технической сущности к заявляемому объекту является способ определения параметров Т-образной схемы замещения трехфазного трехобмоточного трансформатора в рабочем режиме, описанный в [Л-2]. Он и взят за прототип.

Техническим результатом заявляемого изобретения является повышение надежности работы трансформаторов путем получения информации об их состоянии.

Технический результат изобретения достигается за счет того, что измерение параметров трехфазных двухобмоточных трансформаторов в опыте короткого замыкания производится вначале при схеме соединения первичной обмотки в треугольник, а затем - в звезду. При эквивалентном преобразовании трех одинаковых сопротивлений, включенных в треугольник, в трехлучевую звезду их значения уменьшаются в 3 раза. Поэтому сопротивления трехфазного двухобмоточного трансформатора в опытах короткого замыкания различны на величину уменьшения в 3 раза полных, активных и реактивных сопротивлений первичной обмотки при ее соединении в треугольник Zкт1, rкт1, xкт1 по сравнению с соединением в звезду Zкз1, rкз1, xкз1, а приведенные к числу витков значения этих же сопротивлений вторичной обмотки Zкт2, rкт2, xкт2 и Zкз2, rкз2, xкз2 остаются постоянными. Так как полное, активное и реактивное сопротивления короткого замыкания трехфазного двухобмоточного трансформатора равны сумме соответствующих сопротивлений:

Zкт=Zкт1-Zкт2;

Zкз=Zкз1+Zкз2;

rкт=rкт1+rкт2;

rкз=rкз1+rкз2;

xкт=xкт1+xкт2;

xкз=xкз1+xкз2;

то полное, активное и реактивное сопротивления короткого замыкания, полученные на основании опыта короткого замыкания трехфазного двухобмоточного трансформатора при схеме соединения первичной обмотки в треугольник, меньше на 2/3 значений фазных сопротивлений первичной обмотки Zкп, rкп, xкп по сравнению с соответствующими параметрами, полученными на основании опыта короткого замыкания трехфазного двухобмоточного трансформатора при схеме соединения первичной обмотки в звезду:

Zкз-Zкт=2Zкп/3;

rкз-rкт=2rкп/3;

xкз-xкт=2xкп/3.

Окончательно имеем, что полное, активное и реактивное фазные сопротивления короткого замыкания первичной обмотки в полтора раза больше разности соответствующих параметров, подсчитанных на основании измерений, проведенных в опытах короткого замыкания трехфазного двухобмоточного трансформатора при соединении первичной обмотки в звезду, а затем в треугольник:

Zкп=1,5(Zкз-Zкт);

rкп=1,5(rкз-rкт);

xкп=1,5(xкз-xкт).

Предлагаемое изобретение иллюстрируется чертежами, приведенными на рис.1 и 2. При этом:

1 - три одинаковых амперметра РА;

2 - два одинаковых ваттметра PW;

3 - три одинаковых вольтметра PV;

4 - первичная обмотка трехфазного двухобмоточного трансформатора, соединенная в треугольник;

5 - вторичная обмотка трехфазного двухобмоточного трансформатора, соединенная в звезду и замкнутая накоротко;

6 - первичная обмотка трехфазного двухобмоточного трансформатора, соединенная в звезду;

7 - вторичная обмотка трехфазного двухобмоточного трансформатора, соединенная в звезду и замкнутая накоротко.

На рис.1 и 2 вторичные обмотки 5 и 7 трехфазного двухобмоточного трансформатора, соединенные в звезду, замкнуты накоротко. В провода, питающие первичные обмотки, которые соединены в треугольник (рис.1) и звезду (рис.2), включены три одинаковых амперметра РА 1, два одинаковых ваттметра PW 2 и три одинаковых вольтметра PV 3.

Заявляемое изобретение осуществляется следующим образом. При опыте короткого замыкания вторичная обмотка 5 и 7 трехфазного двухобмоточного трансформатора, соединенная в звезду (рис.1 и 2), замыкается накоротко, а к первичной обмотке 4 и 6 подводится пониженное линейное напряжение Uк, при котором первичный линейный ток Iк равен номинальному значению Iн. Для трехфазного двухобмоточного трансформатора по алгебраической сумме показаний двух ваттметров PW 2 определяется мощность короткого замыкания трех фаз Рк, а по показаниям трех вольтметров PV 3 и амперметров PA 1 вычисляют средние значения линейного напряжения Uк и линейного тока Iк.

При соединении первичной обмотки 4 трехфазного двухобмоточного трансформатора треугольником (рис.1) фазные параметры короткого замыкания:

полное сопротивление короткого замыкания ;

активное сопротивление короткого замыкания ;

реактивное сопротивление короткого замыкания .

При соединении первичной обмотки 6 в звезду (рис.2) фазные параметры короткого замыкания:

полное сопротивление короткого замыкания ;

активное сопротивление короткого замыкания ;

реактивное сопротивление короткого замыкания .

Затем вычитают из значений полного, активного и реактивного сопротивлений короткого замыкания, полученных из опыта короткого замыкания трехфазного двухобмоточного трансформатора при схеме соединения первичной обмотки в звезду, величины соответствующих сопротивлений, вычисленные при схеме соединения первичной обмотки в треугольник. Далее эти разности увеличивают в 1,5 раза, есть фазные значения полных, активных и реактивных сопротивлений первичной обмотки:

Zкп=1,5(Zкз-Zкт);

rкп=1,5(rкз-rкт);

xкп=1,5(xкз-xкт).

Параметры полного, активного и реактивного сопротивлений короткого замыкания первичной обмотки трех одинаковых однофазных двухобмоточных трансформаторов могут быть определены аналогично экспериментально при их соединении в трехфазную группу. Параметры полного, активного и реактивного сопротивлений короткого замыкания вторичной обмотки двухобмоточного трехфазного трансформатора и любой обмотки многообмоточных трехфазных и однофазных трансформаторов могут быть определены аналогично, превращая ее в первичную.

Список литературы

1. Патент RU 2281522 C1 G01R 31/02 (2006.01). Устройство для определения сопротивления короткого замыкания обмоток трехфазного трансформатора с выведенной на корпус нейтралью / Михеев Г.М., Федоров Ю.А., Баталыгин С.Н., Шевцов В.М. - Заявлено 11.01.2005; опубл. 10.08.2006.

2. Патент RU 2364876 C1. G01R 27/02 (2006.01). Способ определения параметров Т-образной схемы замещения трехфазного трехобмоточного трансформатора в рабочем режиме / Гольдштейн Е.И., Прохоров А.В., Панкратов А.В. - Заявлено 19.05.2008; опубл. 20.08.2009.

Способ экспериментального определения сопротивлений обмоток трансформаторов, осуществляемый путем определения сопротивления короткого замыкания трансформатора, отличающийся тем, что сначала измеряют сопротивление короткого замыкания трехфазного трансформатора или группы трех одинаковых однофазных трансформаторов при схемах соединения первичной обмотки соединением сперва в треугольник, а далее - в звезду, потом по измеренным значениям мощности трех фаз Рк, средних линейных значений напряжения Uк и тока Iк короткого замыкания определяют полное zкт, zкз, активное rкт, rкз и реактивное xкт, xкз сопротивления короткого замыкания при схемах соединения первичной обмотки трансформатора в треугольник и звезду, при этом вычисляют по формулам:
z к т = 3 U к / I к ,
z к з = U к / ( 3 I к ) ,
rктк/Iк2,
rкзк/(3Iк2),
x к т = ( z к т 2 r к т 2 ) ,
x к з = ( z к з 2 r к з 2 ) ,
затем вычитают полное, активное и реактивное сопротивления короткого замыкания при схемах соединения первичной обмотки трансформатора в звезду и треугольник, далее эти разности увеличивают в 1,5 раза, а фазные сопротивления первичной обмотки трансформаторов определяют по формулам:
Zкп=1,5(Zкз-Zкт);
rкп=1,5(rкз-rкт);
xкп=1,5(xкз-xкт),
где Zкз, rкз, xкз - полное, активное и реактивное сопротивления короткого замыкания трансформатора при схеме соединения первичной обмотки трансформатора в звезду; Zкт rкт, xкт - полное, активное и реактивное сопротивления короткого замыкания трансформатора при схеме соединения первичной обмотки трансформатора в треугольник.



 

Похожие патенты:

Изобретение относится к метрологии. Измеритель содержит генератор, мост, нуль-детектор.

Изобретение относится к электроизмерительной технике, в частности к измерениям внутреннего сопротивления аккумуляторной батареи. Устройство измерения внутреннего сопротивления для пакетированной батареи включает в себя компонент источника питания переменного тока для подачи переменного тока на батарею, состоящую из множества пакетированных элементов генерирования энергии, посредством подключения к объекту измерения.

Изобретение относится к измерительной технике и, в частности, к контролю выходного напряжения и сопротивления изоляции аккумуляторных батарей. Устройство контроля аккумуляторной батареи содержит аккумуляторную батарею, преобразователь постоянного напряжения, выполненный по схеме автогенератора с трансформаторной обратной связью, источник тока, сдвоенный транзисторный оптрон, операционный усилитель, два резистора и дополнительный индикатор, причем величина сопротивления R первого резистора установлена равной R=E/2J, где E - номинальное напряжение аккумуляторной батареи J - величина тока, вырабатываемого источником тока.

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов.

Способ определения первичных параметров однородного участка трехпроводной линии электропередачи относится к области функционального контроля и диагностики трехфазных линий электропередачи трехпроводного исполнения на основе ее Г-образной схемы замещения полнофазного исполнения.

Способ определения первичных и обобщенных вторичных параметров однородного участка трехпроводной линии электропередачи методом восьмиполюсника относится к области контроля и диагностики трехфазных линий электропередачи трехпроводного исполнения на основании многополюсников.

Способ относится к области функционального контроля и диагностики трехфазных линий электропередачи трехпроводного исполнения на основании теории многополюсников.

Изобретение относится к измерительной технике. Цифровой измерительный преобразователь индуктивного типа, включающий в себя микроконтроллер, подключенный к блоку формирования импульсов, выход которого подключен к входам усилителей тока измерительного и опорного плеч преобразователя, выходы усилителей подключены к LC-контурам измерительного и опорного плеч преобразователя.

Изобретение относится к области систем обработки информации и может быть использовано при функциональном контроле и диагностировании трехфазных линий электропередачи (ЛЭП) трехпроводного исполнения на основе ее Г-образной схемы замещения полнофазного исполнения.

Изобретение относится к электронной технике и может быть использовано для высокоэффективного контроля объектов, в качестве информативного параметра которых используют электрический импеданс. Способ включает определение глубины пропитки объекта расположением измерительных электродов в виде овальной формы с числом 2n на участке объекта, измерение импедансов между всеми ближайшими соседними измерительными электродами в первой серии, импедансов между всеми измерительными электродами во второй серии с отличием на единицу, сравнение результатов, по которым судят о глубине пропитки.

Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества. Подают на контролируемый двухполюсник последовательность коротких импульсов тока большой скважности с изменяющейся амплитудой и измеряют амплитуды импульсов напряжения на контролируемом двухполюснике. При этом амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой Iи и глубиной модуляции М. На частоте модуляции Ω измеряют амплитуду Um огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле R д и ф | I и = U m / M I и . Технический результат заключается в повышении точности измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой. 3 ил.

Изобретение относится к контрольно-измерительной технике, автоматике, управлению и промышленной электронике. Измеритель параметров двухполюсников содержит последовательно соединенные генератор питающих импульсов, четырехполюсник с двухполюсником объекта измерения и двухполюсником с уравновешивающими элементами, неинвертирующий повторитель напряжения, инвертирующей первый усилитель с коэффициентом усиления, равным двум, первый двухвходовой аналоговый сумматор, на один из входов которого подается сигнал с выхода генератора импульсов, а на другой вход - с выхода первого инвертирующего усилителя, с выхода сумматора сигнал усиливается вторым усилителем и подается на входы двух схем выборки и хранения, сигналы с выхода каждой из двух схем выборки и хранения поступают соответственно на два входа второго двухвходового аналогового сумматора, сигнал со второго сумматора усиливается третьим усилителем и через разделительный конденсатор подается на нуль-индикатор. Также имеется блок управления, с которого поступают сигналы синхронизации на генератор импульсов и нуль-индикатор, а также сигналы управления на обе схемы выборки и хранения. В двухполюснике с уравновешивающими элементами имеются два ключа и два управляемых ключа, на управляющие входы которых через переключатель подаются управляющие сигналы с блока управления. Новым в измерителе параметров двухполюсников является введение трех дополнительных резисторов, трех дополнительных конденсаторов, двух управляемых ключей, двух ключей, одного переключателя, двух усилителей, двух схем выборки и хранения, одного двухвходового аналогового сумматора, блока управления и изменение включения блоков схемы. Технический результат заключается в повышении точности измерения за счет уменьшения составляющей погрешности измерения от неточного уравновешивания нулевой измерительной цепи. 1 ил.

Изобретение относится к технике измерений относительной электрической проводимости и солености жидкостей (например, морской воды) и может быть использовано в метрологии в качестве образцовых средств, а также для измерения активных проводимостей и сопротивлений. Технический результат - повышение точности измерения и расширение функциональных возможностей. Дополнительный технический результат - возможность прецизионного измерения активных проводимостей и сопротивлений. Сущность: кондуктометр содержит генератор (1) переменного напряжения, выход которого подключен к опорному входу преобразователя (2) код-напряжение и к трансформаторному дифференциальному кондуктометрическому преобразователю (3). Трансформаторный преобразователь (3) содержит первый (4), второй (5) и третий (6) трансформаторы, первый элемент связи (8), охватывающий сердечники первого (4) и третьего (6) трансформаторов, и второй элемент связи (11), охватывающий сердечники второго (5) и третьего (6) трансформаторов. Он также содержит первую проводную обмотку связи (9), между первым (4) и третьим (6) трансформаторами, выводы которой подсоединены к первому клеммнику (14), и вторую проводную обмотку связи (12), между вторым (5) и третьим (6) трансформаторами, выводы которой подсоединены ко второму клеммнику (15). Первый вывод первой обмотки (7) первого трансформатора (4) соединен с выходом генератора (1) переменного напряжения, опорным входом синхронного детектора (17) и опорным входом преобразователя (2) код-напряжение, выход которого непосредственно соединен с первым выводом первой обмотки (10) второго трансформатора (5). Управляющий вход преобразователя (2) код-напряжение соединен с выходом блока управления (18). Первый вывод первой обмотки (13) третьего трансформатора (6) соединен с входом избирательного усилителя (16), выход которого соединен с управляющим входом синхронного детектора (17), выход которого соединен последовательно с блоком управления (18), микроконтроллером (19) и устройством-цифровой индикации (20). Вторые выводы первых обмоток всех трех трансформаторов соединены с общей шиной устройства. 1 н. п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками. Микроконтроллерный измерительный преобразователь с управляемым питанием резистивных измерительных цепей методом широтно-импульсной модуляции содержит микроконтроллер, первый RC-фильтр, первый, второй, третий и четвертый резисторы, причем первый вывод первого резистора подключен к выходу первого широтно-импульсного модулятора микроконтроллера, вторые выводы первого и второго резисторов подключены ко входу первого RC-фильтра, выход которого подключен к первому входу аналогового компаратора микроконтроллера, причем в преобразователь введен второй RC-фильтр, первые выводы второго, третьего и четвертого резисторов подключены к выходам соответственно второго, третьего и четвертого широтно-импульсных модуляторов микроконтроллера, вторые выводы третьего и четвертого резисторов подключены ко входу второго RC-фильтра, выход которого подключен ко второму входу аналогового компаратора микроконтроллера. Техническим результатом является повышение точности преобразования. 1 з.п. ф-лы, 1 ил.

Изобретение относится к промышленной электронике, автоматике, информационно-измерительной технике и может быть использовано для контроля и определения параметров двухполюсников. Мостовой измеритель параметров двухполюсников содержит последовательно соединенные генератор питающих импульсов, четырехплечую мостовую цепь и нуль-индикатор. В мостовой измеритель параметров двухполюсников дополнительно введены три резистора, катушка индуктивности, а также две клеммы для подключения объекта измерения перенесены из первой ветви во вторую ветвь моста. Техническим результатом является уменьшение погрешности измерения за счет исключения составляющей погрешности от паразитной емкости относительно «земли» незаземленного многоэлементного двухполюсника. 1 ил.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных средствах. Техническим результатом является повышение точности измерения, которое достигается путем измерения параметров кабельной линии связи и учета измеренных параметров кабельной сети при определении параметров двухполюсника с помощью схемы замещения. Способ определения параметров двухполюсника заключается в воздействии на двухполюсник, подключенный через линию связи, и эталон синусоидальным напряжением на n заданных частотах, где n - число элементов двухполюсника. Далее производится последовательное измерение значений токов через двухполюсник и эталон на каждой из n заданных частот с последующей фиксацией результатов измерений. Параметры двухполюсника определятся по фиксированным результатам измерений в соответствии со схемой его замещения. Отличительной особенностью способа является то, что осуществляют отключение двухполюсника от линии связи и после формирования синусоидального напряжения на n заданных частотах производят измерение токов через комплексное сопротивление линии связи и эталон на каждой из n заданных частотах. Полученные результаты фиксируют и по ним определяют значения параметров комплексного сопротивления линии связи, используя схему замещения, после чего по значениям параметров комплексного сопротивления линии связи судят о ее состоянии, а также учитывают их при определении параметров двухполюсника. 2 ил.

Изобретение относится к измерительной технике. Особенностью заявленного цифрового способа измерения параметров пьезоэлектрических элементов является то, что импульсный сигнал возбуждения имеет длительность T1=Т0-τ, где τ - длительность паузы между окончанием сигнала с линейной частотной модуляцией и моментом окончания регистрации цифровых сигналов, при этом время регистрации цифровых сигналов равно Т0, определяют частоту резонанса ƒr, частоту антирезонанса ƒa и добротность Q пьезоэлемента, а также значение параллельной емкости С0 из полученного множества значений комплексной проводимости путем его дробно-рациональной аппроксимации частотной зависимостью комплексной проводимости канонической эквивалентной схемы в резонансном промежутке частот. Техническим результатом является повышение точности измерения комплексной проводимости пьезоэлектрического элемента. 1 з.п. ф-лы, 10 ил.

Изобретение относится к электроизмерительной технике и может быть, в частности, использовано для измерения приращения сопротивлений удаленных тензорезисторов или терморезисторов в многоканальных измерительных системах, работающих в условиях действия интенсивных промышленных помех. Многоканальный преобразователь приращения сопротивления резистивных датчиков в напряжение содержит «n» резистивных датчиков, «n» первых, «n» вторых, «n» третьих и «n» четвертых проводов, четыре группы ключевых элементов по «n» ключевых элементов в каждой, источник опорного напряжения, два равных по величине опорных резистора, три операционных усилителя и сумматор. Технический результат заключается в повышении помехозащищенности многоканального преобразователя и преобразовании приращения сопротивления резистивных датчиков в напряжение. 1 ил.

Изобретение относится к электроизмерительной технике, а именно к измерению электрических параметров двухполюсников. Устройство содержит первый блок задания схемы замещения, преобразователь ток-напряжение, масштабный усилитель, аналогово-цифровой преобразователь, блок управления измерением, определитель параметров двухполюсников, эталона, генератор синусоидального напряжения, блок управления по частоте, блок управления режимами, блок коммутации, 4n измерительные клеммы, экранированную кабельную линию связи, блок переключения, блок сравнения, учитывающий блок и ключ. Технический результат заключается в повышении точности измерения. 5 ил.

Изобретение относится к измерению и контролю составляющих полного сопротивления и может быть использовано для измерения напряжения на контактах полюсов и измерения внутреннего сопротивления гальванических элементов, аккумуляторов различных типов и батарей на их основе. Способ осуществляется с помощью устройства, содержащего микроконтроллер (1), генератор (2), фильтр нижних частот (элемент защиты от помех) (3), управляемый источник тока (4), первый умножитель (5), фильтр нижних частот (элемент защиты от помех) (6), измерительную схему (7), второй умножитель (8), фильтр нижних частот (9), измеритель тока (10), анализируемый ЭХИП (11). Генератор (2) имеет два выхода, первый из которых является выходом первого синусоидального напряжения, измерительную схему (7), подключенную к анализируемому ЭХИП (11). К выходу измерительной схемы подключен фильтр (6), выход которого подключен к первому входу первого умножителя (5). Ко второму выходу генератора (2) подключен третий вход первого (5) и второго (8) умножителей, выходы которых подключены к измерительным входам микроконтроллера (1). Кроме того, ко второму выходу генератора (2) подключен фильтр (3), выход которого подключен к управляемому источнику тока (4), который задает величину тока, протекающего через анализируемый ЭХИП (11). Второй выход анализируемого ЭХИП (11) подключен к измерителю тока (10) выход которого через фильтр (9), подключен ко второму умножителю (8). С помощью данного устройства определяют активную и реактивную составляющие сигнала, подают их на измерительные входы микроконтроллера, который по четырем сигналам производит вычисление активной и реактивной составляющей полного сопротивления анализируемого ЭХИП. Технический результат заключается в повышении точности измерения составляющих полного сопротивления ЭХИП, что повышает достоверность определения дефектов ЭХИП. 2 н.п. ф-лы, 1 ил.
Наверх