Способ получения адъюванта для вирусных вакцин

Изобретение относится к биотехнологии и иммунологии и представляет собой способ получения адъюванта для вакцин. Способ включает растворение смеси тритерпеноидов бересты в тетрагидрофуране с получением раствора с концентрацией 5-10 г/л. Растворяют олеиновую кислоту в количестве 5-10% от массы тритерпеноидов бересты. Проводят стерилизующую фильтрацию смеси. Добавляют 25-кратный избыток 0,01 М трис-буфера, pH 9,0±0,2, при перемешивании. Проводят ультразвуковую обработку в течение 5-10 мин. Удаляют органический растворитель с помощью ультрафильтрации на полых мембранах с порогом исключения 300 кДа при скорости 1,0-1,2 л/мин, при давлении 0,6-0,8 атм. Добавляют криопротектор из группы веществ: маннит, мальтоза, трегалоза, манноза, сорбит, сахароза. Замораживают полученную концентрированную смесь. Предложенное изобретение повышает иммуногенную активность вирусных вакцин и обеспечивает их стабильность при хранении. 1 з.п. ф-лы, 2 ил., 6 табл., 7 пр.

 

Изобретение относится к биотехнологии и иммунологии, а именно к производству препаратов специфически стимулирующих антителообразование, и может быть использовано в медицине при конструировании и получении высокоэффективных вирусных вакцин.

Вакцинопрофилактика рассматривается в современных условиях как одно из ведущих массовых эффективных средств борьбы с инфекциями [Итоги и перспективы развития вакцинопрофилактики в XXI в., И.В. Фельдблюм, http://www.rusmedserv.com/epidinf/m-dokl/].

В настоящее время для повышения эффективности вакцин в экспериментальных и клинических исследованиях применяют адъюванты различного происхождения: минеральные (гидроксид или фосфат алюминия и др.); растительные (сапонины - QuilA, QS21); микробные (убитые бактерии, липополисахарид и его производные, CpG-мотивы ДНК) и др.

Вследствие токсичности или недостаточной эффективности большинства адъювантов для широкого клинического использования разрешены только соли алюминия и водно-масляная эмульсия MF-59, а в некоторых странах вирусоподобные частицы (VLP - virus-likeparticles) и иммуностимулирующий комплекс (ISCOM - immunostimulatingcomplex). Зарубежные коммерческие гриппозные вакцины выпускаются лишь с одним адъювантом MF-59, такие вакцины оказались более иммуногенными при вакцинации пожилых лиц, однако, обладали повышенной реактогенностью.

Разработка новых классов адъювантов является перспективным направлением современной иммунобиологии. За последние десятилетия произошли значительные изменения в технологии производства вакцинных препаратов. Вакцины, которые проходят в настоящее время клинические испытания, значительно отличаются от традиционных вакцин. Прежде всего, это рекомбинантные вакцины на основе очищенных белков. Создание новых вакцин является, в свою очередь, причиной поиска новых адъювантов. Использование адъювантов позволяет уменьшить дозу антигена в вакцине, увеличить иммуногенность «слабых» антигенов, предотвращать конкуренцию антигенов в комбинированных вакцинах, увеличивать скорость развития и продолжительность иммунного ответа у привитых, индуцировать защитные свойства слизистых оболочек, а также увеличивать силу иммунного ответа у детей и лиц пожилого возраста.

В настоящее время в мировой и отечественной практике рассматриваются адъюванты в виде различных форм: липосомы, виросомы, иммуностимулирующие комплексы, наноэмульсии (MF59, SAF, Montanide), полимерные наносферы, вирусоподобные частицы и др.

Самые перспективные адъюванты, по мнению исследователей, - это наночастицы (НЧ). Одной из причин использования НЧ в качестве адъювантов является тот известный факт, что они эффективно поглощаются антигенпредставляющими клетками. Таким образом, если с НЧ связать антиген, то он будет направленно поглощаться макрофагами, что приведет к усилению иммунного ответа.

Перспективным направлением в данной области являются адъюванты на основе тритерпеноидов бересты.

При создании таких адъювантов имеются трудности, связанные с крайне низкой растворимостью в воде тритерпеноидов. Так, растворимость бетулина, как было определено, составляет менее 1 мкг/мл. Поэтому создание водорастворимой формы весьма актуально, так как должно привести к увеличению концентрации частиц и повышению эффективности адъюванта. Поиск таких форм привел к созданию сферических аморфных НЧ на основе бересты.

Сферические аморфные наночастицы (САНЧ) на основе природного пентациклического тритерпенового вещества - бетулина (бетуленол, бетулинол, лупендиол) являются композицией биологически активных соединений. Это выгодно отличает их от всех известных видов носителей. Они, имея выраженный спектр биологической активности (противомикробное, противогрибковое, противовирусное действия, гепатопротективное, противовоспалительное, противораковое, противоаллергическое, мембранстабилизирующее, иммуномодулирующее, антиоксидантное), обладают и адъювантными свойствами.

Известны патент Российской Федерации 2322091 “Композиция биологически активных веществ и способ получения нанодисперсий ее”, A23L 1/30, А61К 36/00, опубл. 20.04.2008 и патент Российской Федерации 2322998 “Носитель лекарственных и диагностических средств”, А61К 36/185, А61К 9/10, опубл. 27.04.2008, касающиеся получения нанодисперсий экстракта бересты в качестве носителя лекарственных и диагностических средств. В патентах описан способ получения нанодисперсий, заключающийся в том, что в колбу с экстрактом бересты в тетрагидрофуране (5 мг/мл) при сильном перемешивании добавляли дистиллированную воду. Полученную дисперсию перемешивали, растворитель упаривали на роторном испарителе при температуре не выше 40°C. Затем нанодисперсию обрабатывали на ультразвуковой бане и концентрировали на роторном испарителе до 1-1.5 мг/мл. Средний размер полученных наночастиц составил 187 нм.

Недостатком данного способа является непригодность для промышленного применения - сложность масштабирования процесса, лимитирующим фактором которого является удаление органического растворителя на роторном испарителе.

Известен патент Российской Федерации 2424516 “Способ выделения смеси для получения водных дисперсий сферических наночастиц”, G01N 33/15, В82В 1/00, опубл. 20.07.2011 по выделению смеси для получения водных дисперсий сферических наночастиц из смеси плохорастворимых в воде тритерпеноидов березовой коры, включающий инжекцию избытка воды в раствор тритерпеноидов березовой коры в смешивающимся с водой органическим растворителем (тетрагидрофуран) с формированием дисперсии, содержащей сферические наночастицы и кристаллы из тритерпеноидов березовой коры, Полученную дисперсию центрифугируют, отделяя от кристаллов фракцию сферических наночастиц, отделенные наночастицы упаривают с получением твердой смеси тритерпеноидов для формирования морфологически однородных сферических наночастиц путем повторной инжекции.

Недостатком данного способа получения является отсутствие стадии очистки от тетрагидрофурана. По классификации органических растворителей тетрагидрофуран относится ко второму классу негенотоксических растворителей и его содержание в лекарственных препаратах необходимо контролировать.

Известен патент Российской Федерации 2355423 “Адъювант”, A61K 47/06, C08H 5/04, опубл. 20.05.2009, который раскрывает способ приготовления адъювантов на основе бетулина в виде наночастиц. Согласно известному способу можно получить адъювант в виде 0,5% водного раствора наночастиц бетулина и в виде высушенного препарата наночастиц экстракта бересты. Адъюванты готовят следующим образом. Растворяют бересты экстракт сухой (БЭС-65) в органическом растворителе при концентрации 2,5-5 г/л; добавляют к указанному раствору большое количество воды (до 25 объемов воды по отношению к объему раствора); удаляют растворитель и основную часть воды. К полученному водному раствору наночастиц добавляют криопротектор (например, сорбит) и осуществляют лиофилизацию. Перед иммунизацией адъюванты растворяют в фосфатном буфере (pH 7,5), обрабатывают ультразвуком в течение 15 минут, после чего охлаждают.

Недостаток - сложность масштабирования процесса, лимитирующим фактором которого является удаление органического растворителя на роторном испарителе.

В качестве ближайшего аналога может быть указан способ получения адъюванта для вакцин в форме сферических аморфных наночастиц (САНЧ) из смеси тритерпеноидов бересты (Гаврилова Л.А., НАНОЧАСТИЦЫ ГИДРОФОБНЫХ ПРИРОДНЫХ СОЕДИНЕНИЙ КАК АДЪЮВАНТЫ, автореферат диссертации, М., 2011). Адъювант получают путем осаждения избытком воды из смешивающихся с водой растворителей, таких как тетрагидрофуран, добавлении мирамистина или олеиновой кислоты до 2% от массы тритерпеноидов, удалении органического растворителя с помощью роторного испарителя, лиофилизации в присутствии криопротектора. Дополнительно при выпаривании может быть использована ультрафильтрация. Размеры сферических частиц составляют 100-400 нм. Однако, хотя данный метод позволяет повысить стабильность и эффективность адъюванта, при его осуществлении имеются потери тритерпеоидов.

Кроме того, в описанном способе получения отсутствует стадия стерилизации, что является одним из основных требований, предъявляемым к препаратам, вводимым парентерально. В соответствии с Европейской фармакопеей и с действующими в России нормативными документами препараты для парентерального введения должны быть стерильными, апирогенными, нетоксичными.

Признаки прототипа, совпадающие с признаками изобретения, состоят в наличии растворения смеси тритерпеноидов бересты в тетрагидрофуране, добавления олеиновой кислоты, удаления тетрагидрофурана, добавления криопротектора и лиофилизации.

Задача, решаемая изобретением, заключается в повышении качества адъюванта, позволяющая получать его в соответствии с требованиями, предъявляемыми к препаратам, вводимым парентерально: стерильность, апирогенность, атоксичность.

Технический результат, обеспечивающий решение упомянутой задачи, заключается в исключении токсичности препарата, снижении остаточной концентрации ТГФ, в обеспечении его стерильности, апирогенности, легкости масштабирования и стабильности при хранении.

Технический результат достигается тем, что в способе получения адъюванта, включающем растворение смеси тритерпеноидов бересты в тетрагидрофуране, добавление олеиновой кислоты, удаление тетрагидрофурана, добавление криопротектора и лиофилизацию, согласно изобретению получают смесь тритерпеноидов бересты в тетрагидрофуране с концентрацией 5-10 г/л с последующим растворением олеиновой кислоты в количестве 5-10% от массы тритерпеноидов бересты, проводят стерилизующую фильтрацию смеси, формируют гомогенную дисперсию сферических аморфных наночастиц путем добавления 25-кратного избытка 0,01 М трис-буфера, pH 9,0±0,2, при перемешивании, с последующей ультразвуковой обработкой в течение 5-10 мин, удаляют тетрагидрофуран с помощью ультрафильтрации на полых мембранах с порогом исключения 300 кДа при скорости 1,0-1,2 л/мин, при давлении 0,6-0,8 атм добавляют криопротектор из группы веществ: маннит, мальтоза, трегалоза, манноза, сорбит, сахароза, замораживают полученную концентрированную смесь с содержанием смеси терпеноидов 1 мг/мл ниже температуры -35°C, выдерживают при этой температуре 4-6 часов и лиофилизируют, лиофилизацию проводят при температуре -35°C в течение 15 часов; с последующим досушиванием при 20-25°C в течение 15 часов.

Предпочтительно в способе при лиофилизации использовать сахарозу как наиболее дешевый углевод.

Включение стадии обработки ультразвуком позволило в большей степени стабилизировать адъювант.

Важное значение для отработки режима лиофилизации имеет определение эвтектической температуры, при которой водный раствор переходит в твердую фазу. Важность этого этапа определяется тем, что наличие жидкой фазы, даже во внешне замороженном материале, в начале фазы сублимации может привести к необратимым явлениям, таким как нарушение целостности слоя препарата и его физической структуры. Точка эвтектики для сферических аморфных наночастиц была определена методом анализа зависимости электрического сопротивления от температуры. Лиофилизацию образцов проводили на аппарате для сублимирования ТГ-50 (Германия). По данным анализа определений эвтектической точки было установлено, что сферические аморфные наночастицы с концентрацией криопротектора 1/10-1/20 по массе имеют зону эвтектических температур -15±6°C. Наиболее оптимально проводят стадию лиофилизации при температуре препарата -35°C, продолжительность стадии 15 часов; досушивают препарат адъюванта при плюсовых температурах 20-25°C в течение 15 часов.

Наличие в составе адъюванта олеиновой кислоты в количестве 5-10% от массы тритерпеноидов бересты, обеспечивает стабильность при хранении, введение стадии стерилизующей фильтрации обеспечило получение адъюванта стерильным и апирогенным, использование ультрафильтрационной очистки способствовало исключению токсичности и удалению тетрагидрофурана, снижению затрат. Совокупность отличительных признаков обеспечивает легкость масштабирования технологического процесса от лабораторного до промышленного.

Новые признаки изобретения заключаются в том, что получают смесь тритерпеноидов бересты в тетрагидрофуране с концентрацией 5-10 г/л, с последующим растворением олеиновой кислоты в количестве 5-10% от массы тритерпеноидов бересты, проводят стерилизующую фильтрацию смеси, формируют гомогенную дисперсию сферических аморфных наночастиц путем добавления 25-кратного избытка 0,01 М трис-буфера, pH 9,0±0,2, при перемешивании, с последующей ультразвуковой обработкой в течение 5-10 мин, удаляют тетрагидрофуран с помощью ультрафильтрации на полых мембранах с порогом исключения 300 кДа при скорости 1,0-1,2 л/мин, при давлении 0,6-0,8 атм, добавляют криопротектор из группы веществ: маннит, мальтоза, трегалоза, манноза, сорбит, сахароза, замораживают полученную концентрированную смесь с содержанием смеси терпеноидов 1 мг/мл ниже температуры -35°C, выдерживают при этой температуре 4-6 часов и лиофилизируют, лиофилизацию проводят при температуре -35°C в течение 15 часов, с последующим досушиванием при 20-25°C в течение 15 часов.

Изобретение иллюстрируется чертежами, где на фиг. 1 приведен режим замораживания сферических аморфных наночастиц; на фиг. 2 - режим сублимации сферических аморфных наночастиц.

Возможность осуществления изобретения может быть продемонстрирована следующими нижеприведенными примерами.

Пример 1. Получение адъюванта вирусных вакцин

С целью получения адъюванта, отвечающего требованиям к препаратам для парентерального введения, мы отработали технологию, в которой все исходные растворы должны стерилизоваться на начальных этапах производства адъюванта, и весь дальнейший технологический процесс должен проходить в стерильных условиях. Поэтому на первом этапе проводят растворение смеси тритерпеноидов бересты, содержащую, мас.%: бетулин 65-71, лупеол 12-16, 3-О-кофеат бетулина 5-15 в тетрагидрофуране. К полученной смеси добавляют олеиновую кислоту в количестве 5-10% от массы тритерпеноидов бересты. Проводят стерилизацию полученной смеси, используя фильтроэлемент модифицированным поверхностным зарядом, устойчивый к действию органических растворителей, такой как нейлоновая мембрана с диаметром пор 0,22 мкм марки NRG Pall N66+c.

С целью получения гомогенной дисперсии сферических аморфных наночастиц к стерильной смеси добавляют 25-кратный объем стерильного буфера (pH 9,0±0,2) с помощью перистальтического насоса при постоянном перемешивании в течение 15 минут верхнеприводной мешалкой пропеллерного типа. В результате последующей гомогенизации ультразвуком в течение 5 мин образовывались сферические аморфные наночастицы. При этом наблюдалось разрушение агрегированных частиц, всплывающих на поверхность, и дисперсия становилась гомогенной.

С целью удаления органического растворителя применяют ультрафильтрацию на полых волокнах с номинальной отсекающей молекулярной массой 300 кДа. Очистку от органических растворителей оптимизируют путем использования 0,01 М трис-буферный раствор с pH 9,0±0,2 для 2-3-кратного разведения исходной дисперсии сферических аморфных наночастиц. При этом скорость ультрафильтрации составляла 1,0-1,2 л/мин, давление устанавливают в пределах 0,6-0,8 атм. Нанодисперсии концентрируют до содержания основного вещества 1 мг/мл.

Лиофилизация: замораживают препарат ниже температуры -35°C и выдерживают при этой температуре не менее 4-6 часов; проведение стадии лиофилизации при температуре препарата -35°C, продолжительность стадии 15 часов; досушивают препарат при плюсовых температурах 20-25°C в течение 15 часов (фиг.1, 2).

По внешнему виду полученный лиофилизированный адъювант представлял собой пористую массу белого или желтовато-белого цвета, с остаточной влажностью (3,5±0,5) %.

Остаточное количество ТГФ в готовом препарате определяют методом ГЖХ. Анализ полученных результатов показал, что отработанный метод ультрафильтрации обеспечивает эффективное удаление ТГФ, его концентрация в препарате составила 0,176±0,009 мг/мл. Последующая стадия лиофилизации способствовала снижению остаточной концентрации ТГФ до 0,122±0,004 мг/мл, т.е. почти на 30%. Следует отметить, что по данным ГФ XII издания, предельно допустимое количество тетрагидрофурана, принимаемое в составе суточной дозы в лекарственных средствах, не должно превышать 7,2 мг/мл, что в 2360 раз меньше чем при введении 25 мкг САНЧ (предполагаемое содержание в одной дозе вакцинного препарата).

Предложенный способ получения сферических аморфных наночастиц, имеющих дзета-потенциал минус 44,3 мВ и средний размер 160-180 нм, обеспечивает условия, при которых не образуется кристаллических наночастиц.

Пример 2. Ресуспендирование лиофильно высушенных препаратов адъюванта

Лиофильно высушенный препарат ресуспендируют водой для инъекций. Перемешивают получившийся раствор в течение 2-3 мин, например, с помощью шейкера или мешалки, избегая вспенивая. Также рекомендуется обработка суспензии ультразвуком в течение 3-5 мин.

Пример 3. Проверка на пирогенность и стерильность

Для проверки на пирогенность регидратированный адъювант вводили кроликам по 50 мкг на килограмм массы внутривенно. При этом максимальная сумма изменения температуры у трех кроликов составила 0,9°C (табл.1), что свидетельствует об апирогенности адъюванта.

Таблица 1
Результаты постановки теста на пирогенность адъюванта
№ кролика Вес кролика, кг Температура до введения, °C Температура через час, °C Температура через 2 часа, °C Температура через 3 часа, °C Сумма макс. изменения температуры, °C
1 2,75 39,4 39,3 39,5 39,5 0,9
2 2,65 39,3 38,9 39,0 39,2
3 2,50 39,5 39,1 39,2 39,3

Определение стерильности адъюванта проводили в соответствии с ГФ XII издания при двух режимах 22,5±2,5°C и 32,5±2,5°C. Было установлено, что адъювант стерилен.

Таким образом, разработанная технология позволяет получать адъюванты стерильными и апирогенными, что удовлетворяет требованиям, предъявляемым к препаратам для парентерального введения и позволяет их использовать в качестве вакцинных адъювантов.

Пример 4. Оценка сорбционной способности адъюванта на примере дифтерийного, столбнячного анатоксинов и поверхностного антигена вируса гепатита В

Одним из основных механизмов действия адъювантов является «депо» - эффект, который реализуется за счет связывания антигена и адъюванта. При этом сорбционная способность адъюванта может реализовываться за счет электростатических взаимодействий.

При отработке технологии определяли сорбционную способность адъюванта на примере дифтерийного, столбнячного анатоксинов, поверхностного антигена вируса гепатита В. Для получения вакцинных композиций отбирали необходимое количество адъюванта с pH 9,00 и добавляли рассчитанный объем антигена, перемешивали и оставляли на 30 мин для сорбции. Затем доводили 0,9% раствором натрия хлорида до получения вакцинной дозы. Приготовленные образцы вакцин центрифугировали при 10000 об/мин, отделяли супернатант, который анализировали с помощью ИФА и по результатам титрования определяли сорбционную способность адъюванта (табл.2).

Таблица 2
Определение сорбционной способности адъюванта
Концентрация адъюванта, мкг/мл Эффективность включения антигенов, %
дифтерийный анатоксин столбнячный анатоксин HBsAg
50 3,59 5,84 96,56
100 1,24 1,34 97,85
200 9,91 3,11 98,92
400 13,56 14,73 99,47
500 29,35 20,98 99,39

Как видно из данных табл.2, адъювант в концентрации 50 мкг/мл эффективно связывает поверхностный антиген вируса гепатита B. В свою очередь, даже при концентрации адъюванта 500 мкг/мл эффективность связывания по отношению к дифтерийному и столбнячному анатоксину составляет менее 30%.

Пример 5. Изучение адъювантных свойств на примере вакцины против гепатита B

Адъювантные свойства изучали на модели вакцины против гепатита B в опытах на морских свинках массой 350-400 г. Животным двукратно подкожно с интервалом 14 дней вводили вакцины гепатита B с различными адъювантами в объеме 0,5 мл (10 мкг HBsAg). На 14 и 28-й день после иммунизации в сыворотках морских свинок методом иммуноферментного анализа определяли антитела к поверхностному антигену вируса гепатита B.

Таблица 3
Результаты изучения иммуногенных свойств вакцины против гепатита B с адъювантами различной природы в опытах на морских свинках
Вакцинные композиции (суммарная доза на одно животное) Средняя геометрическая титра (СГТ), мМЕ/мл
I иммунизация II иммунизация
20 мкг HBsAg + 50 мкг адъюванта 40,02* 1276,63**
[17,53-91,35] [830,24-1963,03]
20 мкг HBsAg + 500 мкг адъюванта 44,92* 1192,26**
[15,40-130,96] [681,91-2084,57]
Контроль коммерческая вакцина против гепатита B (20 мкг HBsAg + 500 мкг Al(OH)3) 22,81 586,69
[10,94-47,52] [401,97-856,30]
* Различия средних величин не существенны по сравнению с контролем; ** Различия средних величин существенны по сравнению с контролем.

В наших исследованиях было установлено, что экспериментальный адъювант в концентрациях значительно меньших, чем широко используемый адъювант - гель гидроксида алюминия, обеспечивает высокий иммунный ответ на вакцину против гепатита B.

Пример 6. Изучение адъювантных свойств на примере вакцины против вируса гриппа

В эксперименте с гриппозными вакцинами использовали белых мышей с массой тела 10-13 г. Иммунизацию осуществляли следующим образом: в каждую из задних лапок мышей вводили по 100 мкл свежеприготовленных растворов (с адъювантами или без них) внутримышечно из расчета 1,5 мкг гемагглютинина (ГА) на животное. Забор крови проводили через месяц после иммунизации. Специфическую активность в сыворотках мышей определяли методом ИФА.

Таблица 4
Иммуногенные свойства вакцины против гриппа с экспериментальным адъювантом
Вакцинные композиции Количество гемагглютинина (ГА) на одно животное, мкг Среднее геометрическое значение оптической плотности
1,5 мкг ГА + 25 мкг адъюванта 1,5 1,015[0,877-1,173]**
1,5 мкг ГА + 250 мкг адъюванта 1,5 0,791[0,596-1,051]**
1,5 мкг ГА + 500 мкг адъюванта 1,5 0,676[0,546-0,836]***
1.5 мкг ГА* 1,5 0,551[0,429-0,708]
* Контроль (несорбированный гемагглютинин); ** Различия средних величин существенны по сравнению с контролем; *** Различия средних величин не существенны по сравнению с контролем.

Представленные результаты ИФА показали, что экспериментальный адъювант проявлял выраженные адъювантирующие свойства. Максимальный уровень антител у животных обеспечила вакцинная композиция с низкой дозой экспериментального адъюванта.

Пример 7. Изучение токсических свойств экспериментального адъюванта

Токсические свойства препарата оценивали в опытах по определению острой и хронической токсичности. Для изучения острой токсичности белым мышам вводили препарат внутрибрюшинно однократно в дозе 0,5 мл (25 мкг/доза) на мышь (что соответствует 2994 человеческим дозам), морским свинкам (массой 300-350 г) - подкожно в дозе 5,0 мл (250 мкг/доза) на морскую свинку (что соответствует 1851 человеческой дозе). При изучении хронической токсичности белым мышам вводили адъювант в концентрации 50 мкг/мл в дозе по 0,5 мл (25 мкг) внутрибрюшинно трехкратно (1, 4, 9 сутки) в суммарной дозе 1,5 мл на мышь (что соответствует 8982 человеческим дозам). Животным группы сравнения водили 0,9% раствор натрия хлорида по аналогичным схемам.

Результаты наблюдения показали, что однократное и многократное введение препарата не вызывало гибели животных, не приводило к снижению массы тела (табл.5, 6), изменениям волосяного покрова, некробиотическим изменениям на месте введения.

Таблица 5
Динамика изменения массы животных после однократного введения препарата
Исследуемый препарат Вид животных Исходная масса животных, г Массы животных на 1 сут, г Массы животных на 8 сут, г
Экспериментальный адъювант Белые мыши 18,24±0,14 18,58±0,184* 21,48±1,24*
Морские свинки 317,50±2,10 320,50±1,90* 367,00±3,50*
NaCl 0,9% (контроль) Белые мыши 18,09±0,16 18,30±0,14 22,20±0,98
Морские свинки 324,10±2,39 327,50±2,03 372,10±4,15
* p>0,05 различие незначимо по сравнению с контролем.
Таблица 6
Динамика изменения массы белых мышей после многократного введения препарата
Исследуемый препарат Исходная масса животных, г Массы животных на 1 сут, г Массы животных на 22 сут, г
Экспериментальный адъювант 18,46±0,18 18,78±0,60* 27,80±2,89*
NaCl 0,9% (контроль) 18,60±0,46 18,68±0,62 27,63±2,80
* p>0,05 различие незначимо по сравнению с контролем.

Через 24 ч и 13 суток после последней инъекции при оценке хронической токсичности в группе сравнения и опытной группе внутренние органы животных имели все характерные признаки, расположение и строение. Оболочки, выстилающие внутренние полости влажные, серовато-розового цвета, без признаков воспаления.

Таким образом, при изучении острой и хронической токсичности было установлено, что экспериментальный адъювант не вызывает симптомов интоксикации, не обладает токсическим действием на системы и органы лабораторных животных, не способствует развитию патологических, в том числе воспалительных, дистрофических и некротических изменений.

1. Способ получения адъюванта для вакцин, включающий растворение смеси тритерпеноидов бересты в тетрагидрофуране, добавление олеиновой кислоты, удаление тетрагидрофурана, добавление криопротектора и лиофилизацию, отличающийся тем, что получают смесь тритерпеноидов бересты в тетрагидрофуране с концентрацией 5-10 г/л, с последующим растворением олеиновой кислоты в количестве 5-10% от массы тритерпеноидов бересты, проводят стерилизующую фильтрацию смеси, формируют гомогенную дисперсию сферических аморфных наночастиц путем добавления 25-кратного избытка 0,01 М трис-буфера, pH 9,0±0,2, при перемешивании, с последующей ультразвуковой обработкой в течение 5-10 мин, удаляют тетрагидрофуран с помощью ультрафильтрации на полых мембранах с порогом исключения 300 кДа при скорости 1,0-1,2 л/мин, при давлении 0,6-0,8 атм, добавляют криопротектор из группы веществ: маннит, мальтоза, трегалоза, манноза, сорбит, сахароза, замораживают полученную концентрированную смесь с содержанием смеси терпеноидов 1 мг/мл ниже температуры -35°C, выдерживают при этой температуре 4-6 часов и лиофилизируют, лиофилизацию проводят при температуре -35°C в течение 15 часов с последующим досушиванием при 20-25°C в течение 15 часов.

2. Способ по п.1, отличающийся тем, что в качестве криопротектора используют сахарозу.



 

Похожие патенты:

Группа изобретений относится к средству против признаков старения кожи. Экстракт цельных семян Moringa sp.

Изобретение относится к способу получения настойки, обладающей гепатопротекторным, антиоксидантным, антигипоксическим, гиполипидемическим действием. Способ получения настойки, обладающей гепатопротекторным, антиоксидантным, антигипоксическим, гиполипидемическим действием, из семян сосны кедровой сибирской мацерацией с использованием этилового спирта, при этом цельные семена сосны кедровой сибирской загружают в реактор, заливают 70% водным раствором этилового спирта, экстрагирование проводят при определенных условиях.

Изобретение относится к косметологии и дерматологии и представляет собой композицию для ухода за кожей, пригодную для местного нанесения на кожу, где указанная композиция содержит салициловую кислоту или ее соль в сочетании с глицирризиновой кислотой, или ее солью или ее производным, пальмитамидом цетилгидроксипролина, молочной кислотой или ее солью, бисабололом и ниацинамидом.

Группа изобретений касается композиций для ухода за полостью рта, полезных для лечения повышенной чувствительности зубов, и способа лечения с их использованием. Композиция включает соединение формулы I: M1-A-M2-B-M1 ; где M1 и M3 представляют собой калий (К); M2 представляет собой Ti или оксид титана (Ti); A и B представляют собой независимо C2-C6 двухосновную кислоту; и по меньшей мере один орально приемлемый растворитель.

Изобретение относится к области органической химии, а именно к новым производным пиридина общей формулы (I) и к их фармацевтически приемлемым солям, где R1 обозначает (C1-6) алкилокси, CN или галоген, R2 обозначает атом водорода, R3 обозначает атом водорода или (C1-6) алкил, R4, R5, R6, R7 являются одинаковыми или разными и обозначают атом водорода или галоген.
Изобретение относится к области полезных для здоровья композиций и способу их получения. Способ получения композиции неживой лактобациллы, обладающей способностью специфического связывания со Streptococcus mutans, включает следующие стадии: нагревание суспензии клеток лактобациллы или смеси лактобацилл, обладающих способностью специфического связывания со Streptococcus mutans, с исходной температуры ниже 40°C до температуры пастеризации от 75 до 85°C с изменением температуры от 0,5 до 2°C/мин, удерживание нагретой суспензии при температуре пастеризации в течение от 20 до 40 минут и охлаждение суспензии до конечной температуры ниже 40°C с изменением температуры от 0,5 до 2°C/мин.
Изобретение относится к медицине, к хирургии. Пациенту с временной колостомой инстиллируют в прямую кишку 0,5% раствор дигидрокверцитина до появления чувства наполнения кишки.

Изобретение относится к косметической промышленности и представляет собой косметический продукт, который имеет, в каждом случае в расчете на общий состав продукта, следующее содержание компонентов: по меньшей мере 0,1 мас.
Изобретение относится к водной пенящейся композиции для рук, содержащей малеат касторового масла в количестве от 0,1 до 1% от массы композиции, ПЭГ-7 глицерил кокоат в количестве от 0,05 до 0,3% от массы композиции, глицерин в количестве от 0,5 до 6% от массы композиции, ПЭГ-6 глицериды каприловой/каприновой кислот в количестве от 0,05 до 1% от массы композиции и ПАВ.
Группа изобретений относится к композициям для ухода за полостью рта, содержащим основную аминокислоту или ее соль. Предлагаемая композиция для ухода за полостью рта для повышения закрытия дефектов дентина в полости рта пациента содержит аргинин в свободной форме или в форме соли и абразивное вещество, представляющее собой синтетический аморфный диоксид кремния и содержащее фракцию мелких частиц, составляющую, по меньшей мере, примерно 5% от общей массы композиции, в которой частицы фракции мелких частиц имеют d50 от 3 до 4 мкм.

Изобретение относится к химико-фармацевтической промышленности и представляет собой композицию для ухода за полостью рта, содержащую: a) по меньшей мере одно соединение формулы М1-А-М2-В-М3, где: М1 и М3 представляют собой К; М2 представляет собой Ti или оксид титана (Ti); А и В представляют собой С2-С6 двухосновную кислоту; и b) по меньшей мере один орально приемлемый растворитель; где композиция содержит менее 5% воды. Изобретение обеспечивает создание композиции для лечения повышенной чувствительности зубов, которая эффективно закупоривает открытые дентинные канальца. 3 н. и 4 з.п. ф-лы, 8 табл., 12 ил., 1 пр.

Изобретение относится к фармацевтической промышленности, а именно к средству для лечения сахарного диабета и способу лечения сахарного диабета. Средство для лечения сахарного диабета, включающее сухой водный экстракт Geranium Dieisianium Knuth и сухой водный экстракт коры Uncaria tomentosa (Willd) D.C., заключенные в желатиновые капсулы. Способ лечения сахарного диабета, предусматривающий назначение вышеописанного средства в суточной дозировке 180-360 мг после приема пищи. Вышеописанное средство позволяет эффективно лечить сахарный диабет, снизив дозировки сахароснижающих препаратов. Средство оказывает положительное действие на показатели углеводного обмена и обладает неспецифическим иммуномоделирующим действием. 2 н.п. ф-лы, 5 табл.
Изобретение относится к фармацевтической промышленности, а именно к способу получения лаппаконитина гидробромида (варианты). Способ получения лаппаконитина гидробромида осуществляется экстракцией корней или травы аконита белоустого (Aconitum leucostomum) или корней или травы аконита северного (Aconitum septentrionale) хлористым метиленом в аппарате для непрерывной экстракции, с последующей очисткой от примесей методом флэш-хроматографии (вариант 1), или экстракцией растительного сырья полярным органическим растворителем, с последующим удалением из экстракта полярного органического растворителя (вариант 2), подщелачиванием и экстракцией полученного остатка хлористым метиленом с последующей очисткой экстракта методом флэш-хроматографии. Вышеописанные способы получения лаппаконитина гидробромида обеспечивают упрощение технологического процесса, сокращение его длительности и повышение выхода целевого продукта фармакопейной чистоты. 2 н. и 5 з.п. ф-лы, 1 табл., 9 пр.
Изобретение относится медицине и может быть использовано для лечения пародонтита. Лечение проводят в два этапа, причем сначала на первом этапе пародонтальные карманы промывают 1,5% раствором перекиси водорода струйно канюлей, проводя канюлю по пародонтальным карманам вокруг зубов, причем при оголении фуркации премоляров и моляров - с заходом канюли под фуркацию. Затем пародонтальные карманы промывают аналогичным образом водным настоем травы шалфея лекарственного ежедневно в течение 3-5 дней, затем водным настоем цветков ромашки ежедневно в течение 3-5 дней, после чего водным настоем листьев подорожника ежедневно в течение следующих 3-5 дней, после каждого промывания проводят аппликации слизистых оболочек десен ватными турундами с соответствующим вводимому канюлей водным настоем трав экспозицией 1 час, кроме этого, назначают ротовые ванночки соответствующего вводимому канюлей водного настоя трав ежедневно 5-7 раз в день. На втором этапе Нормофлорин-В или Бифидумбактерин вводят инстилляцией канюлей, проводя канюлю по пародонтальным карманам вокруг зубов, при оголении фуркации премоляров и моляров - с заходом канюли под фуркацию, одновременно обкладывают слизистые оболочки десен ватными турундами с данным препаратом экспозицией 2 часа ежедневно в течение 5-10 дней. Способ позволяет повысить эффективность лечения. 1 з.п. ф-лы, 1 пр.

Изобретение относится к области косметологии и представляет собой помещенную в контейнер композицию для личной гигиены с ориентированными частицами, включающую видимые частицы с соотношением сторон более чем 1,5:1 и размером частиц по длинной стороне от 300 мкм до 1000 мкм, где плоскости x-y как минимум 50% этих видимых частиц практически параллельны, параллельны или совпадают с плоскостями x-y других видимых частиц, где указанная композиция включает структурный материал для сохранения ориентации частиц в композиции, а заполнение контейнера композицией осуществляют в условиях ламинарного потока, и способ ее изготовления. Изобретение обеспечивает предоставление композиций для личной гигиены, которые доставляют в кожу полезные агенты при применении, устойчивых при хранении и имеющих видимые особенности, которые могут выделить продукт для потребителя. 3 н. и 15 з.п. ф-лы, 4 ил., 2 табл., 2 пр.
Изобретение относится к косметической промышленности и представляет собой косметическую композицию для ухода за кожей на основе эмульсии «масло в воде», содержащую (а) парафиновый воск и/или полиэтиленовый воск, (b) микрокристаллический воск и (с) воск животного/растительного происхождения, который в качестве своего основного ингредиента содержит сложный эфир, полученный из высшей жирной кислоты, содержащей от 20 до 32 атомов углерода, и спирта, содержащего от 28 до 34 атомов углерода, и имеет температуру плавления в диапазоне от 75 до 100°С, где соотношение между количествами компонента (а) и компонента (b) находится в диапазоне от 70/30 до 95/5 масс., причем общее количество компонента (а) и компонента (b) находится в диапазоне от 0,01 до 2% масс. и количество компонента (с) находится в диапазоне от 0,005 до 2% масс. Изобретение обеспечивает превосходное ощущение эластичности и упругости кожи, отсутствие липкости и стабильность. 1 з.п. ф-лы, 2 табл., 8 пр.

Группа изобретений относится к области ветеринарии и предназначена для профилактики и лечения желудочно-кишечных болезней телят. Заявлены препарат для лечения желудочно-кишечных болезней телят и способ лечения с его использованием. Препарат представляет собой стерильную культуральную жидкость, полученную путем культивирования гриба Trametes pubescens (штамм 0663) на стандартных плотной и жидкой питательных средах с дополнительно включенными в питательную среду натрием селенистокислым и цинком сернокислым, с последующей лиофилизацией. Способ лечения включает внесение препарата в молоко для выпаивания. Препарат вносят в дозе 180-300 мг на 1 кг живой массы животного 1 раз в сутки в течение 4-5 дней. Технический результат состоит в высоком терапевтическом эффекте препарата. 2 н. и 1 з.п. ф-лы. 18 табл., 4 пр.
Изобретение относится к средству для лечения геморроя, проктита и иных воспалительных проктологических заболеваний. Указанное средство представляет собой суппозиторий массой 1,35 - 3,65 г, включающий в качестве действующих веществ 0,3 - 0,65 г диосмина, 0,05 - 0,2 г декспантенола, 0,05 - 0,2 г экстракта зеленого чая, а в качестве вспомогательных веществ 0,0135 - 0,1825 г эмульгатора и глицериды жирных кислот. Заявленное средство обеспечивает комплексное антимикробное, местное обезболивающее, противовоспалительное, ранозаживляющее и адаптогенное терапевтическое действие. 1 з.п. ф-лы, 3 пр.

Изобретение относится к клинической фармакологии, а именно к средству, обладающему церебропротекторным действием. Применение смеси тритерпеноидов, содержащей β-амирин 27,48 мас.%, α-амирин 27,52 мас.%, моретенол 25,52 мас.%, лупеол 19,48 мас.%, или бутиролигнанов - арктиина или арктигенина, выделенных из альфредии поникшей (Alfredia cemua (L.) Cass.), в качестве средства, обладающего церебропротекторным действием. Вышеописанная смесь тритерпеноидов или бутиролигнаны - арктиин или арктигенин, выделенные из альфредии поникшей (Alfredia cemua (L.) Cass., обладают выраженным церебропротекторным действием. 1 табл., 2 пр.
Изобретение относится к фармацевтической промышленности, а именно к составу для ухода за кожей, обладающему противогрибковыми свойствами. Состав для ухода за кожей, обладающий противогрибковыми свойствами, включающий спиртовой экстракт листьев березы, хвойную пасту, эфирные масла чайного дерева, пихты, лимона и эвкалипта, эмульсионную основу, при определенном соотношении компонентов. Вышеописанный состав обладает выраженными противогрибковыми свойствами. 4 пр.
Наверх