Аккумулятор теплоты с фазопереходным материалом

Изобретение относится к теплоэнергетике и может быть использовано для аккумулирования тепловой энергии. Сущность изобретения в том, что аккумулятор теплоты с фазопереходным материалом, содержащий корпус, заполненный теплоаккумулирующим материалом с фазовым переходом в зоне рабочих температур, поверхность теплообмена и электронагревательный элемент, содержит промежуточную крышку и приемник солнечного излучения, поверхность теплообмена состоит из вертикальных трубок, расположенных внутри во всем объеме бака-аккумулятора и заполненных материалом с фазовым переходом, и кожухов электронагревательных элементов, установленных в вертикальных трубках, причем теплоноситель проходит снизу вверх по межтрубному пространству, а сверху над промежуточной и герметичной крышкой расположена свободная полость, выполняющая роль камеры для расширения фазопереходного материала из вертикальных трубок, а дно бака-аккумулятора выполнено приемником солнечного излучения. При таком выполнении повышается эффективность аккумулирования тепла и теплообмена с теплоносителем системы за счет увеличения и равномерного расположения площади поверхности теплообмена по всему объему бака-аккумулятора. 4 ил.

 

Изобретение относится к теплоэнергетике и может быть использовано для аккумулирования тепловой энергии, преимущественно солнечной и ветровой.

Известен высокотемпературный аккумуляторный нагреватель [1], содержащий корпус, снабженный со стороны его внутренней поверхности слоем теплоизоляции, в котором соосно корпусу размещен теплоаккумулирующий элемент, снабженный кожухом. Теплоаккумулирующий элемент выполнен в виде блока из параллельных рядов полых цилиндров, заполненных веществом, изменяющим свое агрегатное состояние в интервале рабочих температур, причем цилиндры установлены в овальных отверстиях, выполненных в кожухе, и расположены в каждом ряду параллельно и перпендикулярно относительно цилиндров смежных рядов. Разогрев высокотемпературного аккумуляторного нагревателя может производиться как горячим газом, так и электрическим нагревателем. В первом случае через кожух пропускается горячий газ до тех пор, пока не расплавится вещество, которым заполнены теплоаккумулирующие элементы, после чего разогрев прекращается и производится продувка нагревателя нагреваемым газом. При разогреве аккумуляторного нагревателя с помощью электричества в кожух помещают электронагреватели, тепло от которых расплавляет вещество в теплоаккумулирующих элементах.

Недостатком данного нагревателя является неэффективное использование фазопереходных теплоаккумулирующих материалов для аккумулирования тепла из-за низкой теплопроводности твердых фазопереходных материалов в большом объеме бака и низкого теплообмена с теплоносителем по всему объему и необходимость периодического снятия и установки электронагревателя при разогреве нагревателя с помощью электричества.

Известна установка для осуществления способа работы аккумулятора теплоты на фазовом переходе [2]. Установка состоит из вертикального кожухотрубного теплообменника, имеющего в нижней части входную камеру и трубную доску, в которой укреплены, например, четыре группы трубок, причем последние выходят соответственно в четыре выпускных камеры, каждая из которых имеет на выходе в сеть запорное устройство, соответственно. Между трубной доской и камерой расположено межтрубное пространство. Для четырех групп трубки расположены таким образом, что вокруг каждой из трубок одной группы расположены трубки трех других групп по вершинам правильного шестиугольника.

Недостаток такого устройства и способа теплового аккумулирования на фазовом переходе заключается в том, что теплопередача осуществляется в определенной последовательности, которую трудно осуществлять автоматически, а если вручную, то это не удобно.

Наиболее близким к заявляемому является электронагреватель [3], который содержит корпус, разделенный поперечной перфорированной перегородкой на верхнюю и нижнюю камеры, первая из которых снабжена патрубком подвода нагреваемого теплоносителя, а последняя заполнена теплоаккумулирующим веществом с фазовым переходом в зоне рабочих температур и снабжена электронагревательным элементом. Электронагреватель снабжен дополнительной поперечной перегородкой, размещенной в верхней камере с образованием между дополнительной и перфорированной перегородками полости, объем которой равен разности объемов теплоаккумулирующего вещества в твердом и жидком состоянии при температуре плавления вещества. Электронагревательный элемент одним своим концом (нижним) электрически подключен к поперечной перфорированной перегородке, которая выполнена металлической, а боковые стенки корпуса и теплоаккумулирующее вещество выполнены из электроизоляционного материала. Корпус снизу заглушен герметичной пробкой с резьбовым соединением, и сверху - крышкой. К перегородке подключена контактная клемма. В нижней части корпуса находится вторая контактная клемма. Электронагревательный элемент снабжен центральным металлическим основанием, электрически и механически соединенным с перегородкой. К основанию подключен верхний конец электронагревательного элемента. Электронагреватель снабжен воздушником. Для отвода воды служит патрубок. В отопительную систему электронагреватели могут быть включены как в номинальном своем положении, так и повернутыми на 180° относительно своей горизонтальной оси. Соединение электронагревателей осуществлено трубами с помощью соединительных муфт. Электрическое соединение электронагревателей осуществлено резьбовыми муфтами.

Недостатком данного электронагревателя является сложность конструкции, наличие промежуточной камеры, неэффективный теплообмен между фазопереходным теплоаккумулирующим материалом (ФТАМ) и потребителем (помещением) и невозможность его использования для аккумулирования солнечной тепловой энергии напрямую.

Задача изобретения - обеспечение стабильности теплоснабжения зданий от возобновляемых источников энергии за счет использования энергоемких фазовых переходов материалов и повышения теплообмена.

Технический результат, достигаемый в заявляемом изобретении, заключается в повышении эффективности аккумулирования тепла и теплообмена с теплоносителем системы за счет увеличения и равномерного расположения площади поверхности теплообмена по всему объему бака-аккумулятора и возможности использования ее для аккумулирования солнечной тепловой энергии и электроэнергии от ветроэнергетических устройств.

Для достижения этого технического результата корпус аккумулятора теплоты с фазопереходным материалом дополнительно содержит промежуточную крышку и приемник солнечного излучения, поверхность теплообмена состоит из вертикальных трубок, расположенных внутри во всем объеме бака-аккумулятора и заполненных материалом с фазовым переходом, при этом в вертикальных трубках установлены электронагревательные элементы, причем теплоноситель проходит снизу вверх по межтрубному пространству, а сверху над промежуточной и герметичной крышкой расположена свободная полость, выполняющая роль камеры для расширения фазопереходного материала, а дно бака-аккумулятора выполнено приемником солнечного излучения.

Предлагаемый аккумулятор теплоты с фазопереходным материалом иллюстрирован на фигурах 1-4, где фиг.1 - основной вид аккумулятора теплоты с фазопереходным материалом (продольный разрез), фиг.2 - поперечный разрез А-А, фиг.3 - вид сверху промежуточной крышки бака-аккумулятора и фиг.4 - крепление электронагревателя; где 1 - корпус; 2 - рабочее вещество (фазопереходный теплоаккумулирующий материал - ФТАМ); 3 - вертикальные трубки; 4 - дно бака-аккумулятора - приемник солнечного излучения; 5 - промежуточная крышка; 6 - отверстия для пропуска вертикальных трубок; 7 - отверстия для крепежных болтов; 8 - крепежные болты; 9 - полость-камера для расширения ФТАМ; 10 - герметичная крышка бака-аккумулятора; 11, 12 - патрубки подвода и отвода теплоносителя, соответственно; 13 - электронагревательные элементы; 14 - резьбовая обойма; 15 - перемычки крепления резьбовой обоймы с электронагревательным элементом к вертикальной трубке.

Аккумулятор теплоты с фазопереходным материалом содержит корпус 1, рабочее вещество (ФТАМ) 2, заполняющее вертикальные трубки 3, которые крепятся ко дну 4, которое может служить также и приемником концентрированного солнечного излучения (СИ), и промежуточной крышке 5 с отверстиями 6 для пропуска трубок и 7 для крепежных болтов 8, снизу трубки закрыты, а сверху открыты для объемного расширения ФТАМ 2 в свободную полость-камеру 9 под герметичной крышкой 10, которая через уплотнители крепится к основному корпусу бака-аккумулятора гайками и болтами 8. К корпусу бака-аккумулятора 1 привариваются патрубки подвода 11 и отвода 12 теплоносителя. В вертикальные трубки 3 с ФТАМ вставляются электронагревательные элементы 13, которые соединяются электропроводами к источнику электрической энергии, например ветроэнергетической установке. Электронагревательные элементы 13 вкручиваются в резьбовую обойму 14, которая крепится к вертикальным трубкам 3 с ФТАМ перемычками 15.

Аккумулятор теплоты с фазопереходным материалом работает следующим образом.

Снимают крышку 10 аккумулятора теплоты, и заполняют трубки 3 фазопереходным теплоаккумулирующим материалом 2, и крышку закрывают. Зарядка аккумулятора с фазопереходным материалом теплоты происходит за счет солнечной энергии, направляемой зеркалами на дно 4 бака-аккумулятора - приемника СИ, при этом из-за большой теплопроводности стали трубок 3 и кожуха электронагревательных элементов 13, происходит интенсивное плавление рабочего вещества 2 в них, объемное расширение рабочего вещества происходит в свободную полость-камеру 9 под герметичной крышкой 10. Зарядка может происходить и за счет электрической энергии при подключении источника к электронагревательным элементам 13 в вертикальных трубках 3 с ФТАМ 2, тогда же и греется теплоноситель в межтрубном пространстве бака-аккумулятора, которая подается снизу через патрубок 11 подвода теплоносителя и отводится через патрубок 12 отвода. Если аккумулятор теплоты с фазопереходным материалом используется в традиционных системах теплоснабжения на органическом топливе, рабочее вещество плавится, (аккумулятор заряжается) за счет теплоносителя (горячей воды) в межтрубном пространстве. Во время повышения тепловой нагрузки или отсутствия солнечной энергии аккумулятор разряжается, и теплоноситель в межтрубном пространстве бака-аккумулятора нагревается за счет фазового перехода (кристаллизации) рабочего вещества 2 в трубках 3 равномерно во всем объеме бака-аккумулятора. Кожухи электронагревательных элементов, установленных в вертикальные трубки с ФТАМ, и при отсутствии электрической энергии выполняют роль теплообменников.

Таким образом, предлагаемый аккумулятор теплоты с фазопереходным материалом прост в обслуживании, отличается от известных высокой эффективностью аккумулирования тепла и теплообмена с теплоносителем системы за счет расположения электронагревательных элементов, увеличения и равномерного расположения площади поверхности теплообмена по всему объему бака-аккумулятора.

БИБЛИОГРАФИЧЕСКИЕ ДАННЫЕ

1. Г.И. Бабаянц, П.П. Кузнецов, А.И. Дементьев, В.М. Ярославцев, Г.С. Козак. «Высокотемпературный аккумуляторный нагреватель», авторское свидетельство №857656, F24И 7/00, F28D 17/00, бюл. №31, 23.08.81.

2. Б.З. Токарь, А.А. Плотников, Э.В. Котенко. «Способ работы аккумулятора теплоты на фазовом переходе», авторское свидетельство №RU 2049968 C1, F24H 7/00, 24.02.1992.

3. И.П. Колесниченко, В.В. Фокин. «Электронагреватель», авторское свидетельство № SU 1688071 А1, F24H 7/00, 1/20, бюл. №40, 30.10.91.

Аккумулятор теплоты с фазопереходным материалом, содержащий корпус, заполненный теплоаккумулирующим материалом с фазовым переходом в зоне рабочих температур, поверхность теплообмена, электронагревательный элемент, отличающийся тем, что корпус дополнительно содержит промежуточную крышку и приемник солнечного излучения, поверхность теплообмена состоит из вертикальных трубок, расположенных внутри во всем объеме бака-аккумулятора и заполненных материалом с фазовым переходом, и кожухов электронагревательных элементов, установленных в вертикальных трубках, причем теплоноситель проходит снизу вверх по межтрубному пространству, а сверху над промежуточной и герметичной крышкой расположена свободная полость, выполняющая роль камеры для расширения фазопереходного материала, а дно бака-аккумулятора выполнено приемником солнечного излучения.



 

Похожие патенты:

Изобретение относится к устройству для теплового разделения между кондиционированной средой и по меньшей мере одной внешней средой. Устройство (10) для теплового разделения между кондиционированной средой (11) и по меньшей мере одной внешней средой (12) содержит стенку (13), которая имеет по меньшей мере первую активную слоеобразную область (14), расположенную ближе к кондиционированной среде (11), вторую активную слоеобразную область (15), расположенную ближе к внешней среде (12) относительно первой активной слоеобразной области (14), первую изолирующую слоеобразную область (16), которая расположена между активными слоеобразными областями (14, 15), вторую изолирующую слоеобразную область (17), которая расположена между второй активной слоеобразной областью (15) и внешней средой (12).

Устройство состоит из абсорбционного аммиачного холодильного агрегата, включающего, в частности, термосифон и испаритель. Устройство оснащено параболическим зеркалом, концентрирующим солнечные лучи на термосифоне холодильного агрегата.

Изобретение направлено на повышение прочности и производительности солнечного коллектора. В солнечном коллекторе содержатся два боковых профиля, каждый из которых выполнен в виде вертикальной стенки, имеющей на концах утолщения с направляющими пазами, перпендикулярными стенке, прозрачное ограждение, выполненное из стекла, закрепленного по боковым сторонам в верхних пазах боковых профилей, задняя стенка, закрепленная по боковым сторонам в нижних пазах боковых профилей, абсорбер с трубками для протока теплоносителя, расположенный между стеклом и задней стенкой, тепловая изоляция, размещенная между абсорбером и задней стенкой, причем полости боковых профилей между пазами заполнены боковой тепловой изоляцией.

Изобретение относится к солнечным теплоустановкам и может быть использовано в целях теплоснабжения жилых и производственных помещений и других объектов, а также для иных бытовых и технологических нужд.

Изобретение относится к области гелиотехники и предназначено для энергоснабжения объектов сельскохозяйственного и индивидуального назначения. Фотоэлектрическая тепловая система содержит, по меньшей мере, один солнечный тепловой коллектор, трубопровод подачи жидкости в солнечный тепловой коллектор, трубопровод отвода жидкости из солнечного теплового коллектора в бак-аккумулятор (термос), при этом трубопровод подачи жидкости в солнечный тепловой коллектор соединен, по меньшей мере, с одним фотоэлектрическим тепловым модулем, расположенным уровнем ниже солнечного теплового коллектора и соединенным последовательно с ним, при этом подача жидкости в фотоэлектрический тепловой модуль осуществляется через трубопровод из напорного бака, установленного выше уровня солнечного теплового коллектора, по меньшей мере, в один из трубопроводов вмонтирован соленоидный клапан, имеется, по меньшей мере, одно термореле с индивидуальным для фотоэлектрического теплового модуля или солнечного теплового коллектора датчиком, причем управляющие контакты соленоидного клапана подключены и коммутируются с помощью термореле, при этом солнечный тепловой коллектор и фотоэлектрический тепловой модуль выполнены в виде приемников солнечного излучения, представляющих собой резервуары, которые имеют форму прямоугольного параллелепипеда, а на рабочей поверхности резервуара фотоэлектрического теплового модуля расположена батарея солнечных элементов, внутри резервуаров фотоэлектрического теплового модуля и солнечного теплового коллектора параллельно рабочей поверхности с зазором относительно ее расположена перегородка, не достигающая верхней и нижней стенки резервуара.

Изобретение относится к ветровой энергетике и может быть использовано в сушилках и отоплении промышленных и другого назначения объектов. .

Изобретение относится к гелиотехнике и может быть использовано в системах солнечного теплохладоснабжения. .

Изобретение относится к теплонасосной системе, используемой для отопления или охлаждения зданий, например - обеспечения горячей водой. .

Изобретение относится к способу изготовления абсорбционной панели для солнечных коллекторов из металлической ленты, в частности из алюминия или алюминиевого сплава.

Изобретение относится к энергетике и может быть использовано в аккумуляторах тепловой энергии, произведенной за счет использования электрической энергии в периоды ее наименьшей стоимости по ночным тарифам.

Изобретение относится к области двигателестроения, в частности к устройствам предпусковой тепловой подготовки двигателя внутреннего сгорания (ДВС) при отрицательных температурах окружающей среды.

Изобретение относится к области теплоэнергетики, преимущественно к атомной энергетике, и предназначено для использования на паротурбинных установках атомных электростанций двухконтурного типа с водо-водяными энергетическими реакторами.

Изобретение относится к теплоаккумулирующим материалам и электрическим нагревателям, которые могут быть применены для терморегулирования объекта, в частности на автотранспортной технике для терморегулирования топлива, моторного масла, низкотемпературной жидкости; в пищевой промышленности для хранения ферментов, селективной пастеризации различных субстратов, селективного выращивания различных культур дрожжей.

Изобретение относится к области теплотехники, а именно к устройствам для аккумуляции тепла (холода), и может использоваться для аккумулирования энергии в системах теплоснабжения и кондиционирования.

Изобретение относится к теплотехнике и может быть применено в устройствах для аккумулирования холода и/или тепла. .

Изобретение относится к устройствам для нагрева газового потока с использованием аккумулирования тепловой энергии. .

Изобретение относится к области теплотехники и может быть использовано для повышения процесса теплопередачи в тепловых аккумуляторах с различными теплоаккумулирующими материалами.

Изобретение относится к теплоэнергетике и предназначено для нагревания теплоносителя, а также для длительного аккумулирования энергии, полученной при утилизации тепловых выбросов с изменяющимся температурным режимом или при нетрадиционном теплоснабжении зданий, в частности с использованием солнечного излучения.

Изобретение относится к области теплоэнергетики, преимущественно к атомной энергетике, и предназначено для использования на энергокомплексах, включающих паротурбинные установки атомных электростанций (АЭС) двухконтурного типа. Парогазовая установка на базе АЭС снабжена газопаровым теплообменником, подключенным по греющей стороне к тракту отработавших газов газовой турбины, а по нагреваемой - к паропроводу между цилиндрами паровой турбины параллельно второй ступени паропарового перегревателя, пусковой резервной котельной, расположенной за газоводяным подогревателем и соединенной на входе по греющей стороне с газопроводом отработавших газов, а на выходе - с подогревателем химически очищенной воды, по нагреваемой стороне на входе - с подогревателем химически очищенной воды, на выходе - с сателлитной турбиной. Сателлитная турбина на входе соединена с пусковой резервной котельной, а на выходе - с конденсатором сателлитной турбины. Узлом подготовки стороннего пара, включающим паровую электролизерную, хранилище кислорода, хранилище водорода, компрематор кислорода, компрематор водорода, водородокислородный парогенератор, соединенные на входе с отбором пара из цилиндра высокого давления паровой турбины, а на выходе - с трубопроводом отбора пара из цилиндра высокого давления паровой турбины на первую ступень промежуточного перегрева пара и на смеситель пара, который на входе соединен с пусковой резервной котельной и узлом подготовки стороннего пара, а на выходе - с сателлитной турбиной и паропроводом, замещающим отбор пара из паровой турбины, подогреватель химически очищенной воды, соединенный на входе по греющей стороне с газопроводом отработавших газов, расположенным за пусковой резервной котельной, а на выходе - с дымовой трубой, а по нагреваемой стороне на входе - с трубопроводом химически очищенной воды, на выходе - с пусковой резервной котельной. Технический результат заключается в увеличении мощности и маневренности парогазовой установки. 1 ил.
Наверх