Способ измерения скорости звука в воде

Изобретение относится к области гидроакустических измерений и может быть использовано для измерения вертикального распределения скорости звука в естественных водоемах. Сущность: производят зондирование акустическим импульсным сигналом одиночного относительно сильного естественного акустического рассеивателя, находящегося в водном объеме, ограниченным характеристиками направленности акустических излучателя-приемника и двух приемников, оси характеристик направленности которых пересекаются на одном горизонте с осью характеристики направленности акустического излучателя-приемника. Последовательно изменяют углы наклона характеристик направленности первого и второго акустического приемников, которые расположены на фиксированных расстояниях от излучателя-приемника на одном горизонте с ним. Измеряют времена прихода принятых сигналов, определяют по их значениям, значению скорости звука на горизонте акустических источника и приемников, известным расстояниям между ними значения скорости звука в водоеме на заданных горизонтах. Излучают или монохроматический импульсный акустический сигнал малой длительности, или сложный импульсный акустический сигнал с гиперболической частотной модуляцией, при использовании которой времена прихода принятых сигналов определяют по временному положению максимумов взаимнокорреляционных функций излучаемого и принятых сигналов. Технический результат - повышение точности и глубины измерения скорости звука на заданных горизонтах в естественных водоемах дистанционным акустическим способом на ходу носителя аппаратуры. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к области гидроакустических измерений и может быть использовано для измерения дистанционным акустическим способом вертикального распределения скорости звука в естественных водоемах.

Известны дистанционные акустические способы измерения вертикального распределения скорости звука в естественных водоемах. Так в способе, на основе которого выполнены устройства по патенту [1], производят излучение в море в сторону дна акустических импульсных гармонических сигналов. Вертикальная характеристика направленности (ХН) акустического источника пересекается с веером лепестков ХН акустической приемной системы. К приемной системе распространяются акустические сигналы, рассеянные от акустических рассеивателей, находящихся в объемах водной среды, ограниченных лепестками характеристик направленности (ХНХН) источника и приемника акустических колебаний. По измеренным значениям скорости звука на горизонте источника и приемника акустических колебаний, временам распространения акустических сигналов от источника до соответствующих рассеивателей и к акустической приемной системе, углам наклона лепестков ХН акустической приемной системы и известному расстоянию между расположенными на одном горизонте акустическим источником и приемной системой находят горизонты рассеивателей и значения скорости звука на них.

Причинами, препятствующими достижению технического результата, являются низкая точность, обусловленная случайным, неконтролируемым положением акустических рассеивателей в объемах водной среды, ограниченных лепестками ХНХН источника и приемной системы, а также невозможность проведения измерений на ходу носителя аппаратуры из-за сильного влияния эффекта Доплера, который имеет место при распространении акустических сигналов по наклонным траекториям лепестков веера ХН акустической приемной системы.

В способе, на основе которого выполнено устройство по патенту [2], производят излучение в море акустического импульсного сигнала с внутренней частотной модуляцией несущих колебаний. Акустический импульс, распространяясь в сторону дна, рассеивается на различных неоднородностях водной среды. Рассеянный акустический сигнал принимается акустической приемной системой, содержащей два акустических приемника, расположенных на фиксированных расстояниях от акустического источника. Они через смеситель подключены к спектроанализатору. По результатам обработки принятых сигналов на спектроанализаторе определяются углы и времена прихода этих сигналов. По их значениям и по известным значениям расстояний между излучателем и акустическими приемниками вычислительное устройство находит вертикальное распределение скорости звука в море.

Причиной, препятствующей достижению технического результата, является использование большого количества мелких относительно длины акустической волны естественных акустических рассеивателей (в море - преимущественно зоопланктона) в каждом из объемов жидкой среды, ограниченных характеристиками направленности акустического источника и приемной системы, которых требуемого количества может не быть, а также невозможность проведения измерений на ходу носителя аппаратуры из-за сильного влияния эффекта Доплера, который имеет место при распространении акустических сигналов по наклонным траекториям ХН акустической приемной системы.

Наиболее близким по совокупности признаков и технической сущности к предлагаемому изобретению является способ измерения распределения скорости звука в жидкой среде, на основе которого выполнено устройство по авторскому свидетельству [3].

Акустический сигнал излучается приемоизлучателем. Отраженные от границ акустически неоднородных слоев жидкой среды акустические сигналы принимаются приемоизлучателем и двумя акустическими приемниками. Акустический приемоизлучатель и акустические приемники располагаются на одном горизонте. По измеренным значениям времен распространения акустических сигналов от источника звука до границ акустически неоднородных слоев водной среды и от них до акустических приемников (временам прихода принятых сигналов), скорости звука на горизонте акустических источника и приемников, известным расстояниям между ними находят распределение по глубине скорости звука в жидкой среде. Для повышения точности определения ВРСЗ на ходу судна дополнительно производят корректировку значений углов прихода принятых сигналов и эффективной длины расстояний от акустического источника до приемников.

Причинами, препятствующими достижению технического результата, являются использование в качестве рассеивателей параллельных водной поверхности границ акустически неоднородных слоев жидкой среды, которых для выполнения достоверных измерений в естественных водоемах необходимого количества (~20 слоев) по глубине никогда нет, что приводит к некорректности учета влияния хода судна-носителя на показания аппаратуры посредством предлагаемой корректировки значений углов прихода принятых сигналов и эффективной длины расстояний от акустического источника до приемников.

Технический результат, который может быть получен при осуществлении изобретения, состоит в повышении точности и глубины измерения скорости звука на заданных горизонтах в естественных водоемах дистанционным акустическим способом на ходу носителя аппаратуры.

Для достижения технического результата в предлагаемом способе измерения скорости звука в воде облучают импульсным акустическим сигналом одиночный относительно сильный естественный акустический рассеиватель, находящийся в водном объеме, ограниченным характеристиками направленности акустического излучателя-приемника и двух акустических приемников, причем оси характеристик направленности первого и второго акустического приемников пересекаются на одном горизонте с осью характеристики направленности акустического излучателя-приемника, последовательно изменяют углы наклона характеристик направленности первого и второго акустического приемников, а углы прихода принятых акустических сигналов определяют по их временам прихода до излучателя-приемника и обоих приемников.

В частности, излучают монохроматический (с гармоническим заполнением) импульсный акустический сигнал малой длительности.

В частности, излучают сложный импульсный акустический сигнал с внутренней гиперболической частотной модуляцией несущих колебаний, а времена прихода принятых сигналов определяют по временному положению максимумов взаимнокорреляционных функций излучаемого и принятых сигналов.

Сущность изобретения поясняется фигурами 1 и 2. На фиг.1 представлена структурная схема устройства для осуществления предлагаемого способа. На фиг.2 показана геометрия акустического зондирования водной среды.

Устройство (фиг.1) содержит: направленный акустический излучатель-приемник 1, первый 2 и второй 3 направленные акустические приемники, импульсно-модулированный генератор 4, ключ «прием-передача» 5, усилители принятых сигналов 6, четырехканальный аналого-цифровой преобразователь 7, вычислительное устройство 8 и контактный измеритель скорости звука 9. Остальные обозначения далее в тексте.

На фиг.2 при измерениях на стопе судна показаны: цифрами 1, 2 и 3 - положение акустического излучателя-приемника и приемников, сплошными линиями с направляющими стрелками - траектории распространения акустических сигналов, α1i, α2i и α3i, а также t1i, t2i и t3i - углы прихода и времена распространения от рассеивателя Pi(di,Zi) принятых сигналов, расположенного на расстоянии - di от оси ХН излучателя. При измерениях на ходу судна представлены: цифрами 1v, 2v и 3v - положение акустического излучателя-приемника 1 и приемников 2 и 3 в моменты приема ими акустических сигналов, штриховыми линиями с направляющими стрелками - траектории распространения акустических сигналов распространения от рассеивателя Pi(di,Zi) до соответствующих приемников. Обозначения α1iv, α2iv и α3iv, а также t1iv1, t2iv и t3iv - углы прихода и времена распространения от рассеивателя Pi(di,Zi) принятых сигналов. Остальные обозначения далее в тексте.

Суть предложенного способа заключается в следующем.

С выхода импульсно-модулированного генератора 4 (фиг.1) электрический сигнал через ключ «прием-передача» 5 возбуждает направленный акустический обратимый преобразователь 1, функционирующий как излучатель-приемник. Соответствующий акустический сигнал, распространяясь по вертикали в водной среде, рассеивается от относительно сильного естественного рассеивателя Pi(di,Zi), например рыбки, размеры которого l больше длины волны λ излучаемого акустического сигнала l>λ. Рассеянные акустические сигналы достигают при скорости судна V=0 излучателя-приемника 1 и установленных на одном горизонте с ним на фиксированных расстояниях D1 и D1+D2 от него акустических приемников 2 и 3, оси характеристик направленности которых имеют углы наклона αo2i и αo3i. В процессе измерения скорости звука в естественном водоеме (в море) на заданных горизонтах значения углов наклона ХНХН приемников последовательно изменяют в пределах 0<αo2<π/2 и 0<αo3<π/2. Времена прихода принятых сигналов при скорости судна V (фиг.2), то есть времена распространения их от акустического излучателя-приемника 1 до рассеивателя Pi(di,Zi) и от него к акустическим приемникам 2 и 3 в точках 2v и 3v, а также обратно к излучателю-приемнику 1 в точке 1v, соответственно равны T2iV, T3iV и T1iV:

T 1 i V = t 1 i v + t 1 i v 1 = t 1 i ( 1 + V 1 i 1 C ) + t 1 i ( 1 + V 1 i 2 C ) ;

T 1 i V = t 1 i v + t 2 i v = t 1 i ( 1 + V 1 i 1 C ) + t 2 i ( 1 + V 2 i C ) ;

T 1 i V = t 1 i v + t 3 i v = t 1 i ( 1 + V 1 i 1 C ) + t 3 i ( 1 + V 3 i C ) .

Здесь V1i1=V·cosα1i, V1i2=V·cosα1iv, V2i=V·cosα2iv и V3i=V·cosα3iv - проекции скорости перемещения судна, на путь распространения акустического сигнала до соответствующего акустического приемника;

C - скорость звука в воде.

Электрические принятые сигналы (фиг.1) с выходов приемников 2 и 3 через усилители 6, а также с выхода излучателя-приемника 1 через ключ «прием-передача» 5 и усилители 6, поступают на четырехканальный аналого-цифровой преобразователь 7, выходы которого подключены к вычислительному устройству 8. Последнее определяет времена прихода принятых сигналов T1iV, T2iV и T3iV, вычисляет по их значениями, значению скорости звука C0 на горизонте акустических приемников, измеренному контактным измерителем скорости звука 9, значениям скорости судна V и расстояниям D1, D2 углы прихода принятых сигналов α2iv и α3iv по формулам

α2iv=2·arctg(A-1·B·P)0.5, α3iv=2·arctg(A·B·P-1)0.5,

A = 1 ( t 3 i v t 1 i v ) C 0 / ( D 1 i V + D 2 i V ) 1 + ( t 3 i v t 1 i v ) C 0 / ( D 1 i V + D 2 i V ) , B = 1 + ( t 3 i v t 2 i v ) C 0 / D 2 i V 1 ( t 3 i v t 2 i v ) C 0 / D 2 i V , P = 1 ( t 2 i v t 1 i v ) C 0 / D 1 i V 1 + ( t 2 i v t 1 i v ) C 0 / D 1 i V .

Здесь t1iv, t2iv и t3iv - расчетное время распространения акустического сигнала от i-го рассеивателя соответственно до первой 1v, второй 2v и третьей 3v точки приема при скорости судна V, t1iv=0.5·T1iV, t2iv=T2iV-t1iv, t3iv=T3iV-t1iv; D1iV=D1-d1iV+d2iV, D2iV=D-d2iV+d3iV - эффективное расстояние соответственно от приемоизлучателя 1 в точке 1v до приемника 2 в точке 2v и от приемника 2 в точке 2v до приемника 3 в точке 3v в моменты приема ими акустических сигналов при скорости судна V;

d1iV=V·T1iV, d2iV=V·T2iV и d3iV=V·T3iV - смещение за соответствующее время прихода приемоизлучателя 1 из точки 1 в точку 1v, а также приемника 2 в точку 2v и приемника 3 в точку 3v.

В процессе измерений производится запоминание найденных значений времен tjivjiv) и углов αjiv прихода принятых сигналов, для всех углов αoji наклона ХН акустических приемников (j=2 и 3). После чего вычислительным устройством 8 определяются значения скорости звука в воде на заданных горизонтах, то есть распределение скорости звука по глубине С (Z) по известным соотношениям [4]

C ( Z ) = C 0 [ 1 1 2 I ( Z ) Z ] ,

где

I ( Z ) = 2 sin 2 ( π α 2 i v ) sin 2 α 3 i v sin [ ( π α 2 i v ) + α 3 i v ] [ cos ( π α 2 i v ) + cos α 3 i v ] { 1 cos [ ( π α 2 i v ) + α 3 i v ] } C 0 [ t ( α ) t 0 ] ;

Z = Z 0 + sin 3 α 3 i v cos ( π α 2 i v ) + sin 3 ( π α 2 i v ) cos α 3 i v [ cos ( π α 2 i v ) + cos α 3 i v ] { 1 cos [ ( π α 2 i v ) + α 3 i v ] } 2 C 0 [ t ( α ) t 0 ] ;

t(α)=t(α1iv)+t(α2iv);

t 0 = D 2 i V C 0 sin ( π α 2 i v ) + sin α 3 i v sin [ ( π α 2 i v ) + α 3 i v ] ;

Z 0 = D 2 I V sin ( π α 2 i v ) sin α 3 i v sin [ ( π α 2 i v ) + α 3 i v ] .

Абсолютные погрешности расчета углов прихода принятых акустических сигналов α2iv и α3iv к точкам приема 2v и 3v при скорости хода судна V равны Δα2iv2iv2i и Δα3iv3iv3i.

Абсолютные погрешности расчета времен распространения акустических сигналов от i-го рассеивателя t2iv и t3iv к точкам приема 2v и 3v при скорости хода судна V равны Δt2iv=t2iv-t2i и Δt3iv=t3iv-t3i.

Для удовлетворительного восстановления искомого распределения скорости звука в воде по глубине C(Z) при проведении измерений на ходу судна необходимо, чтобы значения Δtjiv<5·10-4 с [5]. В предлагаемом способе измерения скорости звука в воде это условие соблюдается. Так, при D1=25 м, D2=50 м, V≈5 м/с, постоянной по глубине скорости звука в море C≈1500 м/с и для наихудшего случая расположения акустического рассеивателя Pi(di,Zi) на расстоянии dim=-Zi·tgθ от оси характеристики напрвленности излучателя, имеющей, как и у акустических приемников, ширину раствора 2θ≈3°, получаем для Zi≈150 м значения абсолютных погрешностей Δt2iv≈8·10-5 с и Δt3iv≈1,9·10-4 с, при этом Δα2iv≈0,4° и Δα3iv≈0,3°.

У дистанционного устройства-прототипа с акустическим излучателем-приемником и одной акустической приемной системой из двух приемников [3] (прямоугольная схема зондирования) при тех же самых исходных данных для Zi≈150 м имеем значения абсолютных погрешностей Δt2iv≈6·10-4 с и Δt3iv≈1,5·10-3 с, то есть значительно больше, чем в предлагаемом способе. При этом дополнительно имеет место неконтролируемые изменения углов прихода до Δαjiv≈±1,5°. Эти обстоятельства исключают возможность измерения с большой точностью в естественных водоемах (в море) скорости звука на заданных горизонтах на ходу судна дистанционным устройством-прототипом.

Наиболее часто встречающиеся в естественных водоемах акустические рассеиватели - мелкие рыбы и ракообразные, которые могут быть использованы в дистанционной аппаратуре измерения скорости звука, являются слабыми отражателями акустических сигналов. В предлагаемом способе акустические приемники являются направленными, что позволяет измерять значения скорости звука в водоемах относительно простыми дистанционными устройствами на глубинах примерно до 100 м посредством излучения импульсных монохроматических (с гармонической несущей) малой длительности акустических сигналов.

Для зондирования естественных рассеивателей на значительных (более 100 м) глубинах, необходимо излучать сложный импульсный акустический сигнал, у которого τ·Δf□1, где τ - длительность, а Δf - ширина спектра сигнала. При этом значения времен прихода определяются по временному положению максимумов взаимнокорреляционных функций излучаемого и принятых сигналов. В предлагаемом способе для увеличения глубины зондирования излучают сложный акустический сигнал с внутренней гиперболической частотной модуляцией (ГЧМ) несущих колебаний, так как все остальные известные сложные акустические сигналы при наличии эффекта Доплера настолько сильно изменяют при распространении в водной среде свой спектральный состав, что не могут быть использованы для взаимнокорреляционной обработки. У сложного сигнала с ГЧМ мгновенная частота определяется соотношением [6]

f=f0/(1-k·t),

где f0 - начальная частота при f=0, k - параметр, характеризующий крутизну модулирующей функции.

СПИСОК БИБЛИОГРАФИЧЕСКИХ ИСТОЧНИКОВ

1. Patent 3388372 USA. Cl. 340-3. Determination of ocean sound velocity profiles / De Witz G.H. Filed 22.05.67. Publ. 11.06.68.

2. А.с. 1675687 СССР. G01H 5/00. 22.08.89. Устройство для измерения вертикального распределения скорости звука в жидких средах / Бравичев А.С. Опубл. 07.09.91. Бюл. изобр. №33.

3. А.с. 1585691 СССР. G01H 5/00. 22.04.88. Устройство для измерения вертикального распределения скорости звука в жидких средах / Наговицин В.А., Сысоев А.Г, Денисов А.Н., Фороща Е.С. Опубл. 15.08.90. Бюл. изобр. №30.

4. Осташев В.Е. О возможности восстановления вертикальных профилей скорости звука в бистатической схеме акустического зонирования атмосферы и океана // Известия АН СССР. Физика атмосферы и океана. 1984. Т.20. №2. С.199-203.

5. Бухгейм А.Л., Зенкова Н.П. О дистанционном определении характеристик слоистых сред // Геология и геофизика. 1981. №7. С.81-88.

6. Зарайский В.А., Тюрин A.M. Теория гидролокации. Л.: ВМОЛУА. 1975. 604 с.

1. Способ измерения скорости звука в воде, заключающийся в зондировании акустическим сигналом акустических рассеивателей, приеме рассеянных обратно от них акустических сигналов первым, вторым акустическими приемниками и установленным на одном горизонте с ними направленным акустическим излучателем-приемником, измерении времен прихода принятых сигналов, определении по их значениям, значению скорости звука на горизонте акустических источника и приемников, известным расстояниям между ними, а также углам прихода принятых сигналов скорости звука в воде на заданных горизонтах, отличающийся тем, что облучают импульсным акустическим сигналом одиночный относительно сильный естественный акустический рассеиватель, находящийся в водном объеме, ограниченным характеристиками направленности акустических излучателя-приемника, первого и второго акустического приемников, причем оси характеристик направленности приемников пересекаются на одном горизонте с осью характеристики направленности акустического излучателя-приемника, при этом последовательно изменяют углы наклона характеристик направленности первого и второго акустического приемников, а углы прихода принятых акустических сигналов определяют по их временам прихода до излучателя-приемника и обоих приемников.

2. Способ по п.1, отличающийся тем, что излучают монохроматический импульсный акустический сигнал малой длительности.

3. Способ по п.1, отличающийся тем, что излучают сложный импульсный акустический сигнал с внутренней гиперболической частотной модуляцией несущих колебаний, а времена прихода принятых сигналов определяют по временному положению максимумов взаимнокорреляционных функций излучаемого и принятых сигналов.



 

Похожие патенты:

Изобретения относятся к области гидроакустической метрологии. Процедура измерения скорости звука времяпролетным способом предполагает задание базы измерения с помощью специальной меры длины, выполненной в виде прямоугольного параллелепипеда с двумя полированными звукоотражающими поверхностями.

Изобретение относится к области гидроакустической метрологии и может быть использовано для построения современных многолучевых эхолотов. Производят ненаправленное излучение зондирующего сигнала в сторону дна, прием отраженного сигнала веером статических характеристик направленности (ХН), измерение скорости звука на глубине их излучения, сигнал, отраженный от дна, принимают двумя парциальными ХН под углами меньше, чем 40 градусов от нормали, а их оси разнесены на углы порядка 2 градуса, измеряют углы направленности выбранных парциальных ХН, измеряют времена прихода сигналов, отраженных от дна, в выбранные парциальные ХН, определяют отношение времен распространения принятых сигналов, производят последовательный перебор возможных значений скорости звука на глубине у дна в диапазоне 30% от скорости звука, измеренной на глубине излучения с шагом 0,5 м/сек, а за оценку скорости звука на глубине принимают то значение, которое обеспечивает минимум разности.

Использование: изобретение относится к области гидроакустики и может быть применено при формировании оценки полного профиля вертикального распределения скорости звука (ВРСЗ) по его измеренному в некотором диапазоне глубин фрагменту.

Изобретение относится к области акустических измерений и может быть использовано для измерения вертикального распределения скорости звука в естественных водоемах.

Изобретение относится к акустическим измерениям и предназначено для использования в ультразвуковой технике. .

Изобретение относится к области испытания физических свойств материалов и предназначено для определения скорости звука в моно- и поликристаллах. .

Изобретение относится к устройствам для акустических измерений и может быть использовано для измерения вертикального распределения скорости звука в жидких средах.

Изобретение относится к области импульсной акустической измерительной техники и может быть использовано для измерения скорости звука в неоднородных средах, преимущественно для томографии.

Изобретение относится к гидроакустике, а именно к устройствам для измерения скорости звука в текущих жидкостях и в воде, и может быть размещено как на стационарных объектах, так и на подвижных объектах, движущихся с большими скоростями.

Изобретение относится к области измерения параметров срабатывания средств инициирования детонации зарядов взрывчатых веществ при взрывных работах, а именно подрывных электродетонаторов (ЭД), имеющих в составе непервичный капсюль-детонатор (КД) на основе бризантных взрывчатых веществ (БВВ) и стандартный электровоспламенитель (ЭВ) с жестким или эластичным креплением мостика накаливания. Устройство для измерения параметров срабатывания непервичного капсюля-детонатора в подрывном электродетонаторе состоит из муфеля для подрыва электродетонатора на свинцовой пластине, узла задействования мостика накаливания постоянным или импульсным токами, измерителя времени срабатывания с запуском начала отсчета времени от момента задействования, ионизационного датчика фиксации детонации, ионизационного датчика фиксации момента срабатывания электровоспламенителя, узла регистрации сигналов от датчиков и выдачи сигнала на измеритель времени срабатывания. Приведенная конструкция устройства позволяет полностью обеспечить комплексное измерение всех параметров срабатывания КД как непервичного, так и первичного типов в составе подрывного ЭД, при этом впервые в рамках одного испытания. 2 з.п. ф-лы, 1 ил.,1 табл.

Настоящее изобретение относится к области гидроакустики и предназначено для определения скорости звука по трассе. Способ заключается в следующем. Неподвижный источник излучает через постоянные промежутки времени Т постоянные по длительности зондирующие сигналы. Сигналы распространяются в водной среде и поступают на приемное устройство, движущееся в направлении противоположном направлению распространения зондирующих сигналов. Далее определяют скорость движения приемника V, время приема первого зондирующего сигнала t1, а также время приема N-го зондирующего сигнала tN и вычисляют скорость звука по формуле: С=(N-1)VT/{t1-tN+(N-1)Т}. Техническим результатом изобретения является обеспечение возможности измерения скорости звука по трассе, полученное при приеме нескольких зондирующих сигналов с использованием одного гидроакустического канала измерения и без учета точности измерения дистанции. 1 ил.

Изобретение относится к гидроакустическим измерениям и может быть использовано для измерения вертикального распределения скорости звука в море с передачей измерительной информации на судно по гидроакустическому каналу связи. Сущность: после сброса гидроакустического зонда в морскую воду специальная схема включает его автономный источник питания, по команде микроконтроллера импульсный генератор через переключатель ударно возбуждает видеоимпульсом цилиндрический пьезоэлектрический преобразователь по толщине стенки. Принятые радиоимпульсы, соответствующие многократно отраженным от поверхности заполненной водой внутренней полости цилиндрического пьезоэлемента акустическим импульсам, через переключатель, усилитель и аналого-цифровой преобразователь поступают в микроконтроллер, который определяет времена их прихода, вычисляет по ним измеренные значения скорости звука в воде и запоминает их. Микроконтроллер формирует соответствующий этим значениям цифровой электрический радиосигнал, который подается через усилитель мощности и переключатель на цилиндрический пьезоэлектрический преобразователь - гидроакустический излучатель зонда, радиально колеблющийся и передающий цифровую измерительную информацию на судно через водную среду. Технический результат состоит в упрощении по сравнению с аналогичными гидроакустическими зондами для измерения скорости звука в море конструкции зонда и уменьшении его стоимости. 1 ил.

Изобретение относится к гидроакустической метрологии, в частности к способам измерения вертикального распределения скорости звука в воде. Способ предполагает излучение широкополосного импульса, прием отраженных сигналов на приемопередающую антенну с узкой характеристикой направленности, измерение скорости звука на горизонте приемопередающей антенны, измерение распределения по времени приращения фазы принятого сигнала. Затем, используя скорость звука на горизонте приемопередающей антенны, последовательно восстанавливают распределение по времени скорости звука в моменты времени, отстоящие друг от друга на время не более половины ширины автокорреляционной функции излучаемого сигнала, и по измеренному распределению по времени скорости звука в воде определяют распределение скорости звука по глубине. Технический результат - упрощение способа, снижение энергопотребления устройства.

Изобретение относится к электротехнике, а именно к способу контроля посадочного натяга обода ротора электрической машины. Способ содержит ввод до установки клиньев, после расклиновки и в процессе эксплуатации электрической машины с торцевой поверхности закладных клиньев упругих волн, измерение временных задержек упругих волн для каждого клина и расчет величины (P) - относительного изменения разности временных задержек распространения упругих волн в клине. В процессе эксплуатации электрической машины состояние натяга определяется по среднему значению величины P и значению дисперсии изменений величины P. Технический результат состоит в контроле посадочного натяга обода на остов без разборки ротора посредством оценки изменения напряженного состояния клиньев, обеспечивающих натяг. 4 з.п. ф-лы, 2 ил.

Изобретение относится к гидроакустике, в частности к средствам измерения скорости звука. Способ измерения скорости звука по трассе заключается в излучении зондирующего сигнала неподвижным источником через постоянные промежутки времени Т, сохраняя длительность сигнала постоянной. Осуществляют прием сигнала антенной приемного устройства, движущегося навстречу по траектории распространения сигнала. Определяют скорость V движения носителя приемного устройства, время прихода первого зондирующего сигнала t1, время прихода N-го зондирующего сигнала tN и скорость звука С. Прием сигнала осуществляют антенной со статическим веером характеристик направленности с шириной характеристики направленности пространственного канала Δβ°, определяют номер пространственного канала Ni, в котором обнаружен сигнал с максимальной амплитудой, измеряют амплитуду максимального сигнала Ai, определяют амплитуды сигналов в соседних пространственных каналах, выбирают соседний пространственный канал Nj с наибольшей амплитудой Aj, скорость звука определяют по формуле С=(N-1)TVcosКУ°/{t1-tN+(N-1)Т}, а курсовой угол КУ° источника зондирующего сигнала определяют по формуле при j<i и , если j>i, где Δβ° - ширина характеристики направленности пространственного канала. Технический результат – повышение точности измерений. 1 ил.

Способ может быть использован в машиностроении, гидроэнергетике и других отраслях промышленности, требующих применения в производстве ультразвукового контроля. Для определения температурного коэффициента скорости ультразвука используются данные об изменении акустических характеристик материала. Сущность способа заключается в том, что в недеформированном и деформированном материале при разных температурах возбуждают упругие волны, определяют скорость их распространения и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука. Используя полученную аналитическую зависимость, можно определять температурный коэффициент для промежуточных значений температуры и величины пластической деформации, причем деформацию можно определять акустическим способом, измеряя параметр акустической анизотропии, не зависящий от температуры. Технический результат – повышение точности получаемых данных. 1 з.п. ф-лы, 1 ил.

Изобретение относится к метрологии, в частности к способам измерения скорости звука. Способ измерения распределения скорости звука в жидких средах заключается в том, что расположенным на заданном горизонте среды источником звуковых колебаний излучают акустические сигналы и поочередно принимают акустическими приемниками сигналы, отраженные от акустических рассеивателей, находящихся в объемах жидкой среды, которые ограничены пересечением характеристики направленности источника с веером характеристик направленности приемников. Затем измеряют значения скорости звука на горизонте источника и приемников, задают углы наклона характеристик направленности приемников и измеряют соответствующие им времена распространения сигналов от источника до рассеивающих объемов среды и далее до приемников. Расчетным путем определяют горизонты залегания рассеивающих объемов среды и вычисляют значения Ci скорости звука на этих горизонтах. Дополнительно определяют сумму проекций скорости течения Vi на характеристики направленности приемников, используя для вычисления доплеровский сдвиг частоты, получаемый из сигналов источника и приемников, и вычисляют откорректированные значения Сг скорости звука на горизонтах залегания рассеивающих объемов среды по выражению Сг=Ci±Vi. Технический результат - повышение точности измерений. 1 ил.

Изобретение относится к акустике. Способ измерения скорости распространения головной ультразвуковой волны предполагает возбуждение и прием прошедших по изделию ультразвуковых импульсов, оцифровку импульсов, запись в компьютер и определение временных интервалов между этими импульсами. Головную акустическую волну возбуждают лазерным излучением, формируют лазерное пятно и соответствующий ему возбуждаемый акустический пучок, сформированный акустический пучок из генератора направляют под углом β, близким к первому критическому, через звукопровод к поверхности изделия, а затем принимают под углом - β двумя звукопроводами, разнесенными между собой и генератором на расстояние L. Звукопроводы выполняют в виде призм, изготовленных из синтетического полимера метилметакрилата. Устройство, реализующее предлагаемый способ, содержит генератор лазерных импульсов, оптико-акустический преобразователь, изделие, точки съема ультразвуковых импульсов первого и второго пьезоприемника, первый блок АЦП, компьютер, второй блок АЦП, тонкий иммерсионный слой контактной жидкости, звукопроводы. Технический результат - повышение разрешающей способности и точности измерения изменения скорости распространения головной ультразвуковой волны. 2 н.п. ф-лы, 2 ил.
Наверх