Статор электрической машины с жидкостным охлаждением проточным хладагентом

Изобретение относится к области электротехники и электромашиностроения, в частности, к охлаждению электрических машин. Статор электрической машины содержит корпус, рубашку с каналами для проточного хладагента, магнитопровод с рабочей обмоткой, охлаждение лобовых частей которой осуществляется посредством расположенных между слоями либо над слоями лобовых частей обмотки теплоотводящих элементов в виде цилиндров с ребрами на наружной поверхности, отходящими в радиальном направлении и контактирующими с рубашкой. Каждый из цилиндров теплоотводящих элементов выполнен с полостью между его внутренней и внешней стенками, а в качестве ребер использованы присоединенные торцевыми концами к внешним стенкам цилиндров тепловые трубы, плотно примыкающие своими торцевыми конденсационными концами к рубашке с каналами для проточного хладагента. Полость между внутренней и внешней стенками цилиндров и полость тепловых труб сообщаются между собой и составляют герметичную систему, заполненную рабочей жидкостью тепловых труб. Техническим результатом является повышение надежности. 3 ил.

 

Изобретение относится к области электротехники и электромашиностроения, в частности к охлаждению электрических машин, и касается особенностей конструктивного выполнения их статора с жидкостным охлаждением. Изобретение может быть использовано при создании электрических машин с интенсивным охлаждением статора.

Известна электрическая машина с охлаждением статора, Науменко В.И. Конструирование источников и преобразователей электроэнергии: Учебное пособие. - М.: МАИ, 1986, с. 39. Для приближения проточного хладагента к местам тепловыделения в данной электрической машине применены кольцеобразные пустотелые теплоотводы, внутренние полости которых соединены с каналами корпуса для проточного хладагента. Существенным недостатком предложенной конструкции является ее невысокая надежность из-за возможности разгерметизации и утечки хладагента из гидравлического тракта на границе между сердечником и теплоотводом. Кроме того, дополнительные системы, применяемые для отвода хладагента из внутренней полости электрической машины, ухудшают ее массогабаритные показатели.

Наиболее близким к предлагаемой конструкции статора электрической машины с жидкостным охлаждением проточным хладагентом по техническому решению является электрическая машина с интенсивным охлаждением статора, представленная в авторском свидетельстве №313258 «Электрическая машина», МПК H02K 9/22, опубл. 31.08.1971 г. Бюлл. №26. Для передачи тепла от лобовых частей секций рабочей обмотки к охлаждаемому проточным хладагентом корпусу в данном техническом решении применены кольцевые теплоотводы, размещенные между слоями лобовых частей обмотки, с припаянными металлическими ребрами, проходящими между проводниками секций и контактирующими с охлаждаемым корпусом.

Основным недостатком вышеназванного технического решения, принятого за прототип, является низкая эффективность охлаждения лобовых частей рабочей обмотки статора из-за недостаточной теплопроводности металла, используемого для изготовления металлических ребер, контактирующих с охлаждаемым корпусом. При этом применение в конструкции сплошных металлических ребер ведет к значительному повышению массы электрической машины в целом.

Задача заявляемого технического решения - повышение надежности работы за счет повышения эффективности охлаждения лобовых частей рабочей обмотки статора при сохранении его оптимальных массогабаритных показателей.

Технический результат достигается тем, что в статоре электрической машины с жидкостным охлаждением проточным хладагентом, содержащем корпус, рубашку с каналами для проточного хладагента, магнитопровод с рабочей обмоткой, охлаждение лобовых частей которой осуществляется посредством расположенных между слоями либо над слоями лобовых частей обмотки теплоотводящих элементов в виде цилиндров с ребрами на наружной поверхности, отходящими в радиальном направлении и контактирующими с рубашкой, каждый из цилиндров теплоотводящих элементов выполнен с полостью между его внутренней и внешней стенками, а в качестве ребер использованы присоединенные торцевыми концами к внешним стенкам цилиндров тепловые трубы, плотно примыкающие своими торцевыми конденсационными концами к рубашке с каналами для проточного хладагента. Полость между внутренней и внешней стенками цилиндров и полость тепловых труб сообщаются между собой и составляют герметичную систему, заполненную рабочей жидкостью тепловых труб.

Такое конструктивное выполнение заявляемого статора электрической машины с тепловыми трубами, внутреннее пространство которых образует единую полость с замкнутым пространством между внутренней и внешней стенками цилиндров теплоотводящих элементов, заполненную рабочей жидкостью тепловых труб, позволяет в полной мере использовать высокую теплопроводность тепловых труб, которая значительно выше теплопроводности любого металла. При этом значительно повышается эффективность охлаждения лобовых частей рабочей обмотки статора, тем самым повышается надежность работы электрической машины в целом. Применение легких тонкостенных тепловых труб позволяет сохранить оптимальные массогабаритные показатели.

Изобретение иллюстрируется рисунками, на которых показаны:

фиг.1 - схема статора электрической машины с жидкостным охлаждением проточным хладагентом,

фиг.2 - поперечное сечение статора электрической машины с расположенными над слоями лобовых частей обмотки теплоотводящими элементами,

фиг.3 - поперечное сечение статора электрической машины с расположенными между слоями лобовых частей обмотки теплоотводящими элементами.

Статор электрической машины с жидкостным охлаждением проточным хладагентом (фиг.1, фиг.2, фиг.3) содержит корпус 1, рубашку 2 с каналами 3 для проточного хладагента, магнитопровод с рабочей обмоткой 4 с ее лобовыми частями 5 и теплоотводящий элемент, состоящий из цилиндра 6 и отходящих от него в радиальном направлении тепловых труб 7, заполненных рабочей жидкостью 8 тепловых труб 7.

Охлаждение лобовых частей рабочей обмотки статора электрической машины осуществляется следующим образом. Проточный хладагент для охлаждения поступает в каналы 3 рубашки 2. Магнитопровод с рабочей обмоткой 4 плотно прилегает к рубашке 2, что обеспечивает отведение тепла к проточному хладагенту от самого магнитопровода и от пазовой части рабочей обмотки 4. Отведение тепла от лобовых частей 5 рабочей обмотки 4 обеспечивается теплоотводящим элементом, состоящим из теплоотводящего цилиндра 6 и тепловых труб 7. Теплоотводящий элемент может быть расположен между слоями (фиг.3) либо над слоями (фиг.2) лобовых частей 5 рабочей обмотки 4. Цилиндр 6 выполнен с полостью между его внутренней и внешней стенками. Тепловые трубы 7 как ребра, отходящие в радиальном направлении, присоединены торцевыми концами к внешним стенкам теплоотводящих цилиндров 6, а своими торцевыми конденсационными концами плотно контактируют с рубашкой 2 с каналами 3 для проточного хладагента. Полость тепловых труб 7 и полость между стенками цилиндра 6 теплоотводящего элемента составляют герметичную систему и заполнены жидкостью 8 тепловых труб 7. Омические тепловые потери, возникающие в меди лобовых частей рабочей обмотки 4 при протекании по ней электрического тока, нагревают рабочую жидкость 8 тепловых труб 7. В процессе нагревания рабочая жидкость 8 начинает испаряться и образовавшийся газ непосредственно по самим тепловым трубам 7 перемещается к своим более холодным конденсационным концам, примыкающим к рубашке 2, обтекаемой по каналам 3 проточным хладагентом. На этих более холодных концах тепловых труб 7 происходит конденсация рабочей жидкости 8, которая затем по специально структурированным стенкам тепловых труб 7 поступает обратно в полость между стенками цилиндра 6. Указанный процесс превращения и перемещения рабочей жидкости 8 тепловых труб 7 обеспечивает интенсивный перенос тепла от лобовых частей рабочей обмотки 4 к рубашке 2 с каналами 3 для хладагента.

Выполнение в статоре электрической машины с жидкостным охлаждением проточным хладагентом теплоотводящих элементов в виде цилиндров с полостью между их внутренней и внешней стенками, а также использование тепловых труб с их рабочей жидкостью, наполнение герметичной системы рабочей жидкостью тепловых труб дает возможность постоянно осуществлять интенсивный отвод тепла от лобовых частей рабочей обмотки.

Таким образом, существенно повышая эффективность охлаждения лобовых частей рабочей обмотки статора электрической машины, заявляемое техническое решение позволяет сохранить оптимальные массогабаритные показатели, значительно повысить надежность работы статора и, соответственно, электрической машины в целом.

Статор электрической машины с жидкостным охлаждением проточным хладагентом, содержащий корпус, рубашку с каналами для проточного хладагента, магнитопровод с рабочей обмоткой, охлаждение лобовых частей которой осуществляется посредством расположенных между слоями либо над слоями лобовых частей обмотки теплоотводящих элементов в виде цилиндров с ребрами на наружной поверхности, отходящими в радиальном направлении и контактирующими с рубашкой, отличающийся тем, что каждый из цилиндров теплоотводящих элементов выполнен с полостью между его внутренней и внешней стенками, а в качестве ребер использованы присоединенные торцевыми концами к внешним стенкам цилиндров тепловые трубы, плотно примыкающие своими торцевыми конденсационными концами к рубашке с каналами для проточного хладагента, причем полость между внутренней и внешней стенками цилиндров и полость тепловых труб сообщаются между собой и составляют герметичную систему, заполненную рабочей жидкостью тепловых труб.



 

Похожие патенты:

Изобретение относится к короткозамкнутому ротору для асинхронной машины, а также к способу изготовления такого короткозамкнутого ротора. Технический результат заключается в улучшении отвода тепла от короткозамкнутого ротора асинхронной машины.

Изобретение относится к электротехнике. Технический результат состоит в уменьшении габаритов и упрощении обслуживания.

Изобретение относится к электротехнике, к динамоэлектрическим машинам с системой охлаждения. Технический результат состоит в улучшении отвода тепла без усложнения конструкции.

Изобретение относится к области электротехники, в частности к электрическим машинам. Предлагается электрическая машина с радиально-щелевым охлаждением в листовом пакете (12) статора и листовом пакете (7) ротора, причем основной поток охлаждающего воздуха с двух сторон по оси направляется в листовой пакет (7) ротора и радиально через щели листового пакета (7) ротора и листового пакета (12) статора.

Насос // 2479754
Изобретение относится к насосу, в частности к циркуляционному насосу, включающему в себя расположенное в корпусе 1а, 3 насоса лопастное колесо 2, с помощью которого жидкость может перемещаться от входного отверстия 1с к выходному отверстию 1d.

Изобретение относится к области электротехники и электромашиностроения, в частности к крупным электрическим машинам, например к турбогенераторам. .

Изобретение относится к области электротехники и касается выполнения электрических машин, заполненных жидкостью, преимущественно асинхронных двигателей, и может быть использована в электроприводе систем с большой продолжительностью пусковых нагрузок при работе на низких оборотах, например в тренажерной технике.

Изобретение относится к области тяжелого электромашиностроения. .

Изобретение относится к области электротехники. Технический результат: упрощение конструкции, увеличение окружной скорости индуктора.

Изобретение относится к области электротехники. Технический результат: упрощение конструкции, повышение надёжности.

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам, и может быть использовано, в частности, в ветроэнергетических установках.

Изобретение относится к области электротехники. Технический результат: уменьшение массогабаритных характеристик устройства за счет увеличения окружной скорости индуктора, повышение надёжности.

Изобретение относится к области электротехники. Технический результат: увеличение окружной скорости индуктора, упрощение конструкции.

Изобретение относится к электродвигателям и генераторам, в частности к регулированию положения постоянных магнитов и/или шунтирующих вкладышей, выполненных из магнитонепроводящего материала, в роторе.

Изобретение относится к области электротехники, а более конкретно к устройству роторов электрических машин с возбуждением от постоянных магнитов, расположенных на роторе.

Изобретение относится к области электротехники и может быть использовано во вращающейся электрической машине. Технический результат - повышение точности оценки углового положения ротора посредством самостоятельного определения или управления без датчиков.

Изобретение относится к области электротехники и может быть использовано в высокооборотных электромашинах. Технический результат: эффективное охлаждение обмотки и сердечника статора, уменьшение массы и габаритов и повышение ресурса электромашин, в том числе работающих при повышенных и высоких частотах вращения.

Изобретение относится к реактивным синхронным электрическим машинам и может быть использовано в качестве синхронного электрического генератора либо синхронного электрического двигателя.

Генератор // 2547147
Изобретение относится к электрическому генератору для ветроэнергетических установок. Технический результат заключается в создании надежного генератора, имеющего большую глубину. Генератор содержит статор, который имеет обмотки, лежащие в пазах, которые образованы листами. Листы образуют полный листовой пакет, который пронизан резьбовыми болтами. Полный листовой пакет на своем переднем и заднем конце при рассмотрении в осевом направлении статора закреплен на статорном кольце статора. Причём в серединной части статорного кольца при рассмотрении в осевом направлении статора выполнена дополнительная точка крепления листового пакета, в которой приварено опорное кольцо. Полный листовой пакет разделен на две части посредством опорного кольца. При этом генератор имеет глубину более 1000 мм, в частности 1200 мм, и диаметр более 2 м, в частности 5 м, и номинальную мощность более 1 МВт, в частности 3 МВт. 2 н.п. ф-лы, 2 ил.
Наверх