Газотурбинный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Газотурбинный двигатель выполнен двухконтурным, двухвальным. Двигатель содержит коробку приводов двигательных агрегатов. Двигатель проверен на газодинамическую устойчивость работы компрессора. Конкретный или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ГТД в полетных условиях. Технический результат состоит в повышении основных эксплуатационных характеристик двигателя, объемности и надежности обеспечения газодинамической устойчивости работы ГТД, основанной на высокой статической достоверности данных о допустимых границах частотных режимов вращения роторов компрессора, с одновременным упрощением технологии и сокращением трудо- и энергоемкости процесса испытания двигателя. 7 з.п. ф-лы, 4 ил.

 

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям.

Известен двухконтурный, двухвальный газотурбинный двигатель (ГТД) с реактивной тягой, включающий турбокомпрессорные комплексы, один из которых содержит установленные на одном валу компрессор и турбину низкого давления, а другой содержит аналогично объединенные на другом валу, соосном с первым, компрессор и турбину высокого давления, промежуточный корпус между упомянутыми компрессорами, наружный и внутренние контуры, основную и форсажную камеры сгорания, камеру смешения газовоздушных потоков рабочего тела и регулируемое сопло (Н.Н. Сиротин и др. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. М.: «Наука», 2011, стр.19-46, рис.1.24).

Известен газотурбинный двигатель, который выполнен двухконтурным, содержит корпус, опертые на него компрессоры и турбины, охлаждаемую камеру сгорания, топливно-насосную группу, реактивные сопла, а также систему управления с командными и исполнительными органами (Конструкция и проектирование авиационных газотурбинных двигателей. Под редакцией Д.В. Хронина. М.: Машиностроение, 1989. с.12-88).

Известен способ разработки и испытаний авиационных газотурбинных двигателей, включающий отработку заданных режимов, контроль параметров и оценку по ним ресурса и надежности работы двигателя. С целью сокращения времени испытаний при доводке двигателей 10-20% испытания проводят с температурой газа перед турбиной, превышающей максимальную рабочую температуру на 45-65°С (SU 1151075 А1, опубл. 10.08.2004).

Известен способ испытаний газотурбинного реактивного двигателя, заключающийся в создании на входе в двигатель неравномерности потока воздуха путем установления сеток во входном канале для определения границы устойчивой работы компрессора. Для введения компрессора двигателя в помпаж требуется набор сеток, которые устанавливаются во входной канал поочередно последовательно ступенчато увеличивая неравномерность, что приводит к увеличению количества запусков, затрат энергии и времени для установки сеток во входной канал и проведения испытаний (Ю.А. Литвинов, В.О. Боровик. Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей. М.: Машиностроение, 1979, 288 с., стр.13-15).

Известен стенд для испытания турбокомпрессора двигателя внутреннего сгорания, который дополнительно оборудован регулируемым нагревателем, вторым рекуперативным теплообменником, теплообменником-охладителем и регулируемым интерцептором, выполненным в виде корпуса с центральным каналом для прохода газа и расположенными по образующей корпуса сквозными отверстиями, соединенными с атмосферой через управляемые клапаны. Регулируемый интерцептор установлен на входе в компрессор испытуемого турбокомпрессора (RU 2199727 С1, 27.12.2004).

Недостатками указанных известных технических решений являются повышенная трудо- и энергоемкость испытаний, выполняемых известными способами, и, как следствие, недостаточно высокая надежность оценки важнейших параметров двигателя в широком диапазоне режимов и условий эксплуатации. Наиболее существенным из указанных недостатков является необходимость многократного останова двигателя в процессе испытаний и многократной замены интерцепторов с различной аэродинамической прозрачностью, создающих ту или иную степень аэродинамических помех и снижения или увеличения потока воздуха, поступающего в испытуемый двигатель. Известная технология испытаний приводит к необходимости многократных запусков двигателя в процессе испытания и связана с пережогом топлива и непроизводительными затратами времени и труда испытателей.

Задача, решаемая изобретением, заключается в разработке ГТД, совокупность технических решений которого обеспечивает возможность оптимального регулирования допустимой тяги в полном диапазоне газодинамической устойчивости работы компрессора без вхождения двигателя в помпаж при повышении достоверности определения границ допустимого диапазона варьирования тяги.

Поставленная задача решается тем, что газотурбинный двигатель, согласно изобретению, выполнен двухконтурным, двухвальным и содержит не менее восьми модулей, смонтированных предпочтительно по модульно-узловой системе, включая компрессор низкого давления (КНД) со статором, имеющим входной направляющий аппарат (ВНА), не более трех промежуточных направляющих и выходной спрямляющий аппараты, а также с ротором, имеющим вал и систему наделенных лопатками предпочтительно четырех рабочих колес; промежуточный корпус; газогенератор, включающий сборочные единицы - компрессор высокого давления (КВД), имеющий статор, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД; основную камеру сгорания и турбину высокого давления (ТВД); за газогенератором последовательно соосно установлены турбина низкого давления (ТНД), смеситель, фронтовое устройство, форсажная камера сгорания и соединенное с последней всережимное реактивное сопло; причем вокруг корпуса основной камеры сгорания во внешнем контуре установлен воздухо-воздушный теплообменник, собранный не менее чем из шестидесяти трубчатых блок-модулей; кроме того, двигатель содержит коробку приводов двигательных агрегатов; при этом статоры КНД и КВД выполнены каждый в виде продольно-сегментных блоков в количестве не менее двух, объединенных, преимущественно, на разъемных соединениях с возможностью разборки для ремонта или замены деталей соответствующего модуля или сборочной единицы, кроме того, в виде аналогичных продольно-сегментных блоков выполнены и объединены на разъемных соединениях сопловые аппараты турбин ТНД и ТВД; причем двигатель проверен на газодинамическую устойчивость (ГДУ) работы компрессора, по крайней мере, на стадии серийного промышленного производства, для чего конкретный или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде, снабженном входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно дистанционно управляемым выдвижным интерцептором с отградуированной шкалой положений интерцептора, имеющей фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж, при необходимости, с повтором испытания на определенном по регламенту наборе режимов, соответствующих режимам, характерным для последующей реальной работы ГТД в полетных условиях.

При этом газотурбинный двигатель может содержать электрическую, пневматическую, гидравлическую - топливную и масляную системы, а также датчики, командные блоки, исполнительные механизмы и кабели систем диагностики и автоматического управления двигателем, объединяющие указанные сборочные единицы и модули.

КНД может быть объединен с ТНД по валу с возможностью передачи от указанной турбины крутящего момента, а КВД объединен с ТВД с возможностью получения последним крутящего момента от турбины высокого давления через автономный вал ротора КВД-ТВД, коаксиально с возможностью вращения охватывающий вал ротора КНД-ТНД на части длины и выполненный короче последнего, по меньшей мере, на совокупную осевую длину промежуточного корпуса, основной камеры сгорания и турбины низкого давления.

Статор КВД может содержать входной направляющий аппарат, не более восьми промежуточных направляющих и выходной спрямляющий аппараты.

Входной направляющий аппарат КНД может быть снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками, равномерно разнесенными в плоскости входного сечения с угловой частотой в диапазоне (3,0÷4,0) ед/рад.

Входной направляющий аппарат КНД может содержать предпочтительно двадцать три радиальные стойки, длина которых ограничена наружным и внутренним кольцами ВНА, при этом, по меньшей мере, часть радиальных стоек совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора компрессора низкого давления.

Площадь фронтальной проекции входного проема Fвх. пр. ВНА КНД, геометрически определяющая поперечное сечение входного устья воздухозаборного канала, ограниченного на большем радиусе внутренним контуром наружного кольца ВНА, а на меньшем радиусе - контуром внутреннего кольца ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока и радиальных стоек, в (2,54÷2,72) раза и составляет (0,67÷0,77) от полной площади круга Fплн., ограниченного радиусом внутреннего контура наружного кольца ВНА в плоскости входного проема.

При испытаниях экспериментально подтверждена область газодинамической устойчивости работы двигателя, в том числе для режима с наименьшим запасом ГДУ при встречной приемистости, проверенной по регламенту: выдержка на максимальном режиме, сброс частоты вращения путем установки рычага управления двигателем в положение «малый газ» и в фазах частоты вращения, соответствующего значениям промежуточных неравномерностей с проверкой приемистости двигателя на максимальный режим при установке рычага управления двигателем в положение «максимальные обороты» с результирующим определением запасов газодинамической устойчивости компрессора двигателя.

Технический результат, обеспечиваемый приведенной совокупностью признаков, состоит в разработке ГТД с улучшенными эксплуатационными характеристиками и более надежным определением границ возможного варьирования тяги в пределах допустимого диапазона газодинамической устойчивости работы компрессора. Это достигается за счет применения в двигателе разработанной в изобретении совокупности основных модулей и сборочных единиц с параметрами и техническими решениями регулирования подачи воздуха без введения двигатель в помпаж, которые проверены предложенной в изобретении системой испытаний на газодинамическую устойчивость компрессора с упрощенной технологией и сокращением трудо- и энергоемкости испытаний. Предложенная система построена на применении выдвижного интерцептора с регулированием подачи воздуха без останова процесса испытания, а также разработанной градуированной шкалы выдвижения интерцептора в воздушный поток, поступающий в двигатель. Выдвижной интерцептор обеспечивает создание процентно выверенного снижения поступления воздуха и создаваемой неравномерности потока до граничного значения, при котором сохраняется газодинамическая устойчивость. Технология испытания по изобретению обеспечивает возможность надежного определения экспериментально подтверждаемого запаса газодинамической устойчивости. Применение изобретения открывает возможность обеспечить по предложенной системе работу двигателя в допустимом диапазоне ГДУ на новом, более высоком уровне надежности и эксплуатации с лучшим качеством.

Сущность изобретения поясняется чертежами, где:

на фиг.1 изображен газотурбинный двигатель, продольный разрез;

на фиг.2 - входное устройство аэродинамической установки для испытаний двигателя, снабженной интерцептором, вид сбоку;

на фиг.3 - разрез по А-А на фиг.2, где Ни - высота интерцептора, Dкан - диаметр канала входного устройства;

на фиг.4 - входной направляющий аппарат компрессора низкого давления, вид сверху.

Газотурбинный двигатель выполнен двухконтурным, двухвальным. Газотурбинный двигатель содержит не менее восьми модулей, смонтированных предпочтительно по модульно-узловой системе, включая компрессор 1 низкого давления, промежуточный корпус 2 и газогенератор.

КНД 1 выполнен со статором, имеющим входной направляющий аппарат 3, не более трех промежуточных направляющих аппаратов 4 и выходной спрямляющий аппарат 5, а также с ротором, имеющим вал 6 и систему предпочтительно четырех рабочих колес 7, наделенных лопатками 8.

Газогенератор включает сборочные единицы - компрессор 9 высокого давления со статором, основную камеру 10 сгорания и турбину 11 высокого давления.

КВД 9 включает статор, а также ротор с валом 12 и системой оснащенных лопатками 13 рабочих колес 14. При этом число рабочих колес 14 КВД 9 не менее чем в два раза превышает число рабочих колес 7 КНД 1.

За газогенератором последовательно соосно установлены турбина 15 низкого давления, смеситель 16, фронтовое устройство 17, форсажная камера 18 сгорания и соединенное с форсажной камерой 18 сгорания всережимное реактивное сопло 19.

Вокруг корпуса основной камеры 10 сгорания во внешнем контуре 20 установлен воздухо-воздушный теплообменник 21, собранный не менее чем из шестидесяти трубчатых блок-модулей.

Двигатель содержит также коробку приводов двигательных агрегатов (на чертежах не показано).

Статоры КНД 1 и КВД 9 выполнены каждый в виде продольно-сегментных блоков в количестве не менее двух, объединенных, преимущественно, на разъемных соединениях с возможностью разборки для ремонта или замены деталей соответствующего модуля или сборочной единицы. В виде аналогичных продольно-сегментных блоков выполнены и объединены на разъемных соединениях сопловые аппараты 22 турбин 11 и 15 соответственно высокого и низкого давления.

Двигатель проверен на газодинамическую устойчивость работы компрессора, по крайней мере, на стадии серийного промышленного производства. Для чего конкретный или идентичные для статистической репрезентативности результатов три-пять экземпляров двигателя из партии серийно произведенных двигателей испытаны на стенде. Стенд снабжен входным аэродинамическим устройством 23 с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором 24 с отградуированной шкалой положений интерцептора, имеющей фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж, при необходимости, с повтором испытания на определенном по регламенту наборе режимов, соответствующих режимам, характерным для последующей реальной работы ГТД в полетных условиях.

Газотурбинный двигатель содержит электрическую, пневматическую, гидравлическую - топливную и масляную системы, а также датчики, командные блоки, исполнительные механизмы и кабели систем диагностики и автоматического управления двигателем, объединяющие указанные сборочные единицы и модули (на чертежах не показано).

Компрессор 1 низкого давления объединен с турбиной 15 низкого давления по валу 6 с возможностью передачи от турбины 15 крутящего момента. Компрессор 9 высокого давления объединен с турбиной 11 высокого давления с возможностью получения последним крутящего момента от турбины 11 через автономный вал 12 ротора КВД-ТВД, коаксиально с возможностью вращения охватывающий вал 6 ротора КНД-ТНД на части длины и выполненный короче последнего, по меньшей мере, на совокупную осевую длину промежуточного корпуса 2, основой камеры 10 сгорания и турбины 15 низкого давления.

Статор КВД 9 содержит входной направляющий аппарат 25, не более восьми промежуточных направляющих аппаратов 26 и выходной спрямляющий аппарат 27.

Входной направляющий аппарат 3 КНД 1 снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками 28, равномерно разнесенными в плоскости входного сечения с угловой частотой в диапазоне (3,0÷4,0) ед/рад.

Входной направляющий аппарат 3 КНД 1 содержит предпочтительно двадцать три радиальные стойки 28. Длина радиальных стоек 28 ограничена наружным и внутренним кольцами 29 и 30 соответственно ВНА. По меньшей мере, часть радиальных стоек 28 совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора компрессора низкого давления.

Площадь фронтальной проекции входного проема Fвх. пр. входного направляющего аппарата 3 КНД 1, геометрически определяющая поперечное сечение входного устья воздухозаборного канала 31, ограниченного на большем радиусе внутренним контуром наружного кольца 29 ВНА, а на меньшем радиусе - контуром внутреннего кольца 30 ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока 32 и радиальных стоек 28, в (2,54÷2,72) раза и составляет (0,67÷0,77) от полной площади круга Fплн., ограниченного радиусом внутреннего контура наружного кольца 29 ВНА в плоскости входного проема.

При испытаниях экспериментально подтверждена область газодинамической устойчивости работы двигателя, в том числе для режима с наименьшим запасом ГДУ при встречной приемистости, проверенной по регламенту: выдержка на максимальном режиме, сброс частоты вращения путем установки рычага управления двигателем в положение «малый газ» и в фазах частоты вращения, соответствующего значениям промежуточных неравномерностей с проверкой приемистости двигателя на максимальный режим при установке рычага управления двигателем в положение «максимальные обороты» с результирующим определением запасов газодинамической устойчивости компрессора двигателя.

Пример реализации способа испытания газотурбинного двигателя.

На стадии разработки испытанию подвергают двухконтурный ТРД с минимальной проектной газодинамической устойчивостью на частоте вращения ротора 0,8 Макс, где Макс - максимальные допустимые обороты ротора данного двигателя.

Устанавливают двигатель на испытательном стенде и сообщают с входным аэродинамическим устройством 23 через фланец 33. Устройство 23 снабжено регулируемо-управляемым выдвижным интерцептором 24, установленным с возможностью пересечения подаваемого в двигатель воздушного потока. Интерцептор 24 выполнен с возможностью создания неравномерности и регулирования количества поступающего в двигатель воздуха в интервале от 0 до 100% путем нулевого, промежуточного или полного перекрытия площади рабочего сечения входного аэродинамического устройства 23. Для этого интерцептор 24 снабжен электроприводом, содержащим приводной шток 34 с гидроцилиндром 35, и шкалой выдвижения интерцептора 24, отградуированной с шагом в 1% от площади входного сечения воздушного потока, подаваемого в двигатель.

Выводят испытуемый ГТД на режимы вращения ротора от «малого газа» (МГ) до Макс с шагом изменения оборотов от режима к режиму 0,05Макс и с последовательной итерацией к границе потери газодинамической устойчивости. Для этого на каждом из режимов последовательно выдвигают интерцептор 24 в сечение воздушного потока с шагом (1-5)% от площади указанного сечения, доводя до признаков появления помпажа. В результате данного этапа испытания определяют граничное значение частоты вращения ротора с минимальным запасом газодинамической устойчивости, составляющее 0,8 Макс при выдвижении интерцептора 24 на 73%.

Затем путем обратного перемещения интерцептора 24 в интервале до 7% от максимального положения, при котором произошел срыв в помпаж с потерей газодинамической устойчивости, устанавливают, что при смещении интерцептора 24 на 5% признаки помпажа отсутствуют, двигатель работает устойчиво.

Проводят анализ результатов испытаний, принимая во внимание, что результирующие испытания выполнены без срыва в помпаж при максимальном введении интерцептора 24 на оборотах ротора, создающих минимальный запас устойчивости, устанавливают границу газодинамической устойчивости работы данного типа ГТД в полном диапазоне рабочих оборотов ротора двигателя.

Изложенную выше последовательность испытания ГТД на газодинамическую устойчивость применяют на всех этапах от разработки и доводки до промышленного производства, эксплуатации и капитального ремонта авиационных двигателей.

1. Газотурбинный двигатель, характеризующийся тем, что выполнен двухконтурным, двухвальным и содержит не менее восьми модулей, смонтированных по модульно-узловой системе, включая компрессор низкого давления (КНД) со статором, имеющим входной направляющий аппарат (ВНА), не более трех промежуточных направляющих и выходной спрямляющий аппараты, а также с ротором, имеющим вал и систему наделенных лопатками предпочтительно четырех рабочих колес; промежуточный корпус; газогенератор, включающий сборочные единицы - компрессор высокого давления (КВД), имеющий статор, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД; основную камеру сгорания и турбину высокого давления (ТВД); за газогенератором последовательно соосно установлены турбина низкого давления (ТНД), смеситель, фронтовое устройство, форсажная камера сгорания и соединенное с последней всережимное реактивное сопло; причем вокруг корпуса основной камеры сгорания во внешнем контуре установлен воздухо-воздушный теплообменник, собранный не менее чем из шестидесяти трубчатых блок-модулей; кроме того, двигатель содержит коробку приводов двигательных агрегатов; при этом статоры КНД и КВД выполнены каждый в виде продольно-сегментных блоков в количестве не менее двух, объединенных на разъемных соединениях с возможностью разборки для ремонта или замены деталей соответствующего модуля или сборочной единицы, кроме того, в виде аналогичных продольно-сегментных блоков выполнены и объединены на разъемных соединениях сопловые аппараты турбин ТНД и ТВД; причем двигатель проверен на газодинамическую устойчивость (ГДУ) работы компрессора на стадии серийного промышленного производства, для чего конкретный или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде, снабженном входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно дистанционно управляемым выдвижным интерцептором с отградуированной шкалой положений интерцептора, имеющей фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж, с повтором испытания на определенном по регламенту наборе режимов, соответствующих режимам, характерным для последующей реальной работы ГТД в полетных условиях.

2. Газотурбинный двигатель по п.1, отличающийся тем, что содержит электрическую, пневматическую, гидравлическую - топливную и масляную системы, а также датчики, командные блоки, исполнительные механизмы и кабели систем диагностики и автоматического управления двигателем, объединяющие указанные сборочные единицы и модули.

3. Газотурбинный двигатель по п.1, отличающийся тем, что КНД объединен с ТНД по валу с возможностью передачи от указанной турбины крутящего момента, а КВД объединен с ТВД с возможностью получения последним крутящего момента от турбины высокого давления через автономный вал ротора КВД-ТВД, коаксиально с возможностью вращения охватывающий вал ротора КНД-ТНД на части длины и выполненный короче последнего на совокупную осевую длину промежуточного корпуса, основной камеры сгорания и турбины низкого давления.

4. Газотурбинный двигатель по п.1, отличающийся тем, что статор КВД содержит входной направляющий аппарат, не более восьми промежуточных направляющих и выходной спрямляющий аппараты.

5. Газотурбинный двигатель по п.1, отличающийся тем, что входной направляющий аппарат компрессора низкого давления снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками, равномерно разнесенными в плоскости входного сечения с угловой частотой в диапазоне (3,0÷4,0) ед/рад.

6. Газотурбинный двигатель по п.5, отличающийся тем, что входной направляющий аппарат компрессора низкого давления содержит предпочтительно двадцать три радиальные стойки, длина которых ограничена наружным и внутренним кольцами ВНА, при этом, по меньшей мере, часть радиальных стоек совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора компрессора низкого давления.

7. Газотурбинный двигатель по п.5, отличающийся тем, что площадь фронтальной проекции входного проема Fвx.пр. ВНА КНД, геометрически определяющая поперечное сечение входного устья воздухозаборного канала, ограниченного на большем радиусе внутренним контуром наружного кольца ВНА, а на меньшем радиусе - контуром внутреннего кольца ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока и радиальных стоек, в (2,54÷2,72) раза и составляет (0,67÷0,77) от полной площади круга Fплн., ограниченного радиусом внутреннего контура наружного кольца ВНА в плоскости входного проема.

8. Газотурбинный двигатель по п.1, отличающийся тем, что при испытаниях экспериментально подтверждена область газодинамической устойчивости работы двигателя, в том числе для режима с наименьшим запасом ГДУ при встречной приемистости, проверенной по регламенту: выдержка на максимальном режиме, сброс частоты вращения путем установки рычага управления двигателем в положение «малый газ» и в фазах частоты вращения, соответствующего значениям промежуточных неравномерностей с проверкой приемистости двигателя на максимальный режим при установке рычага управления двигателем в положение «максимальные обороты» с результирующим определением запасов газодинамической устойчивости компрессора двигателя.



 

Похожие патенты:

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным.

Изобретение может быть использовано в диагностике эффективности охладителя рециркуляции выхлопного газа (EGR) в дизельном двигателе. Способ диагностики эффективности охладителя системы (EGR) в дизельном двигателе заключается в том, что определяют значение температуры газа и давления в выпускном и впускном трубопроводах, осуществляют построение посредством управляющего блока двигателя модели для определения снижения температуры y=ΔТ в охладителе EGR, причем модель имеет параметр вектора θ и входной вектор x.

Изобретение может быть использовано для усовершенствованной диагностики двигателя внутреннего сгорания (ДВС). При реализации способа получают сигналы от датчика угла поворота коленчатого вала (ДУПКВ) ДВС, датчика логической метки (ДЛМ) и датчика вибрации (ДВ).

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства ТРД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Газотурбинный двигатель выполнен двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства газотурбинного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения. В способе эксплуатации турбореактивного двигателя (ТРД) типа АЛ-31Ф перед каждым запуском двигателя, выполненного двухконтурным, двухвальным, осуществляют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на рабочие режимы, предусмотренные регламентом, останов двигателя, периодически производят профилактические осмотры и обслуживание модулей, узлов и коммуникационных систем, на завершающей стадии капитального ремонта после сборки двигатель подвергают испытаниям на стенде, снабженном входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором, включающим отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж, и определяют запасы газодинамической устойчивости компрессора двигателя.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения. В способе капитального ремонта турбореактивного двигателя (ТРД), вариантно осуществляемого способами, изложенными в группе изобретений, связанных единым творческим замыслом, последовательно выполняют операции, в совокупности вариантно позволяющие уменьшить трудозатраты, энергоемкость и длительность капитального ремонта, а также повысить эксплуатационные качества и надежность определения влияния климатических условий, оказываемого на изменение эксплуатационных характеристик ТРД.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного поворотного реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания двигателя на газодинамическую устойчивость работы компрессора. Конкретные или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ГТД в полетных условиях. Технический результат состоит в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ГТД на этапе серийного промышленного производства при повышении достоверности определения границ допустимого диапазона варьирования тяги. 2 н. и 10 з.п. ф-лы, 4 ил.
Изобретение может быть использовано для диагностики топливной аппаратуры высокого давления дизельных автотракторных двигателей в условиях эксплуатации. Способ определения технического состояния топливной аппаратуры дизельного двигателя, заключается в том, что на работающем двигателе получают зависимости изменения давления топлива в топливопроводе высокого давления и сравнивают эти зависимости с эталонными. Для получения зависимости изменения давления на работающем при минимально устойчивой частоте вращения двигателе резко увеличивают до максимума подачу топлива и в процессе свободного разгона получают искомые зависимости. Технический результат заключается в повышении точности технического состояния топливной аппаратуры.

Изобретение может быть использовано для диагностики двигателей внутреннего сгорания (ДВС). Способ заключается в записи шумов в цилиндре ДВС. Запись осуществляется при прокручивании вала ДВС в течение 1-2 секунд от постороннего источника с выключенной топливоподачей. Датчик рабочих шумов (микрофон) размещается в цилиндре ДВС и измеряет девять известных составляющих. Способ основан на сравнении формы импульса спектра рабочих шумов диагностируемого ДВС и формы эталона импульса спектра рабочих шумов. Приведена последовательность операций диагностирования для двухтактного и четырехтактного ДВС. Технический результат заключается в повышении достоверности диагностических данных. 2 н.п. ф-лы, 17 ил.

Изобретение относится к техническому обслуживанию автотранспортных машин, в частности к способам определения экологической безопасности технического обслуживания автомобилей, тракторов, комбайнов и других самоходных машин. Способ определения экологической безопасности технического обслуживания машин включает фиксацию используемого материала на экран и его оценку. Фиксацию материала, попадающего при выполнении смазочно-заправочных операций, осуществляют на экран, размещенный под обслуживаемой машиной, при проведении каждой смазочно-заправочной операции. Экран взвешивают до и после проведения каждой операции, после чего производят оценку наличия материала на экране. Способ позволяет определить по массе материала на экране экологическую безопасность выполнения каждой смазочно-заправочной операции при техническом обслуживании машины. 1 ил.

Изобретение может быть использовано в топливных системах двигателей внутреннего сгорания транспортных средств. Транспортное средство содержит топливную систему (31), имеющую топливный бак (32) и бачок (30), диагностический модуль, имеющий контрольное отверстие (56), датчик (54) давления, клапан-распределитель (58), насос (52) и контроллер. Диагностический модуль связывает топливную систему с атмосферой для обеспечения первой конфигурации, в которой клапан-распределитель (58) находится в первом положении, соединяющем по текучей среде бачок (30) и атмосферу с незадействованными насосом (52) и отверстием (56). Диагностический модуль связывает топливную систему с атмосферой для обеспечения второй конфигурации, в которой клапан-распределитель (58) находится в первом положении, а отверстие (56) соединяет по текучей среде бачок (30) и атмосферу с задействованным насосом (52). Диагностический модуль связывает топливную систему с атмосферой для обеспечения третьей конфигурации, в которой клапан-распределитель (58) находится во втором положении, а отверстие (56) соединяет по текучей среде бачок (30) и атмосферу с задействованным насосом (52), при этом отверстие (56) обеспечивает независимый проток из бачка (30) в атмосферу по сравнению с клапаном-распределителем, когда модуль находится во втором и третьем положениях. Контроллер выполнен с возможностью измерения контрольного давления на отверстии (56) для выдачи динамически установившегося порогового значения, изолирования топливной системы в состояние низкого давления, измерения нескольких давлений в системе и выдачи кода в ответ на сравнение указанных нескольких давлений с динамически установившемся пороговым значением. Раскрыты варианты выполнения транспортных средств. Технический результат заключается в улучшении точности диагностирования. 3 н. и 12 з.п. ф-лы, 8 ил.

Изобретение относится к области диагностики, а именно к способам оценки технического состояния роторных агрегатов, и может быть использовано при оценке состояния подшипниковых узлов, например колесно-моторных блоков (КМБ) подвижного состава железнодорожного транспорта. Согласно способу диагностики технического состояния роторных агрегатов задают величины вероятностей ложной тревоги и пропуска дефекта, устанавливают нижнее и верхнее критические значения, ограничивающие зону неопределенности, измеряют параметры вибрации узлов роторных агрегатов и значение сопутствующего фактора, например частоты вращения вала. Затем определяют значения диагностических признаков, сравнивают их с критическими значениями. В случае попадания диагностического признака в зону неопределенности проводят дополнительное испытание при другом значении сопутствующего фактора, например на повышенной частоте вращения. По результатам сравнения измеренных значений диагностических признаков с соответствующими критическими значениями определяют техническое состояние роторных агрегатов. В результате повышается достоверность диагностирования технического состояния роторных агрегатов. 2 ил.

Изобретение относится к радиолокации и может быть использовано для измерения амплитудных диаграмм обратного рассеяния авиационного турбореактивного двигателя. Стенд для измерения амплитудных диаграмм обратного рассеяния авиационных турбореактивных двигателей содержит поворотную платформу, приемное, передающее и регистрирующее устройства радиолокационной станции, измеритель углового положения платформы, переднюю и по крайней мере одну заднюю стойки с размещенным на них объектом исследования. Стойки размещены на платформе. Передняя стойка выполнена в виде пилона оживальной формы высотой не менее 1,5 м со средством крепления, выполненным в виде опорного желоба под исследуемый турбореактивный двигатель со штатными средствами зацепления. Задняя стойка размещена соосно с передней стойкой в упор к исследуемому двигателю и может быть выполнена в виде домкрата с возможностью регулирования угла наклона двигателя по отношению к платформе. Платформа, стойки и средство крепления полностью закрыты радиопоглощающим материалом с коэффициентом отражения электромагнитного излучения на металлической поверхности не более -20 дБ в исследуемом диапазоне частот радиолокационной станции. Технический результат - измерение амплитудных характеристик авиационного турбореактивного двигателя с точностью 1 дБ при различных углах места объекта, расширение спектра исследования цели и приближение к реальным условиям. 1 з.п. ф-лы, 1 ил., 1 табл.

Способ контроля технического состояния и обслуживания газотурбинного двигателя с форсажной камерой сгорания. Способ включает измерение давления топлива в коллекторе форсажной камеры сгорания двигателя, которое проводят периодически, сравнение полученного значения давления топлива в коллекторе форсажной камеры сгорания двигателя с максимально допустимым, которое предварительно задают для данного типа двигателей, и при превышении последнего проведения очистки коллектора и форсунок форсажной камеры, при этом среду из его внутренней полости принудительно откачивают с помощью откачивающего устройства, например вакуумного насоса, а давление, создаваемое откачивающим устройством, периодически изменяют. Среду пропускают через контрольный фильтр, который периодически проверяют на наличие в нем частиц коксовых отложений, и по их наличию на фильтре судят о степени очистки коллектора. Полость коллектора заполняют промывочной жидкостью и после выдержки удаляют ее из внутренней полости коллектора в направлении, обратном подаче топлива, при этом в качестве промывочной жидкости можно использовать промывочную жидкость TSR-5050 или ZOK-27. Производят очистку на работающем двигателе, для чего выводят двигатель на режим малого газа, затем повышением частоты вращения роторов выводят на максимальный бесфорсажный режим, выдерживают на нем и снижают частоту вращения ротора до режима малого газа. О максимально допустимом значении давления в коллекторе форсажной камеры можно судить по давлению в коллекторе при минимально допустимом расходе топлива через засоренный топливный коллектор, при котором обеспечивается нормальная работа форсажной камеры без погасания и потери тяги. Технический результат изобретения - повышение качества очистки коллектора и форсунок без разборки двигателя. 7 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в процессе определения технического состояния топливного фильтра (Ф) тонкой очистки дизеля. Способ заключается в измерении давления топлива в двух точках топливной системы дизеля, первое из давлений PТН измеряется на входе в Ф тонкой очистки топлива, второе давление PТД - на выходе из Ф. Производят серию не менее чем трех замеров на различных частотах вращения коленчатого вала дизеля. Обрабатывают результаты измерений, по результатам которых оценивают состояние Ф, планируют проведение регламентных работ. Технический результат заключается в упрощении диагностирования состояния Ф за счет применения минимального количества датчиков и снижение трудоемкости обслуживания за счет определения степени загрязнения Ф в процессе эксплуатации и планирования регламентных работ. 1 ил.

Изобретение относится к области машиностроения и предназначено для проведения испытаний турбин. Испытания паровых и газовых турбин энергетических и энергодвигательных установок на автономных стендах являются эффективным средством опережающей отработки новых технических решений, позволяющим сократить объем, стоимость и общие сроки работ по созданию новых энергоустановок. Технической задачей, решаемой предлагаемым изобретением, является исключение необходимости удаления отработавшей в гидротормозе во время испытаний рабочей жидкости; снижение периодичности регламентных работ с гидротормозом; создание возможности изменения характеристик испытываемой турбины в широком диапазоне во время проведения испытаний. Способ осуществляется с помощью стенда, содержащего испытываемую турбину с системой подачи рабочего тела, гидротормоз с трубопроводами подачи и отведения рабочей жидкости, в котором согласно изобретению используется емкость с системой заправки рабочей жидкостью, всасывающую и нагнетательную магистрали жидкостного нагрузочного насоса с вмонтированной в них системой датчиков, отградуированных на показания мощности испытываемой турбины, при этом в нагнетательной магистрали установлено дросселирующее устройство и/или пакет дросселирующих устройств, а в качестве гидротормоза используется жидкостный нагрузочный насос, вал которого кинематически связан с испытываемой турбиной, причем рабочая жидкость в жидкостный нагрузочный насос подается по замкнутому циклу с возможностью ее частичного сброса и подвода в контур во время проведения испытаний. 2 н. и 4 з.п. ф-лы, 1 ил.
Наверх