Способ геоэлектроразведки

Изобретение относится к многоканальным геофизическим исследованиям и предназначено для решения инженерно-геологических, шахтных, геотехнических, экологических задач, поиска полезных ископаемых и подземных вод. Способ геоэлектроразведки зондирования геологической среды основан на использовании многоканальной установки в виде косы, предназначенной для выполнения групповых зондирований. Установка представляет собой систему парных электродов, расположенных с постоянным шагом вдоль профиля наблюдений, выполняющих в процессе зондирования последовательно функцию как приемных, так и питающих линий. Данная установка в отличие от аналогов обеспечивает независимость задания длины приемной линии MN от шага между пикетами и разносами установки, снижение при необходимости переходного сопротивления питающей линии посредством подачи тока в землю спаренными электродами, повышение плотности наблюдений за счет получаемого дополнительного зондирования. Съемка с помощью данной установки обеспечивает постоянную максимальную глубину зондирования на каждом из пикетов группового зондирования путем применения методики встречных трехэлектродных установок. Технический результат заключается в возможности исследования массива горных пород в условиях ограниченного пространства с повышением производительности работ и информативности результатов измерений, осуществление опережающей разведки впередизабойного пространства, выполнение мониторинговых наблюдений, обеспечивающих контроль изменения свойств среды в пределах исследуемого участка. 2 ил.

 

Изобретение относится к многоканальным геофизическим исследованиям и предназначено для решения инженерно-геологических, шахтных, геотехнических, экологических задач, поиска полезных ископаемых и подземных вод.

Известен способ геоэлектроразведки [1], основанный на пропускании в земле с помощью пары электродов постоянного тока заданной величины и измерении напряжения, вызванного этим током, с помощью другой пары электродов. При увеличении расстояния между токовыми электродами происходит увеличение глубинности исследования, что и является зондирующим фактором для вертикального электрического зондирования (ВЭЗ). Недостатком известного способа является большая трудоемкость при проведении исследований ввиду необходимости переноса всей установки для получения значения в каждой новой точке измерений.

Суть аналога геоэлектроразведки (патент РФ №2097793, МПК G01V 3/02, 27.11.1997 г.) заключается в том, что на исследуемой поверхности в узлах прямоугольной сетки устанавливают электроды с постоянным шагом, соизмеримым с априорно предполагаемым минимальным линейным размером наименьшего из объектов поиска. После этого измеряют кажущееся электрическое сопротивление участков между электродами по параллельным профилям. Недостатками способа являются возможность решения лишь узконаправленного спектра задач, связанных с поиском локальных тел, и выбор шага осуществляется без учета глубины залегания поискового объекта.

По технологии полевых наблюдений из методов сопротивлений предлагаемому изобретению наиболее близок метод сплошных зондирований (СЭЗ) [3]. Суть последнего сводится к выполнению зондирования с постоянным шагом приращения разносов Δr=rj+1-rj, равным расстоянию между пикетами Δx=xi+1-xi вдоль линии наблюдений. Измерения разности потенциалов осуществляются между электродами, равномерно расположенными вдоль линии наблюдений, с помощью косы и коммутативной системы, позволяющих осуществлять взаимозамену питающих и приемных электродов.

Одним из недостатков данного метода является зависимость длины приемной линии MN от шага между пикетами. Поскольку величина измеряемой разности потенциалов между электродами M и N связана с интегральной характеристикой электрических свойств пород, расположенных между потенциальными линиями, проходящими через приемные электроды M и N [2], увеличение MN влечет снижение детальности изучения латеральной изменчивости свойств среды. Это ставит в противоречие глубинность, детальность и экономическую эффективность при выборе рациональной методики выполнения работ в случае соразмерного изучения малых и больших глубин геоэлектрического разреза: к примеру, увеличение глубинности до 100 и более метров делает нерациональным использование малого шага (5-10 м), приемлемого для изучения приповерхностной части разреза, поскольку приводит к переопределенности данных относительно изучения больших глубин, существенно снижая при этом производительность работ; увеличение же шага между пикетами (и соответственно увеличение MN) снижает контрастность латеральной изменчивости свойств пород приповерхностной части разреза.

Кроме того, при выполнении сплошных зондирований, в силу уменьшения числа разносов в краевых частях профиля, формируется неполная информация о глубинном изменении свойств изучаемого разреза.

Задачей создания изобретения является устранение недостатков прототипа.

Поставленная задача решается с помощью признаков, указанных в формуле изобретения, общих с прототипом, таких как способ геоэлектроразведки для выполнения групповых зондирований геологической среды, основанный на использовании многоканальной установки в виде косы, и отличительных существенных признаков, таких как используют систему парных электродов, расположенных с постоянным шагом вдоль профиля наблюдений, выполняющих в процессе зондирования последовательно функцию как приемных, так и питающих линий, обеспечивая независимость задания длины приемной линии MN от шага между пикетами и разносами установки, снижение при необходимости переходного сопротивления заземления питающей линии посредством подачи тока в землю спаренными электродами, повышение плотности наблюдений за счет получаемого дополнительного зондирования, при этом для обеспечения одинаковой максимальной глубины зондирования на всех пикетах группового электрического зондирования используют методику встречных трехэлектродных установок.

Вышеперечисленная совокупность существенных признаков позволяет получить следующий технический результат - возможность исследования массива горных пород в условиях ограниченного пространства с повышением производительности работ и информативности результатов измерений, проведения разведки впереди забойного пространства, выполнения мониторинговых наблюдений, обеспечивающих контроль латеральной изменчивости свойств среды в пределах исследуемого участка с учетом оценки влияния приповерхностных неоднородностей.

На Фиг.1 приведена схема выполнения групповых зондирований с помощью многоэлектродной измерительной установки при n1=5, где A, B - питающие электроды; М, N - приемные электроды; C - область одинарных измерений (3-х электродная измерительная установка); D - область перекрытия измерений с прямой и встречной установками (3-х и 4-х электродные установки).

На Фиг.2 приведены результаты интерпретации результатов метода группового зондирования: разрезы кажущегося сопротивления до (а) и после (б) устранения влияния приповерхностных неоднородностей (БКРУ-4, пласт AB, 1 СВП южн. вент. штрек 2 вост. блок).

Общие условия проведения процесса.

Общая схема предлагаемого способа группового зондирования (МГЗ) с использованием многоканальной измерительной установки в виде косы показана на Фиг.1. Система парных электродов, расположенных равномерно вдоль линии измерений с шагом Δx, в процессе измерений функционально используется как в качестве приемной, так и питающей линий, обеспечивая возможность повышения детальности изучения латеральной изменчивости свойств среды, снижения при необходимости переходного сопротивления заземления питающей линии посредством подачи тока в землю спаренными электродами, повышение плотности наблюдений по сравнению с аналогами за счет получаемого дополнительного зондирования. Для получения информации об изучаемом разрезе до определенной глубины, определяемой максимальным разносом установки, применяется методика измерении с использованием встречных установок. В соответствии с данной методикой при выполнении зондирований в пределах первой половины длины обследуемого участка используется прямая трехэлектродная установка MNA, а после достижения последним питающим электродом A границы измерительной линии - обратная трехэлектродная установка À'MN при тех же ее параметрах, что и для MNA (фиг.1б, рабочие электроды отмечены штриховкой). Помимо этого в определенной области (область D, фиг.1a) выполняются двойные измерения - измерения прямой и встречной установками, суммарная величина измеренных значений разности потенциала которыми соответствует результатам измерений с четырехэлектродной установкой À'MNA [2]. Совместный анализ результатов съемки трех- и четырехэлектродной установками может использоваться для оценки качества результатов наблюдений трехэлектродными установками.

При выполнении зондировании с использованием парных питающих электродов может быть использован один из них (желательно более удаленный от центра измерительной линии MN) либо оба электрода, снижая за счет этого группирования переходное сопротивление питающей линии, необходимое при выполнении зондирований в условиях высокоомных пород поверхностной части разреза [2].

В итоге групповой съемки с использованием трехэлектродной установки получается 2n1 (при четном числе разносов n1) либо 2n1+1 (при нечетном числе разносов) зондирование. В обоих случаях регистрируется дополнительное зондирование по сравнению с аналогами.

Общая длина косы при числе разносов зондирующей установки n1 и шаге между пикетами Δx (расстояние между центрами парных электродов) равна L=2n1·Δx (при четном числе разносов) либо L=(2n1-1)Δx (в случае нечетного числа разносов). Величина приращения разносов зондирующей установки Δr=Δx. Расстояние между парными электродами, соответствующее длине приемной линии MN, выбирается в соответствии с условием MN<2Δx [2]. Максимальный разнос зондирующей установки, равный n1·Δr, обеспечивает эффективную глубину зондирования Z≈0.5n1·Δr [2], одинаковую на всех пикетах исследуемого разреза. Количество разносов установки n1 выбирается исходя из требуемой эффективной глубины зондирования геологической среды и шага между пикетами согласно соотношению n 1 = 2 Z max Δ x при выполнении двух условий: MN≤2Δx и L=4Zmax.

Данная система представляет собой единую приемно-передающую многоэлектродную установку (Фиг.1). Переключение каналов выполняется с помощью специального коммутатора.

Подключение к линии "бесконечность" осуществляется с помощью катушки со скользящим контактом, перемещаемой совместно с измерительной установкой по ходу движения вдоль профиля наблюдений.

Такая конструкция измерительной установки, перемещаемая одним рабочим, существенно упрощает процесс съемки, повышая тем самым производительность выполнения работ.

Процесс съемки продолжается до тех пор, пока питающий электрод установки MNA не достигнет забоя штрека. После чего выполняется разворот косы в обратном направлении (установка AMN) и продолжение процесса съемки до тех пор, пока приемная линии (центр очередного пикета) не достигнет конца штрека.

Метод группового зондирования позволяет оперативно и с наименьшими трудозатратами (бригада состоит из двух человек) выполнять следующие виды исследований: а) изучение массива горных пород в условиях ограниченного пространства (шахтные работы), б) осуществление опережающей разведки впередизабойного пространства, в) проведение высокоточных мониторинговых наблюдений в пределах участка профиля, соответствующего длине косы измерительной установки. Предлагаемый способ опробован на одном из рудников Верхнекамского месторождения солей при изучении околоштрекового пространства в условиях ограниченной длины выработки для прогнозной оценки газодинамических явлений. В результате использования МГЗ оперативно была получена информация об особенностях строения горного массива до глубины порядка 150 м по всей длине штрека (600 м) (Фиг.2). По результатам обработки и интерпретации выполненной с помощью системы программ «ЗОНД» (свидетельство РФ №200561 0058) выделены зоны скопления газа, представляющие опасность при проведении шахтных работ.

В итоге проведенных исследований разработана новая технология производства шахтных электроразведочных наблюдений, включающая методику электрического зондирования водозащитной толщи с помощью многоэлектродной косы, стелющихся электродов, коммутатора переключения каналов, цифровой регистрации сигналов аппаратурой АМС-1 и их последующей автоматической обработки с помощью вышеуказанной системы программ ЗОНД.

Литература

1. Электроразведка: Справочник геофизика. В 2-х кн. /Под ред. В.К. Хмелевского и В.М. Бондаренко. Кн. I. - M.: Недра, 1989, с.95-110, 174-177.

2. Колесников В.П. Основы интерпретации электрических зондирований. - M: Научный мир, 2007. - 248 с.

3. Бобачев А.А., Модин И.Н., Перваго Е.В., Шевнин В.А. Многоэлектродные электрические зондирования в условиях горизонтально-неоднородных сред. Разведочная геофизика. - M., 1996. 50 с. (прототип).

Способ геоэлектроразведки для выполнения групповых зондирований геологической среды, основанный на использовании многоканальной установки в виде косы, отличающийся тем, что используют систему парных электродов, расположенных с постоянным шагом вдоль профиля наблюдений, выполняющих в процессе зондирования последовательно функцию как приемных, так и питающих линий, обеспечивая независимость задания длины приемной линии MN от шага между пикетами и разносами установки, снижение при необходимости переходного сопротивления заземления питающей линии посредством подачи тока в землю спаренными электродами, повышение плотности наблюдений за счет получаемого дополнительного зондирования, при этом для обеспечения одинаковой максимальной глубины зондирования на всех пикетах группового электрического зондирования используют методику встречных трехэлектродных установок.



 

Похожие патенты:

Изобретение относится к области геофизики и может быть использовано при исследовании залежей минерального сырья в геологической среде. Изобретение относится к сенсорному устройству и способу геоэлектрического исследования местоположения, стратиграфической разбивки и простирания залежей минерального сырья и смежных горных пород, оконтуривающих данные залежи.

Изобретение относится к области разведочной геофизики и может быть использовано для прогнозирования залежей углеводородов под морским дном и изучения глубинного строения земной коры.

Устройство относится к электроизмерениям и может быть использовано для исследования турбулентности в потоке слабо электропроводящей жидкости, например морской или пресной воды.

Изобретение относится к области геофизики и может быть использовано при мониторинге катастрофических явлений, например землетрясений. .

Изобретение относится к способу и устройству для интегрирования измерений удельного сопротивления в электромагнитный ("ЭМ") телеметрический инструмент. .

Изобретение относится к электроразведке методом электросопротивления. .

Изобретение относится к геоэлектроразведке и предназначено для регистрации внутренних изменений структуры массива горных пород, в частности образования закрытых полостей, трещиноватых зон, зон тектонического дробления.

Изобретение относится к геофизике и может быть использовано для инженерно-геологического обеспечения при проектировании и строительстве гражданских и промышленных объектов в криолитозоне.

Изобретение относится к измерениям свойств геологических объектов. .

Изобретение относится к электроразведке методом электросопротивления. .

Изобретение относится к области полевой электроразведки и служит для оценки размеров камеры в соляном куполе, образующейся при строительстве подземных хранилищ газа (ПХГ). Технический результат: возможность определения размеров соляной камеры в соляном куполе с использованием метода заряда. Сущность: способ включает себя использование двух питающих электродов. Первый электрод погружают в рабочую скважину. Второй электрод размещают на поверхности земли в «бесконечности». С помощью двух измерительных электродов, размещаемых на поверхности земли в окрестности первого питающего электрода, измеряют разность потенциалов в окрестности первого питающего электрода, опускают первый питающий электрод на подошву соляной камеры и после пуска тока проводят измерение потенциалов с помощью передвигаемого измерительного электрода не менее чем по четырем прямолинейным профилям, равномерно распределенным по азимуту, с длиной каждого профиля 50 м, с шагом по профилю не более 2 м. Фиксируют резкое увеличение измеренного потенциала при переходе границы неоднородных сред, составляющих стенки соляной камеры. Длину проекции камеры на дневную поверхность по соответствующему профилю определяют по точкам отрыва потенциала (резкие увеличения), измеренного по этому профилю и характеризующего границу перехода неоднородных сред в соляном куполе. 6 ил.

Изобретение относится к области геофизики и может быть использовано при поиске морских нефтегазовых месторождений. Сущность изобретения состоит в том, что для поисков морских нефтегазовых залежей используется эффект возникновения над ними аномалий концентрации тяжелых металлов, микроэлементы которых поступают из области залежи на поверхность морского дна. Химический анализ проб морской воды, отобранных в зоне аномалий, подтверждает значительное превышение значений содержания этих элементов над фоновыми в 3-80 раз. Приведенные теоретические и экспериментальные данные позволяют сделать вывод о возможности непрерывного изучения концентраций тяжелых металлов в морской воде с помощью ионоселективных электродов, избирательно реагирующих на отдельные металлы. При этом аномалии серебра и ртути являются мешающими факторами и должны быть введены соответствующие поправки. Технический результат - повышение точности получаемых данных.

Изобретение относится к геологическим методам поиска и разведки месторождений подземных вод в криолитозоне и может быть использовано в районах Крайнего Севера, Западной и Восточной Сибири, Северо-Востока. Сущность: способ включает определение перспективных площадок, проведение геофизических исследований многоразносной установкой бесконтактного измерения электрического поля, составение карты равных кажущихся сопротивлений для различных глубин исследований, выделение и оконтуривание таликовых зон. Вдоль протяженности таликовой зоны разбивается профиль для замеров бесконтактного измерения электрического поля многоразносной установкой, составляется геоэлектрический разрез кажущихся сопротивлений. В характерных точках разреза определяются пикеты для измерений вертикального электрического зондирования, по результатам которого строится геоэлектрический разрез кажущихся сопротивлений и закладываются площадки в аномальной зоне для бурения разведочных скважин на подземные воды. Технический результат: увеличение точности обнаружения месторождений подземных вод в районах сплошного распространения многолетнемерзлых пород, сокращение времени работ. 3 ил.

Изобретение относится к многоканальным геофизическим исследованиям и предназначено для решения инженерно-геологических, шахтных, геотехнических, экологических задач, поиска полезных ископаемых и подземных вод. Способ основан на использовании многоэлектродной установки в виде косы. Для измерений используют инверсионную многоэлектродную установку, осуществляют единовременную регистрацию разности потенциалов на всех разносах каждого измеряемого зондирования при фиксированном положении для него питающей линии АВ. Причем для выполнения каждого зондирования ведут измерения при двух фиксированных линиях АВ, последовательно подключаемых в процессе измерений: для первой из них используют спаренные электроды АВ, а в качестве второго размера АВ, подключаемого при снижении уровня сигнала ниже допустимого, примыкающие к спаренным электродам два ближайших соседних электрода. При этом для крайних пикетов используют два дополнительных электрода на концах измерительной косы. Технический результат заключается в сокращении времени проведения измерений, оперативности исследования массива горных пород, расширении интервала и объема обследуемых глубин. 7 ил.
Наверх