Приводной центробежный суфлер для высокотемпературного газотурбинного двигателя

Изобретение относится к элементам систем газотурбинных двигателей и может быть использовано в качестве суфлера-сепаратора в маслосистемах авиационных высокотемпературных ГТД. В известном приводном центробежном суфлере, содержащем пристыкованный к КПА корпус с каналами подвода газомасляной смеси на вход установленной внутри него осевой крыльчатки, согласно изобретению каналы подвода смеси заключены внутрь кольцеобразной магистрали, наружная стенка которой выполнена в виде съемного экрана и подключена к устройству подачи охлаждающего агента. Технический результат изобретения - обеспечение конденсации паров масла в кольцеобразной магистрали перед попаданием газомасляной смеси в каналы подвода и возврат конденсата обратно в маслосистему позволяет сократить расход смазки двигателя. 4 з.п. ф-лы, 1 ил.

 

Изобретение относится к элементам систем газотурбинных двигателей и может быть использовано в качестве суфлера-сепаратора в маслосистемах авиационных высокотемпературных газотурбинных двигателей (ГТД).

Известен приводной центробежный суфлер, содержащий пристыкованный к коробке приводов агрегатов (КПА) корпус с каналами подвода газомасляной смеси на вход установленной внутрь него осевой крыльчатки (см. книгу «Смазка авиационных газотурбинных двигателей», М.М. Бич, Е.В. Вейнберг, Д.Н. Сурнов, Москва, Машгиз, стр.95, рис.4.50).

Недостатком известного суфлера является свободный пропуск к нему, а следовательно, и проход через него паров масла. Как известно, пары масла центробежный суфлер не улавливает. Маслосистема в случае ее применения в высокотемпературном ГТД будет иметь повышенный расход масла из-за его значительного испарения, и источником этой потери является та часть газомасляной смеси, которая прошла через суфлер, а этому способствует интенсивность испарения масла и повышенное давление в масляных полостях высокотемпературного ГТД.

Задача настоящего изобретения - повышение эффективности суфлера.

Технический результат - снижение расхода масла в маслосистеме авиационного ГТД.

Указанный результат достигается тем, что в приводном центробежном суфлере, содержащем пристыкованный к КПА корпус с каналами подвода газомасляной смеси на вход установленной внутри него осевой крыльчатки, согласно изобретению каналы подвода смеси заключены внутрь кольцеобразной магистрали, наружная стенка которой выполнена в виде съемного экрана и подключена к устройству подачи охлаждающего агента.

Целесообразно для упрощения конструкции кольцеобразную магистраль расположить внутри масляной полости КПА, а устройство подачи охлаждающего агента выполнить в виде коллектора форсунок, подключенного к нагнетающему насосу маслосистемы.

Целесообразно для ввода в каналы подвода газомасляной смеси дополнительного масла установить форсунки на входе в кольцеобразную магистраль.

Для интенсификации процесса конденсации паров масла целесообразно экран выполнить с перфорацией и с оребрением двух сторон, причем ребра на внутренней стороне выполнить параллельно оси вращения суфлера.

Благодаря подводу охлаждающего агента (например, масла) к наружной стенке кольцеобразной магистрали, выполненной в виде экрана из теплопроводного материала (например, медного сплава), происходит конденсация паров масла из газомасляной смеси, соприкасающейся со стенкой изнутри магистрали.

Образовавшаяся на стенке магистрали масляная пленка постепенно утолщается, затем срывается потоком газомасляной смеси и уносится им на вход осевой крыльчатки, где улавливается и возвращается в систему смазки двигателя, а на месте удаленной масляной пленки нарастает новая и весь описанный процесс повторяется снова. Чем уже кольцо магистрали и чем больше поверхность соприкосновения смеси с экраном, тем интенсивнее конденсация паров масла, присутствующих в потоке газомасляной смеси, меньше потери масла через суфлер и тем выше эффективность суфлера-сепаратора. Подача дополнительного масла на вход кольцевой магистрали позволяет увеличить размеры капель масла в потоке газомасляной смеси, так как они становятся дополнительными центрами конденсации, но уже в ядре потока, что также способствует снижению потерь масла и повышению эффективности суфлера.

На чертеже представлена принципиальная конструкция устройства.

Приводной центробежный суфлер содержит пристыкованный к корпусу 1 КПА корпус 2 с маслосбрасывающей резьбой 3, соединенной с маслоулавливающей канавкой 4, и патрубком 5 отвода очищенных от масла газов в атмосферу. В корпусе 2 выполнены также каналы подвода 6 газомасляной смеси, которые с помощью съемного экрана 7 заключены внутрь кольцеобразной магистрали 8. Внутри корпуса 2 консольно на приводном валу 9 закреплена осевая крыльчатка 10 с окнами 11, сообщающимися с патрубком 5. Экран 7 снабжен ребрами 12 и 13, которые расположены, соответственно, на внешней стороне экрана перпендикулярно оси вращения суфлера и на внутренней его стороне параллельно ей. К экрану 7 и к кольцеобразной магистрали 8 подведен коллектор 14 с форсунками 15 подачи масла. Коллектор 14 подключен к нагнетающему насосу системы смазки двигателя (на чертеже не показано). Между ребрами 12 и 13 экрана 7 выполнены отверстия 16.

Устройство работает следующим образом.

Через приводной вал 9 приводится во вращение осевая крыльчатка 10. Между входом в кольцеобразную магистраль 8 и входом в крыльчатку 10 появляется перепад давлений, под воздействием которого газомасляная смесь вместе с парами масла заполняет кольцеобразное пространство магистрали, при этом пары масла, соприкасаясь с наружной ее стенкой, выполненной в виде экрана 7, внешняя сторона которого охлаждается масляными форсунками 15 коллектора 14, конденсируются и осаждаются на ней тонкой масляной пленкой.

Ребра 13 позволяют в несколько раз увеличить поверхность теплообмена и интенсифицировать процесс конденсации паров масла; ребра 12 на внешней стороне препятствуют растеканию охлаждающего агента вдоль кольцевой магистрали, увеличивают поверхность охлаждения и способствуют интенсификации в нем теплообмена.

Образовавшаяся на экране 7 масляная пленка постепенно утолщается, срывается потоком газомасляной смеси и попадает через каналы 6 на лопатки крыльчатки 10, которые отбрасывают масло в зазоры между корпусом 2 и крыльчаткой, где оно заполняет канавку маслосбрасывающей резьбы 3, по которой масло стекает в сторону маслоулавливающей канавки 4 и возвращается в систему смазки двигателя. Очищенный от масла газ через окна 11 попадает в патрубок 5 и далее в окружающую атмосферу. Отверстия 16 препятствуют переполнению кольцевой магистрали 8 маслом и повышают эффективность охлаждения экрана 7.

Обеспечение конденсации паров масла в кольцеобразной магистрали 8 перед попаданием газомасляной смеси в каналы 6 и возврат конденсата обратно в маслосистему сокращает расход смазки двигателя. Предложенное устройство позволяет осуществить «лечение» дефектных маслосистем готовых изделий с минимальными материальными затратами.

В связи с вышеизложенным, по мнению заявителя, на основании уровня техники очевидно, что при реализации заявленного приводного центробежного суфлера для высокотемпературного авиационного ГТД достигается вышеприведенный технический эффект, заключающийся в снижении расхода масла в маслосистеме авиационного ГТД.

1. Приводной центробежный суфлер, содержащий пристыкованный к коробке приводов агрегатов (КПА) корпус с каналами подвода газомасляной смеси на вход установленной внутри него осевой крыльчатки, отличающийся тем, что каналы подвода смеси заключены внутрь кольцеобразной магистрали, наружная стенка которой выполнена в виде съемного экрана и подключена к устройству подачи охлаждающего агента.

2. Приводной центробежный суфлер по п.1, отличающийся тем, что кольцеобразная магистраль расположена внутри масляной полости КПА, а устройство подачи охлаждающего агента выполнено в виде коллектора форсунок, подключенного к нагнетающему насосу маслосистемы.

3. Приводной центробежный суфлер по п.2, отличающийся тем, что форсунки установлены на входе в кольцеобразную магистраль.

4. Приводной центробежный суфлер по п.1, отличающийся тем, что съемный экран выполнен с оребрением двух сторон, причем ребра на внутренней стороне расположены параллельно оси вращения суфлера.

5. Приводной центробежный суфлер по п.1, отличающийся тем, что экран выполнен с перфорацией.



 

Похожие патенты:

Изобретение относится к области турбомашиностроения, а именно к конструкции упругих опор роторов турбомашин. Упругая опора содержит установленный на валу подшипник, статорный элемент, обечайку, по меньшей мере, две спицы и кольцевой элемент с фланцем.

Изобретение относится к упругодемпферным опорам турбин газотурбинных двигателей авиационного и наземного применения. В упругодемпферной опоре (1) турбины корпус (2) содержит радиальное ребро (7) с пристыкованными к нему ограничивающими масляную полость (10) фланцами (8) и (9) и стенку (11) с пристыкованными к ней трубами (18) подвода воздуха.

Изобретение относится к области авиационного двигателестроения, в частности к масляной системе авиационного газотурбинного двигателя. В известной маслосистеме, содержащей маслобак, масляный фильтр с сифонным затвором и жиклер стравливания воздуха в петле сифонного затвора, установленные в магистрали подачи масла в двигатель, причем петля сифонного затвора с жиклером стравливания воздуха расположена внутри полости маслобака, а жиклер сообщен со свободным его объемом, согласно изобретению, восходящая часть петли сифонного затвора образована магистралью подвода масла к фильтру, а ниспадающая часть петли образована внутренней полостью корпуса масляного фильтра.

Упругодемпферная опора ротора турбомашины содержит подшипник, установленный на валу, статорный элемент. Статорный элемент содержит обечайку и закрепленную на наружном кольце подшипника обечайку.

Газотурбинный двигатель содержит корпус, ротор, включающий вал. Один конец вала жестко скреплен с рабочим колесом турбины, на который насажена цилиндрическая втулка ротора, выполненный с возможностью его газодинамического поддержания, а на свободном конце зафиксировано колесо центробежного компрессора, снабженный упорным подшипником.

Вентилятор (1) газотурбинного двигателя включает в себя радиально-упорный подшипник (9), внутреннее кольцо (14) которого закреплено гайкой (10) с радиальными выступами (22) под ключ на резьбовом хвостовике (13) и жиклер (26) подачи масла на смазку.

Турбокомпрессор (10, 10′), приводимый в действие отработавшими газами, для двигателя внутреннего сгорания содержит датчик (32) частоты вращения и элемент (30, 30′, 40, 40′, 40″) в виде втулки для осевой фиксации по меньшей мере одного подшипника (24, 26) вала (22) турбокомпрессора.

Настоящее изобретение относится к области разработки газотурбинных двигателей, а более конкретно к конструкции газосборника выходного устройства турбовальных двигателей - ТВаД, предназначенных для эксплуатации в составе вертолетов.

Маслосистема авиационного газотурбинного двигателя (ГТД) относится к авиадвигателестроению, а именно к системам смазки ГТД. Характерная особенность предложенной маслосистемы - предварительная грубая очистка сжатых воздуха и газов, поступающих в суфлирующую магистраль масляной полости подшипниковой опоры ротора турбины, от водомасляных загрязнений, что позволяет снизить гидравлическое сопротивление объединенной, единой магистрали суфлирования, сообщающейся со всеми остальными суфлируемыми масляными полостями двигателя, и дает возможность уменьшить рабочую нагрузку на суфлер-сепаратор, обеспечивающий окончательную чистовую очистку выбрасываемых в окружающую атмосферу воздуха и газов.

Маслосистема энергетической газотурбинной установки (ЭГТУ) относится к области двигателестроения, а именно к маслосистемам ЭГТУ, применяемым на газоперекачивающих и электрических станциях для привода различных агрегатов (насосов, газовых и воздушных компрессоров, электрогенераторов и т.п.).

Изобретение относится к области авиационного двигателестроения и касается устройства маслосистемы газотурбинного двигателя. В масляной системе, содержащей подключенную к масляным полостям опор ротора магистраль откачки масловоздушной эмульсии, сообщенную с маслобаком, и центробежный суфлер с магистралью сброса в маслобак уловленного суфлером масла, в магистраль откачки встроен эжектор так, что выход из магистрали откачки выполнен соплом для эжектирующего потока масловоздушной эмульсии, а выход магистрали сброса уловленного суфлером масла выполнен соплом для эжектируемого потока в магистрали сброса масла, которое через смесительную камеру и диффузор сообщено с маслобаком. Изобретение обеспечивает повышение надежности работы маслосистемы. 1 з. п. ф-лы, 1 ил.

Центробежный суфлер относится к области авиадвигателестроения, а именно к конструкции центробежного суфлера системы суфлирования авиационного газотурбинного двигателя (ГТД). Центробежный суфлер содержит ротор с установленной на нем центробежной крыльчаткой, размещенной в цилиндрической расточке корпуса, в котором выполнена кольцевая канавка для отвода масла. Лопатки крыльчатки, расположенные напротив канавки для отвода масла, выполнены с выступом, заведенным в последнюю. Крыльчатка может быть снабжена поперечными перегородками, образующими полости, последовательно сообщенные между собой. Выходной канал из кольцевой канавки корпуса выполнен тангенциально по отношению к ней. Цилиндрическая поверхность корпуса и соответствующая ей часть крыльчатки можгу быть выполнены ступенчатыми. Технический результат изобретения - повышение эффективности отделения масла от газа, уменьшение расхода масла в двигателе и загрязнения атмосферы. 3 з.п. ф-лы, 5ил.

Изобретение относится к машиностроению, преимущественно к турбиностроению, и предназначено для использования в качестве опоры быстровращающегося ротора газовой турбины, выполненной в виде двух отдельных ребер, установленных в имеющийся корпус с крышкой и приваренных к нему монтажным швом перпендикулярно оси предварительно выполненной в ребрах расточки заподлицо с горизонтальным разъемом корпуса и соединенных по нему с верхним ребром; при этом верхнее ребро соединено с имеющейся крышкой посредством крепежа и подогнанной по месту дистанционной шайбы. Выполненная таким образом опора быстровращающегося ротора для восприятия его динамической неуравновешенности достигнута путем соединения в единое целое имеющихся корпуса с крышкой, а также ребер, соединенных с корпусом и крышкой, что обеспечивает требуемую податливость порядка 5 мк/тонну усилия опоры быстровращающегося ротора, тем самым уменьшает трудоемкость и сокращает сроки переоборудования газовой турбины. 3 ил.

В газотурбинном двигателе воздушные полости валов и подшипниковых опор соединены с кольцевыми коллекторами повышенного и пониженного давления воздуха, выполненными с возможностью переключения отбора воздуха с коллектора повышенного на коллектор пониженного давления воздуха. Коллектор пониженного давления воздуха на входе соединен с проточной частью газотурбинного двигателя за третьей ступенью компрессора низкого давления. Коллектор повышенного давления воздуха на входе соединен с проточной частью газотурбинного двигателя за третьей ступенью компрессора высокого давления. Между коллектором повышенного давления воздуха и воздушными полостями подшипниковых опор и валов установлен воздухо-воздушный теплообменник, размещенный в канале наружного контура газотурбинного двигателя. Изобретение повышает надежность газотурбинного двигателя путем снижения температуры воздуха, поступающего из коллектора повышенного давления на охлаждение валов газотурбинного двигателя и на наддув воздушных полостей подшипниковых опор. 4 ил.

Приводной центробежный суфлер относится к области авиадвигателестроения, в частности к элементам маслосистемы авиационного газотурбинного двигателя (ГТД). Приводной центробежный суфлер ГТД содержит корпус с маслосбрасывающей резьбой и маслоулавливающей канавкой и установленную в нем осевую крыльчатку, вход в которую сообщен с каналом подвода газомасляной смеси, а выход - через газоотводящие окна с выходным патрубком суфлера. Проточная часть крыльчатки выполнена в виде направляющей диафрагмы, увеличивающейся в диаметре в сторону выхода, причем участок диафрагмы с максимальным диаметром, меньшим наружного диаметра лопаток крыльчатки, образует с корпусом дополнительные окна, сообщенные через газоотводящие окна с выходным патрубком суфлера. Лопатки крыльчатки, расположенные в зоне размещения маслоулавливающей канавки, выполнены с выступом, заведенным в последнюю. Маслоулавливающая канавка сообщена со входом регулируемого подпружиненного клапана постоянного перепада, выход из которого сообщен с маслосистемой двигателя. Изобретение позволит повысить эффективность отделения масла от газа и сократить расход масла в двигателе. 2 з.п. ф-лы, 2 ил.

Двухроторный газотурбинный двигатель содержит роторы низкого и высокого давления, установленные с возможностью вращения в неподвижном картере. Ротор низкого давления содержит компрессор и турбину, соединенные валом низкого давления, поддерживаемым передним опорным подшипником, а также первым задним и дополнительным задним опорными подшипниками. Первый задний опорный подшипник и дополнительный задний опорный подшипник поддерживаются выпускным картером неподвижного картера. Ротор высокого давления установлен на переднем и заднем опорных подшипниках ротора высокого давления. Задний опорный подшипник ротора высокого давления является межвальным опорным подшипником, содержащим внутреннюю дорожку, неподвижно соединенную с ротором турбины высокого давления, и наружную дорожку, неподвижно соединенную с валом низкого давления. Изобретение позволяет уменьшить радиальные зазоры на концах лопаток роторов под нагрузкой, возникающей при маневрировании летательного аппарата. 6 з.п. ф-лы, 5 ил.

Турбореактивный двигатель включает в себя вентилятор (2) с входным обтекателем (3) на рабочем колесе (4) и радиально-упорный подшипник (5) с лабиринтными уплотнениями масляной полости (7), а также компрессор низкого давления (8) и компрессор высокого давления (9). С передней стороны лабиринтных уплотнений последовательно расположены кольцевая полость охлаждающего воздуха повышенного давления и кольцевая полость обогревающего воздуха повышенного давления. Кольцевая полость охлаждающего воздуха на выходе через лабиринтные уплотнения соединена с масляной полостью, а на входе - через трубы, расположенные в каналах опоры масляной полости, незамкнутый коллектор и трубу в масляной полости - с периферийной полостью (17) проточной части (18) компрессора низкого давления (8) на его выходе (19). Кольцевая полость обогревающего воздуха соединена на выходе с воздушными полостями (23) входного обтекателя (3), а на входе - через разрыв незамкнутого коллектора и трубу (25) в масляной полости радиально-упорного подшипника вентилятора - с проточной частью (26) на выходе (27) компрессора высокого давления (9). Достигается повышение надежности двигателя за счет противообледенительного обогрева обтекателя вентилятора и повышения эффективности лабиринтного уплотнения масляной полости радиально-упорного подшипника вентилятора. 3 ил.

Газотурбинный двигатель содержит ротор, радиально наружную и внутреннюю статорные части, между которыми проходит воздушный канал компрессора, кольцевой зазор между ротором и радиально внутренней статорной частью, а также выпускной трубопровод. Ротор включает роторную часть подшипника, работающего на текучей среде, а радиально внутренняя статорная часть содержит его статорную часть. Кольцевой зазор образует кольцевой воздушный канал, сообщающийся с воздушным каналом компрессора. В направлении потока воздуха в кольцевом воздушном канале площадь последнего уменьшается в первой части и затем увеличивается во второй части. Впуск выпускного трубопровода для ввода воздуха, прошедшего через вторую часть кольцевого воздушного канала, расположен аксиально между второй частью кольцевого воздушного канала и подшипником, работающим на текучей среде. При эксплуатации указанного выше газотурбинного двигателя вращают ротор относительно радиально наружной и внутренней статорных частей. Пропускают сжатый воздух через воздушный канал компрессора в кольцевой воздушный канал, образованный частью кольцевого зазора между ротором и радиально внутренней статорной частью. Группа изобретений позволяет исключить попадание жидкости из подшипниковой камеры в воздушный канал компрессора. 2 н. и 13 з.п. ф-лы, 2 ил.

Изобретение относится к области авиационного двигателестроения и может быть использовано в качестве суфлера-сепаратора в маслосистемах авиационных газотурбинных двигателей. Оба опорных подшипника размещены по одну сторону крыльчатки со стороны приводного вала и расположены внутри единого установленного концентрично поверх вала стакана, открытая сторона которого развернута в направлении каналов подвода газомасляной смеси, а донышко через образованную в нем кольцевую щель сообщено с корневой частью межлопаточных каналов крыльчатки. Изобретение позволяет повысить надежность работы суфлера и упростить его конструкцию. 3 з.п. ф-лы, 2 ил.

Конструкция для авиационного турбореактивного двигателя содержит подшипник качения, опору подшипника, вкладыш между наружным кольцом подшипника и опорой, а также средства соединения наружного кольца с опорой и средства, обеспечивающие осевое удержание наружного кольца. Средства соединения наружного кольца с опорой содержат крепежный фланец, установленный на опоре, и гибкие соединительные средства, закрепленные на наружном кольце и на крепежном фланце. Средства, обеспечивающие осевое удержание наружного кольца, содержат первые и вторые упорные средства. Первые упорные средства соединены с вкладышем и выполнены с возможностью его осевого удержания относительно опоры в случае разрыва гибких соединительных средств. Вторые упорные средства соединены с вкладышем и выполненные с возможностью осевого удержания наружного кольца относительно вкладыша в случае разрыва гибких соединительных средств. Вторые упорные средства выполнены в виде штифтов, отстоящих в окружном направлении друг от друга и заходящих, каждый, в гнездовое отверстие, выполненное во вкладыше. Штифты содержат радиально внутренний конец, находящийся в кольцевом пазу, выполненным на наружном кольце подшипника и содержащем множество сквозных радиальных проходных отверстий, выходящих в дно кольцевого паза. Каждый из штифтов расположен радиально напротив сплошной части дна кольцевого паза. При монтаже указанной конструкции наружное кольцо вставляют во вкладыш таким образом, чтобы совместить в радиальном направлении каждое из проходных отверстий, выполненных в кольце, с гнездовым отверстием для штифта, выполненным во вкладыше. Штифты вставляют в гнездовые отверстия через проходные отверстия таким образом, чтобы радиально внутренний конец каждого штифта зашел в кольцевой паз наружного кольца. Наружное кольцо поворачивают таким образом, чтобы каждый штифт оказался в радиальном направлении напротив сплошной части дна упомянутого кольцевого паза, и устанавливают крепежный фланец на опору подшипника. Другое изобретение группы относится к авиационному турбореактивному двигателю, содержащему указанную выше конструкцию. Группа изобретений позволяет снизить габариты и массу подшипниковой опоры турбореактивного двигателя. 3 н. и 4 з.п. ф-лы, 10 ил.
Наверх