Способ гидроразрыва карбонатного пласта

Изобретение относится к нефтяной промышленности и может быть применено для гидроразрыва пласта в карбонатных породах. Способ включает спуск в скважину в зону гидроразрыва колонны насосно-компрессорных труб, герметизацию заколонного пространства скважины пакером, осуществление гидроразрыва породы с образованием трещины закачкой газированной жидкости разрыва под давлением по колонне насосно-компрессорных труб с расклиниванием трещины, технологическую выдержку и последующее освоение скважины. После герметизации заколонного пространства скважины пакером производят охлаждение призабойной зоны пласта закачкой по колонне насосно-компрессорных труб газообразного азота с температурой от минус 40 до минус 45°C. Далее производят гидроразрыв закачкой по колонне насосно-компрессорных труб смеси соляной кислоты с добавлением азота в количестве, необходимом для получения солянокислотной пены с содержанием пены 57% на забое скважины. Затем в трещину гидроразрыва по колонне насосно-компрессорных труб производят закачку перегретого пара с температурой 220°C, причем объем закачиваемого в трещину пара выбирают равным или превышающим объем закачанной солянокислотной пены и объем колонны насосно-компрессорных труб, после чего осваивают скважину. Технический результат заключается в повышении эффективности гидравлического разрыва карбонатного пласта. 1 ил.

 

Изобретение относится к нефтяной промышленности и может найти применение при гидроразрыве пласта в карбонатных породах.

Известен способ гидравлического разрыва карбонатного пласта в скважине (патент RU №2455478, МПК E21B 43/26, опубл. 10.07.2012, бюл. №19), включающий перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны труб в зону гидравлического разрыва пласта (ГРП) с герметизацией межтрубного пространства пакером выше интервала перфорации и циклическую закачку в скважину гелеобразной жидкости разрыва, при этом перед проведением ГРП скважину заполняют технологической жидкостью на 0,2-0,4 объема ствола скважины, суммарный объем закачиваемой гелеобразной жидкости разрыва рассчитывают по формуле

Vг=k·Нп,

где, Vг - объем гелеобразной жидкости разрыва, м3;

k=1,4-1,6 - коэффициент перевода, м3/м;

Нп - длина интервала вскрытия, м,

причем гелеобразную жидкость разрыва закачивают равными порциями в 3-5 циклов с закачкой после них порций кислоты объемом 0,7-0,75 объема гелеобразной жидкости разрыва, по завершении последнего цикла закачки осуществляют закачку товарной нефти или пресной воды в полуторакратном объеме колонны труб с последующей выдержкой 1-2 ч, после чего удаляют продукты реакции кислоты с породой, снимают пакер и извлекают его с колонной труб из скважины.

Недостатками данного способа являются:

- во-первых, низкая эффективность ГРП, связанная с тем, что при расклинивании трещины вступление нефтекислотной эмульсии в реакцию с породой происходит в приствольной зоне скважины. По этой причине затруднена доставка нефтекислотной эмульсии вглубь пласта, поэтому трещина в большей своей части остается непротравленной (нераскрывшейся);

- во-вторых, низкое качество проведения ГРП, так как образовавшаяся трещина при проведении ГРП имеет низкую фильтрационную способность вследствие образования фильтрационной корки на стенках трещины из-за оседания неразложившихся остатков геля в порах трещины и породы, что в итоге снижает нефтеотдачу после проведения ГРП;

- в-третьих, низкая эффективность гелеобразной жидкости разрыва, т.е. необходим больший объем жидкости разрыва в сравнении с пенокислотной обработкой.

Наиболее близким по технической сущности является способ гидравлического разрыва пласта (патент RU №2451174, МПК E21B 43/267, опубл. 20.05.2012, бюл. №14), включающий спуск в скважину колонны насосно-компрессорных труб (НКТ) в зону гидроразрыва пласта, герметизацию заколонного пространства скважины пакером, закачку газа, жидкости разрыва под давлением по колонне НКТ, осуществление гидроразрыва пласта с образованием трещины, подачу расклинивающего агента и последующее освоение скважины, при этом газ подают вместе с жидкостью разрыва, в качестве которой используют сырую нефть, а расклинивающий агент - после закачки жидкости разрыва, причем газ используют инертный и закачивают в объеме 20-30% при давлении 8 МПа от объема жидкости разрыва, а в качестве расклинивающего агента используют нефтекислотную эмульсию с добавлением инертного газа в объеме 20-30% при давлении 9 МПа от объема расклинивающего агента, после чего цикл закачки жидкости разрыва с газом и расклинивающего агента повторяют 3-6 раз, а перед освоением в колонну НКТ закачивают технологическую жидкость с инертным газом в объеме 20-30% при давлении 10 МПа суммарным объемом, равным полуторакратному внутреннему объему колонны НКТ, с последующей технологической выдержкой на 2-3 ч, причем в каждом цикле жидкость разрыва и расклинивающий агент закачивают равными долями от общего объема.

Недостатками данного способа являются:

- во-первых, низкая эффективность ГРП, связанная с ограничением развития трещины в длину, так как ГРП проводится циклической закачкой жидкости разрыва и расклинивающего агента, поэтому при расклинивании трещины происходит вступление нефтекислотной эмульсии в реакцию с породой в приствольной зоне скважины. По этой причине невозможна доставка нефтекислотной эмульсии вглубь пласта, поэтому трещина не развивается в длину, а лишь частично увеличивается в объеме;

- во-вторых, низкое качество раскрытия трещины ввиду ее низкой фильтрационной способности из-за оседания в ее порах неразрушенной нефтекислотной эмульсии;

- в-третьих, низкое качество очистки призабойной зоны пласта от продуктов реакции. В итоге закольматированные поры пласта снижают нефтеотадачу после проведения ГРП;

- в-четвертых, применение сырой нефти создает высокую пожароопасность и требует большого технического и качественного контроля.

Техническими задачами предложения являются повышение эффективности проведения гидроразрыва пласта за счет увеличения развития трещины в длину, повышение качества раскрытия трещины за счет одновременного развития и расклинивания трещины, а также повышение качества очистки призабойной зоны пласта от продуктов реакции и исключение пожароопасности проведения ГРП.

Поставленные задачи решаются способом гидроразрыва карбонатного пласта, включающим спуск в скважину в зону гидроразрыва колонны насосно-компрессорных труб, герметизацию заколонного пространства скважины пакером, осуществление гидроразрыва породы с образованием трещины закачкой жидкости разрыва под давлением по колонне насосно-компрессорных труб с расклиниванием трещины, технологическую выдержку и последующее освоение скважины.

Новым является то, что после герметизации заколонного пространства скважины пакером производят охлаждение призабойной зоны пласта закачкой по колонне насосно-компрессорных труб газообразного азота с температурой от минус 40 до минус 45°C, далее производят гидроразрыв закачкой по колонне насосно-компрессорных труб смеси соляной кислоты с добавлением азота в количестве, необходимом для получения солянокислотной пены с содержанием пены 57% на забое скважины, затем в трещину гидроразрыва по колонне насосно-компрессорных труб производят закачку перегретого пара с температурой 220°C, причем объем закачиваемого в трещину пара выбирают равным или превышающим объем закачанной солянокислотной пены и объем колонны насосно-компрессорных труб, после чего осваивают скважину.

Сущность способа заключается в том, что при проведении ГРП используют не обычную кислоту, а аэрированный раствор поверхностно-активных веществ в соляной кислоте в виде пены, который создает и развивает трещину в процессе ГРП в пласте с предварительно охлажденной призабойной зоной, что способствует проникновению соляной кислоты совместно с пеной в неотреагированном состоянии вглубь пласта и повышает эффективность развития трещины в длину и качество ее расклинивания.

На чертеже схематично изображен предлагаемый способ.

Предлагаемый способ осуществляют следующим образом.

В скважину в зону гидроразрыва пласта 1 со вскрытыми интервалами перфорации 2 производят спуск колонны насосно-компрессорных труб 3 с пакером 4 так, чтобы пакер 4 находился на 5-10 м выше кровли 5 пласта 1, подлежащего гидроразрыву.

Осуществляют герметизацию заколонного пространства 6 скважины, т.е. производят посадку проходного пакера 4 любой известной конструкции, например пакер с механической осевой установкой П-ЯМО (на 25 МПа) производства научно-производственной фирмы «Пакер» (г. Октябрьский, Республика Башкортостан, Российская Федерация).

Определяют суммарный объем газообразного азота, закачиваемого в интервал призабойной зоны пласта, подлежащего гидроразрыву, по формуле, определенной опытным путем:

,

где Vг - объем газообразного азота, м3;

k=2,5-3,5 - коэффициент перевода, м3/м, примем k=3,0 м3/м;

Нп - высота интервала вскрытия пласта, м.

Например, длина интервала вскрытия Нп=5 м. Тогда, подставляя в формулу (1), получаем объем закачиваемого газообразного азота для охлаждения призабойной зоны пласта:

Vг=k·Hп=3,0 м3/м·5 м=15 м3.

Перед подачей на прием плунжерного насоса высокого давления 7 жидкий азот из цистерны 8 марки ТРЖК-3м (производство ООО «КриогенТехГаз», Удмуртская Республика, г. Ижевск), в которой его доставляют на скважину, подают центробежным насосом 9 в жидком состоянии в теплообменник (испаритель) 10, который обеспечивает нагревание жидкого азота до температуры от минус 40 до минус 45°C и переход его в газообразное состояние. Из теплообменника 10 газообразный азот поступает на прием плунжерного насоса высокого давления 7.

С помощью плунжерного насоса высокого давления 7 газообразный азот с температурой от минус 40 до минус 45°C, например минус 42°C, под давлением по колонне насосно-компрессорных труб 3 закачивают в призабойную зону пласта 1. В результате охлаждают призабойную зону пласта 1 радиусом R, например R равен 3 м.

Объем солянокислотной пены, состоящей из смеси соляной кислоты и азота, необходимый для создания трещины и ее расклинивания, определяют согласно плану проекта на проведение ГРП. Например, необходимый объем солянокислотной пены для проведения гидравлического разрыва пласта составляет 65 м3.

Для приготовления солянокислотной пены в нее добавляют азот в количестве, необходимом для получения солянокислотной пены с содержанием пены 57% на забое скважины, при этом соляную кислоту используют максимальной концентрации, поскольку в пене ее концентрация снижается, например используют товарную соляную кислоту 35%-ной концентрации.

Таким образом, содержание пены (по объему) в солянокислотной пене составляет 65 м3·57/100=37 м3, а объем смеси соляной кислоты составляет 65 м3 - 37 м3 = 28 м3.

Далее на устье скважины в емкости 11 готовят смесь соляной кислоты в объеме 28 м3 в следующем соотношении:

35%-ная концентированная соляная кислота 99%-25,2 м3
комплексный пенообразователь Нефтенол 1%-2,8 м3

35%-ная концентированная соляная кислота (HCl) выпускается по ГОСТ 857-95. Комплексный ПАВ НЕФТЕНОЛ ВВД представляет собой смесь водорастворимых оксиэтилированных алкилфенолов и их сульфоэтоксилатов в форме натриевых солей и выпускается по ТУ 2483-015-17197708-97.

Насосным агрегатом 12, например ЦА-320, подают смесь соляной кислоты из емкости 11 в колонну насосно-компрессорных труб 3, при этом на устье скважины через тройник 13 в поток смеси соляной кислоты производят добавление азота в количестве, необходимом для получения солянокислотной пены с содержанием пены 57% на забое скважины по объему солянокислотной пены.

С помощью солянокислотной пены производят гидроразрыв карбонатного пласта с образованием трещины 14 и ее одновременным расклиниванием.

При прокачке через карбонатные породы солянокислотной пены образуется густая сеть протяженных трещин в отличие от нескольких неглубоких трещин для обычного кислотного раствора.

Затем с помощью парогенератора 15 в трещину 14 гидроразрыва пласта 1 по колонне насосно-компрессорных труб 3 производят закачку перегретого пара под температурой 220°C с добавлением поверхностно-активного вещества (ПАВ) МЛ-81-Б в следующем соотношении:

пар 99%
ПАВ МЛ-81-Б 1%

ПАВ МЛ-81-Б выпускается по ТУ 2481-007-48482528-99. Объем закачиваемого в трещину пара выбирают равным или превышающим объем закачанной солянокислотной пены и объем колонны насосно-компрессорных труб 3. Например, объем закачанной солянокислотной пены составляет 65 м3, а объем колонны насосно-компрессорных труб 3 составляет 5 м3. Тогда суммарный объем пара, закачиваемого в пласт 1, составляет

65 м3 + 5 м3 = 70 м3.

Далее осваивают скважину и удаляют продукты реакции кислоты с породой любым известным способом, например свабированием по колонне насосно-компрессорных труб 3, после чего срывают пакер 4 и осваивают скважину любым известным способом, например свабированием.

Преимущества предлагаемого способа в сравнении с прототипом:

- применение солянокислотной пены для проведения ГРП замедляет растворение карбонатного материала, что способствует более глубокому проникновению смеси соляной кислоты в пласт. В результате этого приобщаются к дренированию удаленные от скважины участки пласта, ранее недостаточно или совершенно не охваченные процессом фильтрации;

- малая плотность солянокислотной пены (400-800 кг/м3) и ее повышенная вязкость позволяют существенно увеличить охват воздействием кислоты трещины при ее одновременном развитии и расклинивании;

- закачка пара позволяет прогреть пласт, улучшить качество реакции смеси соляной кислоты с породой карбонатного пласта и улучшить условия очистки призабойной зоны пласта от продуктов реакции: присутствие поверхностно-активных веществ снижает поверхностное натяжение как активной, так и отреагировавшей соляной кислоты на границе с нефтью, а наличие сжатого воздуха в отреагировавшем растворе, расширяющегося во много раз при освоении скважины (при снижении забойного давления), улучшает условия и качество освоения;

- наличие в солянокислотной пене дисперсной газовой фазы с большой удельной поверхностью способствует эффективному выносу из ПЗП твердых кольматантов;

- ГРП осуществляется без использования загеленных жидкостей, что позволяет избежать снижения проницаемости трещины из-за закупорки пор трещин остатками неразложившегося геля.

Способ гидроразрыва карбонатного пласта, включающий спуск в скважину в зону гидроразрыва колонны насосно-компрессорных труб, герметизацию заколонного пространства скважины пакером, осуществление гидроразрыва породы с образованием трещины закачкой газированной жидкости разрыва под давлением по колонне насосно-компрессорных труб с расклиниванием трещины, технологическую выдержку и последующее освоение скважины, отличающийся тем, что после герметизации заколонного пространства скважины пакером производят охлаждение призабойной зоны пласта закачкой по колонне насосно-компрессорных труб газообразного азота с температурой от минус 40 до минус 45°С, далее производят гидроразрыв закачкой по колонне насосно-компрессорных труб смеси соляной кислоты с добавлением азота в количестве, необходимом для получения солянокислотной пены с содержанием пены 57% на забое скважины, затем в трещину гидроразрыва по колонне насосно-компрессорных труб производят закачку перегретого пара с температурой 220°С, причем объем закачиваемого в трещину пара выбирают равным или превышающим объем закачанной солянокислотной пены и объем колонны насосно-компрессорных труб, после чего осваивают скважину.



 

Похожие патенты:

Группа изобретений относится к нефтедобывающей промышленности. Технический результат - повышение приемистости нагнетательных скважин и интенсификации притока флюида из продуктивного пласта с карбонатными коллекторами за счет замедления скорости реакции кислоты с породой пласта, уменьшения интенсивности кислотной коррозии, предотвращения выпадения вторичных осадков и образования эмульсии и обеспечения моющего действия состава.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке низкопроницаемых неоднородных карбонатных нефтяных залежей. Технический результат - повышение коэффициента охвата и увеличение нефтеотдачи нефтяной залежи.
Изобретения относятся к нефтегазодобывающей промышленности. Технический результат - создание состава для кислотной обработки, обладающего низкой скоростью коррозии при пластовых температурах, значительное увеличение эффективности кислотной обработки.

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - увеличение площади и глубины вскрытия продуктивного пласта при устранении условий набухания глин, содержащихся в коллекторе.
Изобретение относится к нефтедобывающей промышленности, в частности к способам интенсификации добычи нефти из продуктивных карбонатных пластов, вскрытых скважинами с открытыми горизонтальными стволами.
Изобретение относится к нефтедобывающей промышленности, в частности к способам интенсификации добычи нефти из продуктивных карбонатных пластов, вскрытых скважинами с открытыми горизонтальными стволами.
Изобретение относится к области нефтегазодобычи. Технический результат - повышение эффективности и технологичности удаления кольматирующих образований из призабойной зоны продуктивного ствола скважин, в том числе пологих и горизонтальных, после использования технологической жидкости, содержащей высокомолекулярные соединения и кольматанты.
Изобретение предназначено для восстановления фильтрационных свойств призабойных зон нефтегазовых скважин, нарушенных в процессе эксплуатации, с использованием гидрореагирующих металлов.

Изобретение относится к способам гидравлического разрыва пласта, сложенного карбонатными породами. Способ включает вскрытие пласта вертикальной скважиной, спуск в скважину на колонне труб гидромониторного инструмента с четным количеством струйных насадок и размещение его в заданном интервале пласта, закачку рабочей жидкости через струйные насадки гидромониторного инструмента для образования каверн в пласте, последующий разрыв пласта из каверн за счет давления торможения в них струи.

Изобретение относится к способам гидравлического разрыва в открытых стволах горизонтальных скважин. Способ включает бурение горизонтального ствола скважины в нефтенасыщенной части продуктивного пласта скважины, спуск колонны труб в скважину, формирование перфорационных каналов и трещин с помощью гидроразрыва пласта в стволе горизонтальной скважины последовательно, начиная с конца дальнего от оси вертикального ствола скважины.

Изобретение относится к технологии повышения продуктивности скважины. Технический результат - повышение эффективности большеобъемной селективной кислотной обработки (БСКО) карбонатных коллекторов. Способ большеобъемной селективной кислотной обработки (БСКО) добывающих скважин в карбонатных коллекторах включает закачку в скважину оторочки кислотного состава с удельным объемом 1,5-3 м3 на 1 м нефтенасыщенного интервала и нелинейно-вязкой отклоняющей жидкости-отклонителя перед и/или после оторочки кислотного состава, причем закачку кислотного состава осуществляют с оптимальным расходом и оптимальным соотношением объема отклонителя к объему кислотного состава, которые определяют математическим моделированием процесса с учетом изменения устьевого и забойного давления, типа кислотного состава, типа отклонителя, пористости и проницаемости породы, причем для оптимизации расхода закачки кислотного состава получают зависимости оптимального расхода закачки от удельного объема закачки реагентов с различными константами реакции. 1 з.п. ф-лы, 5 табл., 1 пр., 11 ил.
Изобретение относится к нефтяной промышленности. Технический результат - увеличение нефтеотдачи залежи. Способ разработки нефтяной залежи включает закачку рабочего агента через нагнетательные скважины и отбор пластовой продукции через добывающие скважины. Разрабатывают залежь с установившимся соотношением компенсации отбора пластовой продукции закачкой рабочего агента. В нагнетательной скважине проводят кислотную обработку околоскважинной зоны. Разрабатывают залежь с вновь установившимся соотношением компенсации отбора пластовой продукции закачкой рабочего агента до подхода фронта вытеснения, измененного в результате кислотной обработки, до добывающей скважины. Проводят гидроразрыв пласта в добывающей скважине, а компенсацию отбора восстанавливают до начального значения после восстановления обводненности пластовой продукции, измененной в процессе гидроразрыва пласта. 1 пр.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке карбонатных нефтяных пластов с естественной трещиноватостью горизонтальными скважинами с применением большеобъемной кислотной обработки при наличии вблизи горизонтальных стволов водонасыщенных пропластков. Технический результат - увеличение нефтеотдачи продуктивного пласта за счет повышения охвата пласта воздействием. Способ кислотной обработки нефтяного пласта включает проведение в открытом горизонтальном стволе скважины геофизических исследований по определению пересекаемых стволом в пласте нарушений - трещин, разломов, каверн, спуск в горизонтальный ствол на колонне труб фильтров с переменной плотностью перфорации, установку пакеров, закачку в горизонтальный ствол скважины кислоты, продавку кислоты, промывку скважины и пуск ее в работу. Причем один пакер устанавливают до открытого ствола между обсадной колонной и колонной труб, а остальные пакеры - набухающие пакеры - в открытом стволе размещают в местах пересечения стволом нарушений. Для каждого нарушения подбирают пакер длиной, превышающей ширину нарушения, определяемую по геофизическим кривым, не менее чем в десять раз. В колонны труб закачивают с концентрацией 10-20% объем соляной кислоты из расчета 5-30 м3 на метр нефтенасыщенной толщины пласта под устьевым давлением Pу=(0,008…0,011)·H, МПа, где H - средняя глубина пласта, м. Перфорационные отверстия фильтров выполняют круглыми с диаметром отверстий 5-10 мм, одинаковыми вдоль всего ствола. Плотность перфорации фильтров для каждого участка, образуемого между пакерами, а также между пакером и концом ствола, увеличивают линейно от нуля на периферии до максимального значения в центре, которую, в свою очередь, определяют через коэффициент гидродинамического совершенства исходя из соотношения: k 1 ⋅ h 1 Ln l 1 r c + С 1 = k 2 ⋅ h 2 Ln l 2 r c + С 2 = ... = k n ⋅ h n Ln l n r c + С n , где C1, C2, Cn - коэффициенты гидродинамического совершенства скважины по характеру вскрытия каждого n-го участка вдоль горизонтального ствола скважины; l1, l2, ln - длина n-го участка, м; k1, k2, kn - средняя проницаемость n-го участка, м2; h1, h2, hn - средняя нефтенасыщенная толщина n-го участка, м; rc - радиус скважины, м. 2 ил., 2 пр.

Изобретение относится к нефтедобыче. Технический результат - интенсификация добычи нефти из горизонтальной скважины, увеличение дебита нефти в 1,5-2 раза, снижение обводненности добываемой продукции на 30-50%. В способе поинтервальной кислотной обработки горизонтальной скважины, эксплуатирующей карбонатный коллектор, включающем спуск колонны труб в скважину, закачку по колонне труб в пласт кислотных составов, до начала обработки в горизонтальной скважине проводят геофизические исследования. Выделяют и разделяют интервалы горизонтальной скважины на две группы. В первую группу включают интервалы с проницаемостью от 40 до 70 мД и обводненностью добываемой продукции от 70 до 80%. Во вторую группу включают интервалы с проницаемостью от 5 до 39 мД и обводненностью добываемой продукции от 50 до 69%. Затем спускают в горизонтальную скважину заглушенную снизу колонну труб, оснащенную двумя пакерами с перфорированным патрубком между ними. Затем проводят последовательную обработку интервалов горизонтальной скважины, относящихся к первой группе, путем герметичного отсечения каждого интервала с последующей чередующейся закачкой в каждый интервал в три цикла временного блокирующего состава с расходом 6-12 м3/ч, в качестве которого используют обратную водонефтяную эмульсию с динамической вязкостью 120 мПа·с при 20°C, и кислотного состава с расходом 54-66 м3/ч. После обработки интервалов горизонтальной скважины, относящихся к первой группе, извлекают колонну труб из горизонтальной скважины, на устье горизонтальной скважины колонну труб выше перфорированного патрубка оснащают импульсным пульсатором жидкости и вновь спускают заглушенную снизу колонну труб, оснащенную двумя пакерами с перфорированным патрубком между ними, в горизонтальную скважину. Производят обработку интервалов горизонтальной скважины второй группы путем герметичного отсечения каждого интервала с последующей импульсной закачкой в каждый интервал самоотклоняющейся кислотной композиции на основе гелирующего агента с расходом 24-36 м3/ч. 3 ил.

Изобретение относится к нефтедобывающей промышленности. Технический результат - выравнивание профиля притока добывающих скважин в неоднородных по проницаемости карбонатных пластах, создание новых флюидопроводящих каналов по всей перфорированной толщине пласта, восстановление коллекторских свойств призабойной зоны за счет ее очистки от кольматирующих твердых частиц. Способ кислотной обработки призабойной зоны карбонатного коллектора включает закачку кислотной композиции, содержащей, мас. %: неорганическую или органическую кислоту, или их смеси 9,0-24,0; цвиттерионное поверхностно-активное вещество - олеинамидопропилбетаин 1,0-10,0; гидрофобно-модифицированный полиуретановый полимер 0,05-3,0; воду остальное, причем закачку кислотной композиции проводят в одну стадию либо порциями с проведением выдержки между закачками. Кислотная композиция дополнительно может содержать анионное поверхностно-активное вещество в количестве 0,1-3,0 мас.%. Закачку указанной выше кислотной композиции могут чередовать с закачкой соляной кислоты 12-24%-ной концентрации. 2 з.п. ф-лы, 1 табл., 16 пр., 4 ил.
Изобретение относится к нефтегазодобывающей промышленности. Технический результат - увеличение проницаемости осушенной призабойной зоны пласта, повышение степени разглинизации призабойной зоны и повышение производительности скважин. Способ разглинизации призабойной зоны низкопроницаемого низкотемпературного терригенного пласта, расположенного вблизи многолетнемерзлых пород, включает последовательное закачивание через колонну насосно-компрессорных труб в призабойную зону заглинизированного низкопроницаемого низкотемпературного терригенного пласта метанола в объеме 1-2 м3 на 1 м перфорированной толщины, ортофосфорной кислоты 5-6%-ной концентрации с технологической выстойкой не более 0,5 ч. После закачивают аэрировано-диспергированный водный раствор перекиси водорода малой концентрации не более 10-15 мас.% в объеме 2-3 м3 на 1 м перфорированной толщины с продавливанием ортофосфорной кислоты в удаленную часть пласта. Затем снова закачивают и продавливают аэрировано-диспергированный водный раствор перекиси водорода в пласт с помощью газового конденсата с кратковременной технологической выстойкой не более 0,5-1,0 ч. Затем производят удаление и вынос оставшейся части аэрировано-диспергированного водного раствора перекиси водорода из пласта и скважины на поверхность. Затем осуществляют освоение скважины подачей в скважину инертного газа, например, азота, отрабатывают и вводят скважину в эксплуатацию. При этом закачивание аэрировано-диспергированного водного раствора перекиси водорода осуществляют импульсно-циклическим методом попеременным закачиванием водного раствора перекиси водорода и инертного газа, например, азота. 3 пр.

Изобретение относится к составам для обработки скважин для применения в нефтедобывающей области. Состав для обработки скважины, содержащий реагент для обработки скважины, адсорбированный на водонерастворимом адсорбенте, где состав получают осаждением реагента для обработки скважины из жидкости, при этом реагент для обработки скважины адсорбируют на водонерастворимом адсорбенте, и где реагент для обработки скважины осаждают в присутствии металлической соли. Жидкость для обработки скважин, содержащая указанный выше состав и жидкость-носитель. Способ обработки подземного пласта или ствола скважины, включающий введение в пласт или ствол скважины указанной выше жидкости для обработки скважины. Способ контролирования высвобождения реагента для обработки скважины в стволе скважины, включающий введение в ствол скважины указанного выше состава. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение эффективности обработки в средах с высоким значением рН. 4 н. и 34 з.п. ф-лы, 3 ил., 4 пр.

Изобретение относится к нефтяной промышленности и, в частности, к способам обработки призабойной зоны скважин. Технический результат - увеличение эффективности обработки за счет создания структурированного адсорбционного слоя поверхностно-активных веществ в пласте. Способ включает определение зависимости структуры адсорбционного слоя от концентрации неионогенного поверхностно-активного вещества. Концентрацию поверхностно-активного вещества в водном растворе неионогенного поверхностно-активного вещества принимают из условия образования «островкового» адсорбционного слоя на поверхности породы - чередующихся гидрофильных участков поверхности нефтяного коллектора и гидрофобных участков адсорбированных молекул поверхностно-активного вещества, обеспечивающих структурирование капель нефти в потоке. Осуществляют выбор скважины для проведения операции. Проводят контрольные замеры дебита, устьевых и забойных давлений. Исследуют скважины на установившихся и неустановившихся режимах. Осуществляют закачку кислотосодержащего раствора на забой скважины. Затем осуществляют удаление из скважины кислотосодержащего раствора промывкой скважины нефтью. Устанавливают пакерующее устройство в скважине. Производят дальнейшую последовательную закачку водоудаляющей композиции, водного раствора неионогенного поверхностно-активного вещества, продавочной жидкости в добывающую скважину. Осуществляют выдержку скважины и последующий отбор нефти через добывающие скважины. 1 пр., 5 табл., 6 ил.

Изобретение относится к способам разработки нефтяных месторождений горизонтальными скважинами с применением гидравлического разрыва пласта. Способ включает бурение горизонтального ствола скважины в продуктивном пласте с цементированием обсадной колонны, спуск в горизонтальный ствол скважины на колонне труб перфоратора и выполнение перфорационных отверстий в горизонтальном стволе скважины, направленных азимутально вверх, спуск колонны труб с пакером в скважину, посадку пакера, закачку по колонне труб жидкости разрыва и формирование трещин гидравлического разрыва пласта в горизонтальном стволе скважины. Горизонтальный ствол скважины в продуктивном пласте бурят параллельно направлению максимального напряжения горных пород. Затем в горизонтальный ствол скважины на колонне гибких труб - ГТ спускают перфоратор и выполняют перфорационные отверстия в горизонтальном стволе скважины в один ряд, извлекают колонну ГТ с перфоратором из скважины, демонтируют перфоратор, после чего оснащают снизу колонну ГТ надувным пакером. Спускают колонну ГТ до забоя осевым перемещением колонны ГТ от устья к забою на расстояние 50 м со скоростью 0,5 м/мин и одновременной закачкой вязкого геля с плотностью, большей плотности воды, в объеме, обеспечивающем заполнение кислотным вязкоупругим составом, % мас.: гелеобразователь 12,0 22% соляная кислота (HCl) 22,5 пресная вода 65,5 нижней части сечения горизонтального ствола скважины на 2/3 диаметра горизонтального ствола. Сажают надувной пакер, производят ГРП закачкой загущенного кислотного состава, % мас.: гелеобразователь 12,0 22% соляная кислота (HCl) 68,0 пресная вода 20,0 с последующим заполнением гелированной жидкостью с деструктором перфорационных отверстий и верхней части сечения горизонтального ствола скважины на 1/3 диаметра горизонтального ствола. Производят распакеровку надувного пакера, далее производят ГРП в оставшейся части горизонтального ствола, для этого вышеописанные операции повторяют, начиная с осевого перемещения колонны ГТ от устья к забою до заполнения обработанного интервала гелированной жидкостью с деструктором. По окончании выполнения поинтервального ГРП производят освоение скважины свабированием, при этом вязкоупругий гель разжижается при контакте с пластовыми флюидами и деблокирует дренируемые участки горизонтального ствола скважины и извлекается из скважины. Технический результат заключается в повышении эффективности развития трещины, качества проведения ГРП, сокращении длительности проведения ГРП. 5 ил.

Группа изобретений относится к нефтегазовой промышленности и предназначено для теплового воздействия на призабойную зону, снижения вязкости скважинной жидкости перед приемом погружного насоса и для предупреждения образования асфальтено-парафино-гидратных отложений. Способ прогрева призабойной зоны скважины характеризуется тем, что в призабойную зону скважины в интервал перфорации на хвостовике из НКТ ниже скважинного погружного оборудования в зависимости от необходимой длины и мощности нагрева опускают один или несколько соединенных между собой скважинных электрических резистивных нагревателей. Производят управляемый прогрев околоскважинного пространства призабойной зоны и поступающей в скважину пластовой жидкости. Устройство для осуществления способа составлено из взаимосвязанных между собой скважинного нагревателя в виде регулируемых с поверхности нагревательных элементов и воздушной компрессионной камеры или узла гидрозащиты, с возможностью компенсации компрессионного воздействия нагретого теплоносителя. В устройство включены также внутренний датчик температуры и регулятор мощности, подаваемой на скважинный нагреватель, выполненный в виде тиристорного выпрямительного блока, управляемого соединенным с ним программируемым контроллером станции управления нагревом с основным показателем в виде температурных характеристик работы устройства. Техническим результатом является повышение эффективности теплового воздействия на околоскважинное пространство в районе установки скважинного нагревателя, увеличения притока жидкости из пласта и снижения вязкости скважинной жидкости перед приемным фильтром скважинного насоса. 2 н. и 2 з.п. ф-лы, 5 ил.
Наверх