Способ получения электроизоляционного покрытия на поверхности электромагнитопроводящего материала

Изобретение относится к электромашиностроению и касается получения электроизоляционного покрытия на поверхности алюминиевого обмоточного провода электрических машин, работающих в экстремальных условиях воздействия радиационных полей и высоких температур. Способ включает окисление поверхности алюминиевого обмоточного провода при температуре 100-200°С в атмосфере сухого воздуха до образования слоя покрытия толщиной менее 100 нм, который далее обрабатывают суспензией, содержащей однозамещенный фосфат алюминия и тонкоизмельченный оксид алюминия. Причем второй слой покрытия наносят из суспензии, соотношение массовых частей упомянутых ингредиентов в которой составляет 1:0,6, и при температуре 240-250°С, а внешний слой покрытия наносят из суспензии, в которой соотношение массовых частей упомянутых ингредиентов составляет 1:0,4, при температуре 250-300°С. Изобретение позволяет без использования защитной атмосферы или вакуума получить на поверхности алюминиевого обмоточного провода электроизоляционное покрытие с повышенными электрической прочностью и электросопротивлением.

 

Изобретение относится к электромашиностроению и касается способа получения электроизоляционного и жаростойкого покрытия, в частности на поверхности алюминиевого обмоточного провода, используемого для производства электрических машин, работающих в экстремальных условиях воздействия радиационных полей и высоких температур.

Известен способ получения электроизоляционных покрытий на электромагнитопроводящих материалах в виде трансформаторной стали (патент РФ №2463384, МПК С23С 22/74, публ. 10.10.2012 г.), по которому суспензию, содержащую тальк или нефелин, борную кислоту, ортофосфорную кислоту и воду используют для получения покрытия методом окунания или распыления и последующей термообработки при температуре 750-850°С в защитной азотно-водородной атмосфере.

Известное изобретение имеет следующие недостатки:

- из-за значительной концентрации ортофосфорной кислоты произойдет фосфатирование основы (обрабатываемой поверхности) с образованием солей, которые ухудшают свойства покрытия;

- отсутствует операция первичной обработки поверхности трансформаторной стали, что уменьшает адгезионное сцепление покрытия с основой;

- необходимость применения азотно-водородной атмосферы;

- необходимость использования высокотемпературного оборудования;

- недостаточная электрическая прочность и электросопротивление.

В качестве прототипа выбрано техническое решение по авт.свид. СССР №157587, опубликованное 03.10.1963 г., бюл. №18.

В способе-прототипе электромагнитопроводящий материал в виде трансформаторной стали предварительно окисляют, далее обрабатывают окисью магния или составами, содержащими окись магния, при температурах, превышающих 1100°С, покрывают фосфатными растворами при температуре 500-600°С. С целью повышения пластических свойств сырого покрытия, адгезии его к металлу и улучшения стеклообразования, к технической окиси магния добавляют каолин, валостонит, только циркон или окись циркония, двуокись титана, глинозем. Для получения фосфатного покрытия используют 40-50% водный раствор фосфорной кислоты или ее смеси с водными растворами фосфата аммония, однозамещенных фосфатов магния или алюминия.

Недостатками данного известного изобретения являются следующие:

- наличие высокотемпературной обработки и, соответственно, необходимость использования стойкого оборудования;

- использование концентрированного нагретого до 500-600°С раствора ортофосфорной кислоты, ведущее к образованию кислых солей, что ухудшает свойства покрытия;

- недостаточная электрическая прочность и электросопротивление покрытия;

- необходимость обработки в азоте или в вакууме. Вышеописанные недостатки исключены благодаря совокупности существенных признаков заявляемого технического решения.

Заявляемый способ получения электроизоляционного покрытия на поверхности алюминиевого обмоточного провода включает окисление поверхности алюминиевого обмоточного провода и последующую обработку суспензией, содержащей тонкоизмельченный оксид алюминия и однозамещенный фосфат алюминия при повышенной температуре.

Способ получения электроизоляционного покрытия на поверхности алюминиевого обмоточного провода электрических машин включает окисление поверхности провода при температуре 100-200°С в атмосфере сухого воздуха до образования слоя покрытия толщиной менее 100 нм, который далее обрабатывают суспензией, содержащей однозамещенный фосфат алюминия и тонкоизмельченный оксид алюминия, при этом второй слой покрытия наносят из суспензии, соотношение массовых частей упомянутых ингредиентов в которой составляет 1:0,6, и при температуре 240-250°С, а внешний слой покрытия наносят из суспензии, в которой соотношение массовых частей упомянутых ингредиентов составляет 1:0,4, при температуре 250-300°С.

Способ характеризуется тем, что окисление поверхности алюминиевого обмоточного провода проводят до образования слоя покрытия толщиной менее 100 нм (до образования нанослоя), при этом второй слой покрытия наносят из суспензии, соотношение массовых частей упомянутых ингредиентов в которой составляет 1:0,6, при температуре 240-250°С, а внешний слой покрытия наносят из суспензии, в которой соотношение массовых частей упомянутых ингредиентов составляет 1:0,4, при температуре 250-300°С.

Задачами способа получения электроизоляционного покрытия на поверхности алюминиевого обмоточного провода являются:

- повысить электрическую прочность и электросопротивление покрытия;

- исключить использование концентрированного раствора ортофосфорной кислоты;

- исключить из состава покрытия многокомпонентные добавки;

- исключить использование защитной атмосферы или вакуума для получения покрытия.

Указанные задачи решаются тем, что предварительное окисление поверхности алюминиевого обмоточного провода создает покрытие толщиной до 100 нм, которое обладает высокими адгезионными свойствами к основе и пластичностью. Дальнейшие (последующие) слои имеют в составе оксид алюминия и раствор однозамещенного фосфата алюминия с переменным соотношением ингредиентов и температурой обработки, повышающейся по мере увеличения числа слоев в покрытии до 250-300°С.

Совокупность признаков заявляемого технического решения - способа получения электроизоляционного покрытия на поверхности алюминиевого обмоточного провода - имеет отличие от прототипа, не следует явным образом из изученного уровня техники, поэтому авторы считают, что способ является новым и имеет изобретательский уровень.

Способ получения электроизоляционного покрытия позволяет улучшить качество покрытия и сделать его пригодным для защиты алюминиевых обмоточных проводов электрических машин и упростить технологию получения алюминиевых обмоточных проводов с неорганическим покрытием.

Способ получения электроизоляционного покрытия осуществляют следующим образом.

Алюминиевый обмоточный провод подвергают окислению при температуре 100-200°С в атмосфере сухого воздуха в течение суток. Толщина окисленного слоя покрытия не более 100 нм, что определяет высокие адгезионные и пластические характеристики первичного электроизоляционного слоя покрытия. Дальнейшие слои покрытия наносят методом протира и кисти суспензии, с переменным содержанием однозамещенного фосфата алюминия и оксида алюминия крупностью менее 0,5 µ. Однозамещенный фосфат алюминия имел массовые доли P2O5 - 39%, Al2O3 - 16% с плотностью 1,5 г/см.

Во втором слое покрытия соотношение однозамещенного фосфата алюминия и оксида алюминия в массовых частях составляет 1:0,6. Толщина слоя покрытия составляет 4-6 µ после термообработки при 240-250°С в атмосфере сухого воздуха.

В третьем слое покрытия соотношение однозамещенного фосфата алюминия и оксида алюминия составляет 1:0,4. Толщина слоя 4-6 µ после термообработки при 250-300°С. Термообработку ведут также в атмосфере сухого воздуха после укладки алюминиевого обмоточного провода в катушку статора.

В результате электроизоляционное покрытие имело сопротивление 1013·1015 Ом·м и электрическую прочность 70 В/м.

Способ получения электроизоляционного покрытия на поверхности алюминиевого обмоточного провода электрических машин, включающий окисление поверхности алюминиевого обмоточного провода при температуре 100-200°С в атмосфере сухого воздуха до образования слоя покрытия толщиной менее 100 нм, который далее обрабатывают суспензией, содержащей однозамещенный фосфат алюминия и тонкоизмельченный оксид алюминия, при этом второй слой покрытия наносят из суспензии, соотношение массовых частей упомянутых ингредиентов в которой составляет 1:0,6, и при температуре 240-250°С, а внешний слой покрытия наносят из суспензии, в которой соотношение массовых частей упомянутых ингредиентов составляет 1:0,4, при температуре 250-300°С.



 

Похожие патенты:

Изобретение относится к области поверхностной обработки материалов и может быть использовано для повышения коррозионной стойкости сталей в окислительных (кислород, воздух, водяной пар) средах.

Изобретение относится к области металлургии. Для повышения коррозионной стойкости стального листового изделия и обеспечения хорошей свариваемости осуществляют предварительное покрытие стальной полосы или листа алюминием, или алюминиевым сплавом, резку указанной стального листа или полосы с предварительным покрытием для получения стальной заготовки с предварительным покрытием, нагрев заготовки в предварительно нагретой печи до температуры и в течение времени согласно диаграмме в соответствии с толщиной заготовки при средней скорости нагрева Vc в температурном диапазоне от 20 до 700°C, составляющей от 4 до 12°C/с и при скорости нагрева Vc' в температурном диапазоне от 500 до 700°C, составляющей от 1,5 до 6°C/с, затем перемещение указанной нагретой заготовки к штамповочному прессу, горячую штамповку нагретой заготовки в штамповочном прессе для получения горячештампованного стального листового изделия, охлаждение нагретой заготовки от температуры на выходе из печи до температуры 400°C при средней скорости охлаждения, по меньшей мере, 30°C/с.

Изобретение относится к обработке металлической поверхности, позволяющей получить металлические детали, обладающие улучшенными коррозионной стойкостью и усталостными свойствами.

Изобретение относится к получению хорошо видимого нехроматного конверсионного покрытия на поверхностях магния и магниевых сплавов, к предназначенной для этого композиции и к использованию изделий с таким покрытием.

Изобретение относится к образованию конверсионного или пассивирующего покрытия на металлической поверхности. .

Изобретение относится к обработке стальных деталей перед фосфатной химической конверсионной обработкой. .

Изобретение относится к композиции для нанесения на металлический субстрат. Композиция содержит носитель, источник перманганат-аниона и ингибитор коррозии, содержащий катион металла, включающий ион редкоземельного металла, ион щелочного металла, ион щелочноземельного металла и/или ион переходного металла, присутствующий в количестве от 0,0008 до 0,004 мас.% в расчете на массу композиции. Также предложены изделие, содержащее металлический субстрат с нанесенной композицией, и варианты способа обработки металлического субстрата, включающего нанесение композиции на субстрат с получением обработанной перманганатом поверхности субстрата. Изобретение позволяет получить на поверхности металлического субстрата покрытие, обеспечивающее коррозионную стойкость и содействующее предотвращению или уменьшению окисления и деградации металла. 4 н. и 21 з.п. ф-лы, 3 табл.

Изобретение относится к способу покрытия металлических форм из сплавов для производства шин транспортных средств типа Al-Mg и Al-Si. В способе форму обезжиривают и протравливают в ванне с рН от 11,0 до 12,5 при температуре от 50 до 70°С в течение 1-2 мин, промывают в деминерализованной воде при температуре от 20 до 30°С, затем погружают в ванну с жидким циркониевым пассивирующим средством с рН от 4,8 до 5,2 при температуре от 25 до 30°С на 2-3 мин, затем вновь промывают в деминерализованной воде при температуре от 20 до 30°С, сушат при температуре от 110 до 115°С в течение 20-25 мин. Далее формируют окончательное покрытие в ванне с водной дисперсией политетрафторэтилена с рН от 7,5 до 8,5 при температуре от 60 до 65°С на протяжении 15-16 мин, покрытие обжигают при температуре от 100 до 105°С на протяжении 30-40 мин. Изобретение обеспечивает увеличение числа циклов изготовления шин без необходимости очистки рабочей поверхности упомянутой формы для производства шин. 3 з.п. ф-лы, 3 ил.

Изобретение относится к нанесению полимерного покрытия на стальную поверхность. Способ включает подготовку стальной поверхности, нанесение полимерного слоя путем окунания поверхности в ванну с водным раствором олигомера и отверждение нанесенного полимерного слоя. При подготовке поверхности осуществляют удаление окисленных пленок и обезжиривание. Отверждение полимерного защитного покрытия осуществляют при комнатной температуре, при этом в качестве олигомера используют N-октофторпентилзамещенный олигокапроамид. Изобретение позволяет получить защитное покрытие, повышающее гидрофобные и антикоррозионные свойства стальной поверхности. 1 табл., 3 пр.

Изобретение относится к изготовлению ленты из алюминиевого сплава. Лента из алюминиевого сплава изготовлена путем горячей и/или холодной прокатки и состоит из алюминиевого сплава типа АА 5182, АА 6ххх или АА 8ххх, причем готовая, прошедшая прокатку лента из алюминиевого сплава после обезжиривания демонстрирует увеличение величины L* яркости (ΔL) по сравнению с необезжиренным состоянием более чем 5 при цветовом измерении поверхности в цветовом пространстве CIE L*a*b* при использовании стандартного источника света D65 и при угле наблюдения 10° с исключением прямых отражений в геометрии 45°/0°, которое достигается путем обезжиривания с использованием щелочного травильного раствора и последующей кислой промывки ленты из алюминиевого сплава. Предложенные ленты из алюминиевого сплава отличаются отчетливо улучшенной поверхностной оптикой с отчетливым визуальным восприятием более светлой поверхности по сравнению с обычными лентами из алюминиевого сплава, состоящими из того же алюминиевого сплава. 3 н. и 10 з.п. ф-лы, 3 ил., 1 табл.
Изобретение относится к химической обработке поверхности металла, в частности прецизионных магнитомягких сплавов типа пермаллой, для получения фосфатного электроизоляционного покрытия толщиной 8-15 мкм. Первый вариант способа включает нанесение на поверхность сплава типа пермаллой гальванического цинкового покрытия из цинкатного электролита, содержащего ZnO – 6-14 г/дм3 и NaOH – 80-140 г/дм3, при плотности тока 3-4 А/дм2, отношении анодной и катодной поверхности 1:2 и температуре 15-30°C в течение 5-7 мин. После этого на слой цинка наносят фосфатный слой при температуре 95-98°C в течение 2-3 минут раствором, содержащим, г/дм3: P2O5 – 7,4-9,8, Mn2+ – 2,1-2,8, Zn2+ – 11,0-13,0, NO3- – 21,0-25,0, NO2- – 0,3-0,5. Во втором варианте способа на поверхность сплава наносят гальваническое цинковое покрытие из цианистого электролита, содержащего ZnO – 15-45 г/дм3, NaCN – 30-120 г/дм3, NaOH – 35-100 г/дм3, при плотности тока 1-5 А/дм2, отношении анодной и катодной поверхности 1:1 и температуре 15-30°C в течение 14-17 мин, после чего наносят фосфатный слой по первому варианту. Техническим результатом является получение плотной, мелкокристаллической однородной фосфатной пленки толщиной 8-15 мкм, имеющей величину пробивного напряжения не ниже 70 В. 2 н. и 2 з.п. ф-лы, 2 пр.

Изобретение относится к обработке подложки перед фосфатированием. Предложена активирующая жидкость для промывки при обработке подложки, содержащая первый компонент, включающий дисперсию частиц фосфатов двухвалентных или трехвалентных металлов, имеющих средний размер частиц не больше чем 10 мкм, и второй компонент, включающий первый и второй сополимеры. Первый сополимер получают полимеризацией этиленоксида, пропиленоксида или их комбинаций, в которой один конец первого сополимера завершается аминной группой, гидроксильной группой или алкильной группой. Второй сополимер получают полимеризацией стирола и второго мономера, содержащего, по меньшей мере, одну карбоксильную группу, ангидридную группу или их комбинации. Второй мономер присутствует в количестве меньше чем 50 мас.%, в расчете на общий вес второго компонента. Также предложены способы обработки подложки активирующей жидкостью для промывки, и подложки, обработанные активирующей жидкостью для промывки. Изобретение обеспечивает получение активирующая жидкость в виде устойчивой дисперсии, способствующей образованию фосфатного слоя, обеспечивающему коррозионную стойкость и/или усиливающему адгезию нанесенных впоследствии покрытий. 3 н. и 17 з.п. ф-лы, 2 табл., 7 пр.
Изобретение относится к композициям, предназначенным для нанесения на металлический субстрат и обеспечивающим очищение металла без формирования травильного шлама, а также эффективное увеличение адгезии к последующим слоям покрытия. Предложенные композиции содержат водный носитель, гидроксидный анион, фосфатный анион, азольное соединение или ингибитор коррозии, содержащий азольное соединение и по меньшей мере одно из группы, состоящей из ионов редкоземельных металлов, ионов щелочноземельных металлов, иона Li, иона K, иона Rb, иона Cs, иона Fr и/или ионов переходных металлов. Причем первая из указанных вариантов композиции не содержит анионов, отличных от гидроксидного и фосфатного, а вторая не содержит дополнительных компонентов, оказывающих значимое влияние на коррозионную стойкость металлического субстрата. Также предложены композиция, содержащая водный носитель, гидроксидный анион, фосфатный анион, азольное соединение, поливинилпирролидон и аллантоин, и композиция, состоящая из водного носителя, гидроксидного аниона в количестве от 0,05 до 25 г/1000 г раствора, фосфатного аниона и ингибитора коррозии, содержащего ион Li. 8 н. и 13 з.п. ф-лы.

Изобретение относится к способу покрытия металлических форм из сплавов для производства шин транспортных средств типа Al-Mg и Al-Si. В способе форму обезжиривают и протравливают в ванне с рН от 11,0 до 12,5 при температуре от 50 до 70°С в течение 1-2 мин, промывают в деминерализованной воде при температуре от 20 до 30°С, затем погружают в ванну с жидким циркониевым пассивирующим средством с рН от 4,8 до 5,2 при температуре от 25 до 30°С на 2-3 мин, затем вновь промывают в деминерализованной воде при температуре от 20 до 30°С, сушат при температуре от 110 до 115°С в течение 20-25 мин. Далее формируют окончательное покрытие в ванне с водной дисперсией политетрафторэтилена с рН от 7,5 до 8,5 при температуре от 60 до 65°С на протяжении 15-16 мин, покрытие обжигают при температуре от 100 до 105°С на протяжении 30-40 мин. Изобретение обеспечивает увеличение числа циклов изготовления шин без необходимости очистки рабочей поверхности упомянутой формы для производства шин. 3 з.п. ф-лы, 3 ил.
Наверх