Способ выявления наличия дефектов узлов и агрегатов автомобиля в реальном времени и устройство для его осуществления

Группа изобретений относится к области диагностики, в частности к вибродиагностике, и может быть использована для выявления наличия дефектов в узлах и агрегатах автомобиля. Способ заключается в том, что виброакустический сигнал усиливают, фильтруют, дискретизируют по времени. Затем на каждом очередном шаге дискретизации определяют суммарное значение результатов нелинейных интегральных преобразований функцией y(x)=sin(x)*x2 следующих друг за другом N отсчетов виброакустического сигнала, сравнивают полученное значение с пороговым уровнем Δ. В случае превышения порогового уровня формируется сигнал о наличии дефекта. Устройство содержит последовательно соединенные вибродатчик с усилителем, фильтр, блок дискретизации, блок нелинейных интегральных преобразований, блок определения суммарного значения отсчетов, компаратор. Генератор тактовых импульсов соединен со вторым входом блока дискретизации и вторым входом блока определения суммарного значения отсчетов. Формирователь порогового уровня соединен со вторым входом компаратора, который является выходом схемы. Технический результат заключается в повышении достоверности выявления наличия дефектов. 2 н. п. ф-лы, 3 ил.

 

Изобретение относится к области диагностики, в частности к вибродиагностике, и может быть использовано для выявления дефектов в узлах и агрегатах автомобиля. Способ, реализованный в устройстве, обеспечивает повышение достоверности определения наличия дефектов, а также обеспечивает его простоту.

В системах вибродиагностических систем, одной из основных задач является оценка наличия степени дефекта механизма, который является диагностическим показателем нарушений деятельности рабочей системы.

Известен способ, реализованный в устройстве [1], заключающийся в том, что силы трения, возбуждающие высокочастотную случайную вибрацию, стационарны только при отсутствии дефектов. В бездефектных узлах трения стационарна и случайная высокочастотная вибрация. Ее мощность постоянна во времени. При появлении дефектов, приводящих даже к частичному "продавливанию" смазки, изменяются периодически во времени силы трения или возникают удары, возбуждающие высокочастотную вибрацию. Также удары могут появиться, если смазка не очень хорошая и ее слой легко "рвется". В спектре огибающей высокочастотной вибрации можно наблюдать за развитием одновременно всех имеющихся дефектов по величинам превышения гармонических составляющих на определенных частотах над фоном. Имеется возможность прогнозировать состояние диагностируемого узла, т.к. каждый вид дефекта имеет свою скорость развития. При изменении вида дефекта частота модуляции изменяется. Чем больше степень развития дефекта, тем больше становится глубина модуляции. Следовательно, частота модуляции определяет вид дефекта, а глубина модуляции - степень его развития.

Недостаток - высокая стоимость, необходим анализатор спектра вибрации с функцией анализа спектра огибающей высокочастотной вибрации. Метод очень широко используется в среде профессионалов и стационарных системах контроля технического состояния оборудования.

Известен способ, реализованный в устройстве [2], и являющийся наиболее близким к предлагаемому способу (прототипом), является способ анализа дефекта по спектру вибросигнала.

Метод базируется на анализе спектра вибрации - выявлении периодичности (частоты) появления амплитудным виброанализатором и по частотному составу спектра, можно идентифицировать возникновение и развитие дефектов подшипника. Каждому дефекту на элементах подшипника (тела качения, внутреннее и наружное кольцо, сепаратор) соответствуют свои частоты, которые зависят от кинематики подшипника и скорости его вращения. Наличие той или иной частотной составляющей в спектре сигнала говорит о возникновении соответствующего дефекта, а амплитуда этой составляющей - о глубине дефекта.

Недостатки описанного способа:

- метод дорогостоящий, если виброанализатор использовать только для контроля подшипников;

- метод малочувствителен к зарождающимся и слабым дефектам в связи с тем, что подшипники в большинстве случаев являются маломощными источниками вибрации. Небольшой скол на шарике или дорожке не в состоянии заметно качнуть механизм, чтобы мы увидели эту частотную составляющую в спектре. И только при достаточно сильных дефектах амплитуды этих частотных составляющих начинают заметно выделяться в спектре.

Предлагаемый способ выявления дефектов узлов и агрегатов автомобиля в режиме реального времени позволяет устранить указанные недостатки прототипа.

Суть предлагаемого способа заключается в следующем. Виброакустический сигнал с корпуса двигателя, усиливают, фильтруют, дискретизируют по времени. Затем на каждом очередном шаге дискретизации определяют суммарное значение результатов нелинейных интегральных преобразований функцией y(x)=sin(x)*x2 следующих друг за другом N отсчетов виброакустического сигнала, сравнивают полученное значение с пороговым уровнем Δ, причем в случае превышения порогового уровня формируется сигнал о наличии дефекта.

Полученный вибросигнал с датчиков обрабатывают с использованием фильтра Виннера, чтобы исключить появление посторонних шумов и низкоамплитудных гармоник, являющихся побочными по отношению к основной гармонике. Далее формируют временное окно, которое перемещается по сигналу, в результате формируется результат нелинейных интегральных преобразований вибросигнала:

,

где s(t) - обработанный вибросигнал, Δt - шаг дискретизации, z(t) - результат нелинейных интегральных преобразований, i - номер отчета во временном окне.

Полученный результат сравнивается с заданным пороговым значением Δ, превышение которого свидетельствует о появлении дефекта (см. фиг.1).

Предложенный способ более прост и дешев в реализации и позволяет надежнее по сравнению с известным способом (прототипом), выявить наличие дефекта.

Сущность изобретения и возможный вариант реализации предложенного способа поясняется следующим графическим материалом:

- фиг.1 - графики входного сигнала и результат нелинейных интегральных преобразований с участками, содержащими дефект и без них;

- фиг.2 - функциональная схема устройства;

- фиг.3 - вариант реализации блока 5 определения суммарного значения отсчетов.

Для достижения технического результата, заключающегося в повышении достоверности выявления наличия дефектов и реализации предложенного способа в устройство, содержащее последовательно соединенные вибродатчик с усилителем, фильтр, блок дискретизации, генератором тактовых импульсов, блоком нелинейных интегральных преобразований, формирователем порогового уровня и компаратором, являющимся выходом схемы, причем выход блока дискретизации соединен с входом блока нелинейных интегральных преобразований, выход блока нелинейных интегральных преобразований соединен с входом блока суммарного значения отсчетов, выход блока суммарного значения соединен с первым входом компаратора, второй вход которого соединен с выходом блока формирования пороговых уровней.

Устройство состоит (фиг.2) из фильтра 1, блока 2 дискретизации, генератора тактовых импульсов 3, блока 4 нелинейных интегральных преобразований, блока 5 определения суммарного значения отсчетов, блока 6 формирователя порогового уровня, блока 7 компаратора.

На вход фильтра 1, являющегося входом устройства, поступает вибросигнал. Выход фильтра 1 соединен с первым входом блока дискретизации 2, выход генератора тактовых импульсов 3 соединен с вторым входом блока 2 дискретизации, выход блока 2 дискретизации соединен с блоком 4 нелинейных интегральных преобразований, выход блока 4 нелинейных интегральных преобразований соединен с первым входом блока 5 определения суммарного значения отсчетов, второй вход блока 5 соединен с выходом блока 3 генератором тактовых импульсов, выход с блока 5 соединен с первым входом блока 7 компаратором, второй вход компаратор соединен с выходом блока 6 формирователем порогового уровня.

Реализовать данное устройство можно как в аналоговой, так и в цифровой форме. В качестве примера приведем реализацию устройства в цифровой форме.

Блок 4 нелинейных интегральных преобразований представляет собой соединение 3 блоков: двух блоков умножения и блок функции sin. Первый блок умножения реализует функцию x2, второй блок умножения - произведения результата x2 на результат функции sin. Блок sin может быть выполнен по схеме груботочного функционального синусного преобразователя [3].

Блок 5 определения суммарной значения отсчетов может быть выполнен по схеме, содержащей сдвиговый регистр 8, мультиплексор 9, сумматор 10, делитель 11 и источник постоянного напряжения 11. Счетный вход (C) сдвигового регистра 8 является управляющим входом данного блока, а вход данные (D) этого регистра - информационным входом. Выход сдвигового регистра 8 подключен к входу данных (D) мультиплексора 9. Вход управления (A) мультиплексора 9 и второй вход делителя 11 подключены к выходу источника постоянного напряжения 11. Выход мультиплексора 9 соединен с входом сумматора 10, выход последнего подключен к первому входу делителя 11. Выход делителя 11 является выходом рассматриваемого блока.

Ниже приведено более подробное описание работы некоторых блоков устройства.

Блок 5 определения суммарного значения отсчетов работает следующим образом. Под действием тактовых импульсов, поступающих на управляющий вход, происходит запоминание и сдвиг регистром отсчетов сигнала, поступающих на информационный вход блока 5. Сдвиговый регистр может быть выполнен путем соединения схем сдвигающих регистров (например, К561ИР6), число которых равно разрядности сигнала. Со сдвигового регистра запомненные отсчеты через мультиплексор (реализованный, например, на микросхемах 1564КП15) поступают на сумматор. Управление мультиплексора осуществляется сигналом, поступающим с выхода источника постоянного напряжения (например микросхема 142ЕН1). Мультиплексор построен таким образом, что он пропускает число отсчетов, соответствующих сигналу на втором информационном входе. Сумматор может быть выполнен на основе микросхем, например, К561ИМ1, соединенных с выходами мультиплексора соответствующим образом. Выходной сигнал сумматора делителем (например, микросхема К561ИЕ8) делится на сигнал, поступающий с выхода источника постоянного напряжения и соответствующий значению N. Таким образом, на выходе блока 5 на каждом шаге дискретизации формируется суммарное значение отсчетов.

Блок 1 может быть реализован на микросхеме К174УН19, блок 2 - на микросхеме К1107ПВ1Б, блок 3 - на микросхеме КР531ГГ1 [4].

Технико-экономический эффект предложенного способа и устройства для его осуществления заключается в простом, недорогом и надежном способе выявления дефектов различных узлов и агрегатов автомобиля. Надежное выявление отклонений в работе деталей обеспечивает более качественную работу автомобиля и повышает его работоспособность.

Литература

1. Русов В.А. "Спектральная вибродиагностика", 1996 г.

2. Патент №2165605. Ушаков А.П.; Тварадзе С.В.; Грабовецкий А.А.; Рейбанд Ю.Я.; Альшевский А.Н.; Морошкин И.В. Способ диагностики технического состояния двигателя внутреннего сгорания и/или трансмиссии автомобиля и устройство для его осуществления, 2001.

3. Патент №2107944. Тарасов Ю.А., Манохин Г.А. Груботочный функциональный синусный преобразователь, 1998.

4. Перельман Б.Л., Шевелев В.И. Отечественные микросхемы и зарубежные аналоги. Справочник, «НТЦ Микротех», 1998 г. - 376 с.

1. Способ выявления наличия дефектов узлов и агрегатов автомобиля в реальном времени, включающий измерение виброакустического сигнала с корпуса двигателя, усиление, фильтрацию сигнала, его дискретизацию, последующую обработку с определением фактического значения параметра вибросигнала и сравнение полученного значения с уровнем опорного сигнала с получением информации о наличия дефектов узлов и агрегатов автомобиля, отличающийся тем, что в качестве фактического значения параметра вибросигнала на каждом очередном шаге дискретизации определяют суммарное значение результатов нелинейных интегральных преобразований функцией y(x)=sin(x)*x2 следующих друг за другом N отсчетов виброакустического сигнала.

2. Устройство для выявления наличия дефектов узлов и агрегатов автомобиля в реальном времени, содержащее последовательно соединенные вибродатчик с усилителем, фильтр, блок дискретизации, отличающееся тем, что оно дополнительно снабжено генератором тактовых импульсов, блоком нелинейных интегральных преобразований, формирователем порогового уровня и компаратором, являющимся выходом схемы, причем выход блока дискретизации соединен с входом блока нелинейных интегральных преобразований, выход блока нелинейных интегральных преобразований соединен с входом блока суммарного значения отсчетов, выход блока суммарного значения соединен с первым входом компаратора, второй вход которого соединен с выходом блока формирования пороговых уровней.



 

Похожие патенты:

Изобретение относится к области машиностроения, а именно к стендам для диагностирования тормозов транспортных средств. Стенд содержит две подвижные в продольном направлении опоры с горизонтальной контактной поверхностью для установки колес испытываемой оси, раздельный привод подвижных опор посредством стальных канатов, наматываемых на тяговые барабаны, расположенные на одном приводном валу, вращающемся в установочных подшипниках посредством двигателя и вариатора, шариковые направляющие для перемещения подвижных опор в продольном направлении.

Изобретение относится к области диагностики дефектов технических систем. Устройство содержит, по меньшей мере, один датчик шума.

Изобретение относится к испытанию машин, в частности к устройствам для экспериментального исследования процесса слива масла из картерных полостей машин. На одной из боковых граней корпуса канистры выполнено окно в виде прямоугольника.

Изобретение относится к области контроля транспортных средств. Устройство обнаружения ускорения содержит блок (20) устранения компонента вибрации для устранения компонента вибрации кузова транспортного средства, содержащегося в сигнале (Gsen-f) датчика ускорения (G), прошедшем через фильтр (13), при переходе из остановленного состояния в состояние движения, и блок (21) коррекции нулевой точки для коррекции положения нулевой точки сигнала (Gsen-f) G-датчика, прошедшего через фильтр (13), с использованием значения коррекции (Gd) на основе сигнала (Gsen-r) G-датчика, в котором устранен компонент вибрации транспортного средства.

Изобретение относится к методам испытаний, в частности к методам неразрушающего контроля. Способ состоит в том, что выполняют контроль изделия (или группы однотипных изделий) имеющимися (штатными) средствами неразрушающего контроля.

Стенд содержит раму (1) с установленным на ней с помощью плоских наклонных рессор (4, 5) желобом (2) с закрепленными на его нижней поверхности ребрами жесткости (3). Желоб связан с установленным на раме кривошипно-шатунным приводом с регулируемой частотой вращения его двигателя.

Изобретение относится к средствам испытания устройств на ударные нагрузки и может быть использовано для проведения испытаний защитных устройств, в том числе бамперов, транспортного средства.

Изобретение относится к области испытания автомобиля. Проводят серию измерений уровня шума автомобиля, движущегося по мерному участку в режиме разгона, производят запись полученных значений, получают диаграмму значений записанного уровня шума автомобиля и определяют значение его скорости при пересечении микрофонной линии.

Изобретение относится к способу определения крутильной податливости гидромеханической трансмиссии. Способ включает нагружение слоя грунта траками гусеничного трактора с гидромеханической трансмиссией, неподвижно зафиксированного посредством силоизмерительного устройства, плавное увеличение нагрузки, регистрацию значения касательного усилия грунтозацепа трака на грунт, измерение деформации грунта, построение графика зависимости деформации грунта от касательного усилия грунтозацепа трака на грунт, определение по точке излома прямой графика предельного касательного усилия грунтозацепа трака на грунт, регистрацию угла поворота ведущей звездочки трактора, построение графика зависимости угла поворота ведущей звездочки трактора от касательного усилия грунтозацепа трака на грунт.

Изобретение относится к области обеспечения надежности и безопасности сосудов и трубопроводов давления во время их эксплуатации. Определяют критические размеры трещин в режиме нормальной эксплуатации.

Использование: для акустико-эмиссионной диагностики морских ледостойких сооружений. Сущность изобретения заключается в том, что в критичных узлах конструкции сооружения устанавливают акустико-эмиссионные преобразователи звукового диапазона частот, регистрируют сигналы акустической эмиссии и по параметрам сигналов акустической эмиссии определяют степень дефекта конструкции сооружения, при этом дополнительно устанавливают в критичных узлах конструкции сооружения группу акселерометров, воспринимающих механические напряжения низкочастотных колебаний инфразвукового диапазона частот, а затем вычисляют первую функцию взаимной корреляции между сигналами, поступающими от акустико-эмиссионных преобразователей и акселерометров, а затем вторую функцию взаимной корреляции между сигналами, поступающими от каждой пары ближайших акустико-эмиссионных преобразователей, при этом дефекты сооружения обнаруживают по амплитуде и форме максимумов от каждой функции корреляции, а координаты дефектов определяют по временной задержке максимума второй функции корреляции между каждой парой акустико-эмиссионных преобразователей.

Изобретение относится к способам определения шумового загрязнения территории и может быть использовано при осуществлении контроля уровня шума на границе жилой застройки, а также для определения вклада источника шума в общую акустическую ситуацию на границе жилой застройки.

Изобретение относится к области пчеловодства и может найти применение в практической работе на индивидуальных и коллективных пасеках. .

Изобретение относится к области машиностроения, в частности к виброобработке маложестких деталей для снижения в них остаточных напряжений. .

Изобретение относится к области неразрушающего ультразвукового контроля, а именно к способам определения диаграммы направленности пьезоэлектрических преобразователей (ПЭП).
Изобретение относится к ультразвуковой технике и предназначено для качественной оценки распределения плотностей ультразвуковой энергии в ультразвуковых ваннах и других технологических объемах с водой, повергаемой действию ультразвука.

Изобретение относится к приборам для измерения акустических сигналов. .

Изобретение относится к измерительной технике и может быть использовано в системах автоматики и сигнализации, а также для проверки исправности тормозной системы транспортных средств.

Изобретение относится к области пчеловодства и может найти применение в практической работе на индивидуальных и коллективных пасеках. .

Изобретение относится к техническим средствам для обеспечения безопасности жизнедеятельности. Система включает измерительный микрофон с передающим устройством, связанный с измерителем шума по радиоканалу, четырехрежимное сигнально-информационное табло, связанное с блоком вычислителя по радиоканалу, и устройство ввода информации. Блок вычислителя содержит приемное устройство, измеритель шума, блок индикации, блок питания, приемо-передающее устройство получения информации с измерительного микрофона и передачи информации на сигнально-информационное табло, оперативное запоминающее устройство, постоянное запоминающее устройство, микроЭВМ, выполненную с возможностью определения средней интенсивности шума (L, дБА), посредством режима «скользящего окна» и с учетом характеристик используемых противошумов, и вычисления риска ошибочных действий (R), обусловленных воздействием шума, по формуле R=1-(0,0003167e0,061112L+1,10521), при этом риск ошибочных действий (R) кодируется цветом и режимом, а сигнал передается на табло в виде зеленого, при R<0,3 - низкий риск, желтого, при 0,3≤R<0,6 - выраженный риск, красного, при 0,6≤R<0,9 - высокий риск, красного пульсирующего, при R≥0,9 - очень высокий риск. Использование изобретения позволяет повысить оперативность информирования о риске ошибочных действий, обусловленных воздействием производственного шума. 1 ил., 1 табл.
Наверх