Способ получения покрытия на алюминиевых сплавах

Изобретение относится к области нанесения покрытий на алюминий или его сплавы путем плазменного электролитического оксидирования. Способ включает нанесение на алюминиевый сплав оксидного покрытия путем плазменного электролитического оксидирования в водном электролите при наложении переменного тока эффективной плотностью 5-60 А/дм2, при этом дополнительно проводят модифицирующую обработку поверхности алюминиевого сплава в водном растворе, содержащем, г/л: азотную кислоту 450-500 и фтористый натрий 45-50, после чего проводят плазменное электролитическое оксидирование при наложении переменного тока, сформированного последовательностями из анодного и катодного импульсов с временным интервалом между последовательностями, при этом продолжительность каждого импульса составляет 100-250 микросекунд, а длительность временного интервала составляет не менее суммарной продолжительности анодного и катодного импульсов, при этом водный электролит имеет следующий состав, г/л: тетраборат натрия 10-водный 20-50, гидроокись натрия 1-4, натрий молибденовокислый 0,5-2, борная кислота 5-15. Технический результат - получение на высоколегированных алюминиевых сплавах равномерного по толщине износостойкого оксидного покрытия, обладающего повышенными защитными свойствами, на котором поверхностный слой оксида алюминия либо отсутствует, либо обладает малой толщиной, снижение шероховатости поверхности и сокращение трудозатрат на механическое снятие поверхностного слоя. 1 з.п. ф-лы, 1 табл., 5 пр.

 

Изобретение относится к области нанесения покрытий на алюминий или его сплавы путем плазменного электролитического оксидирования и может найти применение в машиностроении, авиастроении, приборостроении и автомобилестроении.

Известен способ получения тонкослойного керамического покрытия на алюминиевом сплаве, заключающийся в том, что формирование покрытия осуществляют путем наложения анодно-катодного тока на алюминиевый сплав, погруженный в электролит, при соотношении величины токов Ik/Ia=1,0-1,15 в течение 90-240 минут. Обработку проводят в два этапа. Первый этап включает в себя обработку в электролите, содержащем 2-6 г/л щелочи, 2-5 г/л жидкого стекла и 0,5-2 г/л смеси порошков оксида кремния и оксида алюминия в соотношении 70% и 30%. Второй этап включает в себя обработку в электролите, содержащем 1-3 г/л щелочи и 1-3 г/л жидкого стекла (RU 2010114977 А, 20.10.2011).

Недостатком данного способа является низкая защитная способность формируемых покрытий на алюминиевом сплаве. Необходимость использования специализированных устройств во время нанесения покрытия, таких как ультразвуковая мешалка для диспергирования порошков оксида алюминия и оксида кремния, существенно ухудшает условия труда на производстве.

Известен способ получения плазменного электролитического оксидного покрытия на алюминии и алюминиевых сплавах, включающий оксидирование при анодно-катодном токовом режиме, частоте 50-60 Гц в водном растворе электролита при температуре от 15 до 50°C. В начальной стадии процесса оксидирование осуществляют при плотности тока 160-180 А/дм2, а затем плотность тока снижают до 3-30 А/дм2 и процесс продолжают до достижения необходимой толщины покрытия. В качестве электролита используют водный раствор гидроокиси щелочного металла 1-5 г/л, силикат щелочного металла 2-15 г/л, пирофосфат щелочного металла 2-20 мл/л и 30%-ную перекись водорода 2-7 г/л (ЕР 1050606 А1, 08.11.2000).

Недостатком данного способа являются высокие энергозатраты для достижения начальной плотности тока, что приводит к удорожанию процесса нанесения покрытия на алюминиевые сплавы. Присутствие в электролите перекиси водорода требует частой корректировки электролита, что приводит к лишним финансовым и трудозатратам.

Наиболее близким аналогом является способ получения покрытия на алюминиевых сплавах путем плазменного электролитического оксидирования при наложении переменного тока с продолжительностью импульсов от 0,0033 до 0,4 секунды либо на переменном токе промышленной частоты при эффективной плотности тока 5-100 А/дм2, при соотношении продолжительности анодного и катодного импульсов 5:1-0,5:1. Соотношение значений анодной и катодной плотности тока составляет 4:1-0,4:1, в водном растворе электролита, содержащем боратсодержащие соединения, при следующем соотношении компонентов, г/л:

Гидроокись калия - 1-4 и борная кислота - 5-12;

либо тетраборат калия 4-водный - 5-50;

либо тетраборат натрия 10-водный - 10-60;

либо тетраборат калия 4-водный - 5-50 и гидроокись калия - 1-15;

либо тетраборат натрия 10-водного - 10-60 и гидроокись калия - 1-15;

причем электролит может дополнительно содержать алюминат натрия - 0,5-10 и/или полифосфат натрия - 0,5-10 (RU 2263164 С1, 27.10.2005).

Недостатком известного способа является то, что на оксидном покрытии образуется толстый (от 10 до 40 мкм) и рыхлый поверхностный слой оксида алюминия, который необходимо снимать механическим путем, что влечет высокие затраты времени и энергии на механическую обработку особенно для изделий сложной конфигурации. Кроме того, получаемые покрытия не позволяют в полной мере защитить высоколегированные алюминиевые сплавы от возникновения коррозионных поражений.

Техническим результатом заявленного способа является получение на высоколегированных алюминиевых сплавах равномерного по толщине износостойкого оксидного покрытия, обладающего повышенными защитными свойствами, на котором поверхностный слой оксида алюминия либо отсутствует, либо обладает малой толщиной. Техническим результатом также является снижение шероховатости поверхности и сокращение трудозатрат на механическое снятие поверхностного слоя. Повышение защитных свойств покрытий позволяет увеличить срок службы деталей из алюминиевых сплавов и повысить надежность конструкций.

Технический результат достигается за счет того, что предложен способ получения покрытия на алюминиевом сплаве, в котором на алюминиевый сплав наносят оксидное покрытие путем плазменного электролитического оксидирования в водном электролите при наложении переменного тока эффективной плотностью 5-60 А/дм2, при этом дополнительно проводят модифицирующую обработку поверхности алюминиевого сплава в водном растворе азотной кислоты и фтористого натрия при следующем соотношении компонентов, г/л:

азотная кислота 450-500
фтористый натрий 45-50,

после чего проводят плазменное электролитическое оксидирование при наложении переменного тока, сформированного последовательностями из анодного и катодного импульсов с временным интервалом между последовательностями, при этом продолжительность каждого импульса составляет 100-250 микросекунд, а длительность временного интервала составляет не менее суммарной продолжительности анодного и катодного импульсов, при этом водный электролит имеет следующий состав, г/л:

тетраборат натрия 10-водный 20-50
гидроокись натрия 1-4
натрий молибденовокислый 0,5-2
борная кислота 5-15

Для получения оксидного покрытия с наилучшими защитными свойствами электролит может дополнительно содержать 2-5 г/л натрия фосфорнокислого двузамещенного.

Раствор модифицирования поверхности готовят путем растворения исходных компонентов при непрерывном перемешивании с помощью механической мешалки и выдерживают приготовленный раствор в течение 30 минут.

Электролит для плазменного оксидирования готовят путем растворения исходных компонентов при непрерывном перемешивании с помощью механической мешалки и выдерживают приготовленный раствор в течение 60 минут.

Охлаждение электролита в процессе нанесения покрытия осуществляют с помощью теплообменника, выполненного в виде змеевика из стекла и охлаждаемого проточной водой.

Модифицирующая обработка поверхности в растворе 450-500 г/л азотной кислоты и 45-50 г/л фтористого натрия позволяет получить более равномерное оксидное покрытие за счет стравливания нежелательных интерметалидных соединений меди и кремния с поверхности высоколегированных алюминиевых сплавов, а также за счет модифицирования поверхности ионами фтора.

После модифицирования поверхности образцы промывают и сушат на воздухе.

Проведение электролитического оксидирования при наложении переменного тока эффективной плотностью 5-60 А/дм2, сформированного последовательностями из анодного и катодного импульсов с временным интервалом между последовательностями, в присутствии соединений бора в электролите позволяет формировать композиционную гетерооксидную структуру покрытия с повышенной износостойкостью. Продолжительность каждого импульса при этом должна составлять 100-250 микросекунд, а длительность временного интервала - не менее суммарной продолжительности анодного и катодного импульсов.

В начале процесса электролитического оксидирования во время подачи импульсов поверхность алюминиевого сплава нагревается до температуры порядка 1200°C. В случае отсутствия временного интервала между анодно-катодными импульсами температура поверхности продолжает повышаться, что в конечном итоге приводит к подгоранию покрытия. В этой связи для формируемого покрытия возникает необходимость после подачи анодно-катодного импульса наличия паузы с продолжительностью не менее суммарной продолжительности анодного и катодного импульсов.

Время оксидирования задается из расчета толщины покрытия, которую необходимо получить.

Введение в предлагаемый электролит плазменого оксидирования гидроокиси натрия увеличивает рассеивающую способность электролита, что позволяет обрабатывать детали сложной конфигурации, получая на них равномерное по толщине оксидное покрытие.

Введение в электролит натрия молибденовокислого и натрия фосфорнокислого двузамещенного, образующих в процессе формирования покрытия комплексные соединения, позволяет за счет их ингибирующего действия повысить защитные свойства покрытия.

В качестве катода используют пластину из нержавеющей стали или любого другого инертного металла, площадь которой желательно, чтобы была на порядок больше обрабатываемого образца.

После плазменного оксидирования образцы промывают водой и сушат на воздухе.

Пример 1.

Образец из алюминиевого сплава 1933 (состав, мас. %: Zn 6,35-7,2, Mg 1,6-2,2, Cu 0,8-1,2, Zr 0,1-0,18, Ti 0,03-0,06; прочие примеси менее 1, Al - остальное) размером 50×50×5 мм пердварительно подвергали модифицирующей обработке в водном растворе, содержащем 450 г/л азотной кислоты и 50 г/л фтористого натрия. Затем его промывали в воде и подвергали плазменному электролитическому оксидированию при плотности тока 25 А/дм2 и длительности импульсов 100 микросекунд в водном электролите, содержащем 50 г/л тетрабората натрия 10-водного, 1 г/л гидроокиси натрия, 0,5 г/л натрия молибденовокислого и 5 г/л борной кислоты.

Толщину покрытия измеряли на поперечном шлифе с помощью металлографического микроскопа OLYMPUS GX51F.

Измерение шероховатости поверхности образца с покрытием проводили на приборе TR200.

Исследование защитных свойств полученного на алюминиевых сплавах покрытия проводили в камере солевого тумана Votsch VSC-1000 по ГОСТ 9.905.

Исследования износостойкости проводили на машине трения И-47 при сопряжении вида, сухого торцевого трения с площадью контакта 2,5 см2. В качестве пары трения использовали неподвижный образец из алюминиевого сплава с оксидным покрытием и вращающийся образец из стали 30ХГСА. Испытания проводили со скоростью 500 об/мин при давлении на образец 10 кгс в течение 4-х часов.

Оценку микротвердости алюминиевых сплавов с покрытием производили на поперечных шлифах путем определения величины площади отпечатка внедряемого индентора при заданной постоянной нагрузке равной 50H. В качестве индентора применялась четырехгранная алмазная пирамида с углом при вершине равным 136°.

Характеристики полученного покрытия приведены в таблице.

Пример 2.

Образец из алюминиевого сплава (состав, мас. %: Zn 6,35-7,2, Mg 1,6-2,2, Cu 0,8-1,2, Zr 0,1-0,18, Ti 0,03-0,06; прочие примеси менее 1, Al - остальное) размером 50×50×5 мм предварительно подвергали модифицирующей обработке в водном растворе, содержащем 500 г/л азотной кислоты и 45 г/л фтористого натрия. Затем его промывали в воде и подвергали плазменному электролитическому оксидированию при плотности тока 50 А/дм2 и длительности импульсов 250 микросекунд в водном электролите, содержащем 25 г/л тетрабората натрия 10-водного, 4 г/л гидроокиси натрия, 0,5 г/л натрия молибденовокислого и 15 г/л борной кислоты.

Пример 3.

Образец из алюминиевого сплава АК6 (состав, мас. %: Cu 1,8-2,6, Mg 0,4-0,8, Mn 0,4-0,8, Si 0,7-1,2, прочие примеси менее 1, Al - остальное) размером 50×50×5 мм предварительно подвергали модифицирующей обработке в водном растворе, содержащем 450 г/л азотной кислоты и 50 г/л фтористого натрия. Затем его промывали в воде и подвергали плазменному электролитическому оксидированию при плотности тока 15 А/дм2 и длительности импульсов 250 микросекунд в водном электролите, содержащем 30 г/л тетрабората натрия 10-водного, 1 г/л гидроокиси натрия, 1 г/л натрия молибденовокислого и 5 г/л борной кислоты.

Пример 4.

Образец из алюминиевого сплава АК6 (состав, мас. %: Cu 1,8-2,6, Mg 0,4-0,8, Mn 0,4-0,8, Si 0,7-1,2, прочие примеси менее 1, Al - остальное) размером 50×50×5 мм предварительно подвергали модифицирующей обработке в водном растворе, содержащем 450 г/л азотной кислоты и 50 г/л фтористого натрия. Затем его промывали в воде и подвергали плазменному электролитическому оксидированию при плотности тока 40 А/дм2 и длительности импульсов 200 микросекунд в водном электролите, содержащем 30 г/л тетрабората натрия 10-водного, 1 г/л гидроокиси натрия, 1 г/л натрия молибденовокислого, 5 г/л борной кислоты и 3 г/л натрия фосфорнокислого двухзамещенного.

Пример 5.

Образец из алюминиевого сплава АК6 (состав, мас. %: Cu 1,8-2,6, Mg 0,4-0,8, Mn 0,4-0,8, Si 0,7-1,2, прочие примеси менее 1, Al - остальное) размером 50×50×5 мм предварительно подвергали модифицирующей обработке в водном растворе, содержащем 450 г/л азотной кислоты и 45 г/л фтористого натрия. Затем его промывали в воде и подвергали плазменному электролитическому оксидированию при плотности тока 25 А/дм2 и длительности импульсов 250 микросекунд в водном электролите, содержащем 30 г/л тетрабората натрия 10-водного, 1 г/л гидроокиси натрия, 2 г/л натрия молибденовокислого, 5 г/л борной кислоты и 1 г/л натрия фосфорнокислого двухзамещенного.

* Испытания на износостойкость покрытия, полученного предложенным способом, проводили на машине трения И-47 при сопряжении вида сухого торцевого трения с площадью контакта 2,5 см2. Испытания на износостойкость покрытия, полученного способом-прототипом, проводили с помощью установки, в которой образец с нанесенным покрытием совершал возвратно-поступательное движение 30,7 раз в минуту с шагом 1 см под торцом вольфрамовой проволоки диаметром 0,1 см. Давление на образец составляло 8,7 МПа. Покрытие, полученное способом-прототипом, не протиралось за время испытания, составившее 2 часа.

Учитывая, что микротвердость покрытия, полученного предложенным способом, повысилась по сравнению с покрытием, полученным по прототипу, а прочие свойства не снизились, можно сделать вывод, что его износостойкость превосходит износостойкость покрытия по прототипу.

Таким образом, предложенный способ позволяет получить на поверхности высоколегированных алюминиевых сплавов методом плазменного электролитического оксидирования равномерное по толщине износостойкое покрытие с малой толщиной поверхностного слоя оксида алюминия (до 10 мкм) и низкой шероховатостью поверхности, что позволяет сократить трудозатраты за счет сокращения или исключения механической обработки.

1. Способ получения покрытия на алюминиевом сплаве, включающий нанесение оксидного покрытия на алюминиевый сплав путем плазменного электролитического оксидирования в водном электролите при наложении переменного тока эффективной плотностью 5-60 А/дм2, отличающийся тем, что дополнительно проводят модифицирующую обработку поверхности алюминиевого сплава в водном растворе азотной кислоты и фтористого натрия при следующем соотношении компонентов, г/л:

азотная кислота 450-500
фтористый натрий 45-50,

после чего проводят плазменное электролитическое оксидирование при наложении переменного тока, сформированного последовательностями из анодного и катодного импульсов с временным интервалом между последовательностями, причем продолжительность каждого импульса составляет 100-250 микросекунд, а длительность временного интервала составляет не менее суммарной продолжительности анодного и катодного импульсов, при этом водный электролит имеет следующий состав, г/л:
тетраборат натрия 10-водный 20-50
гидроокись натрия 1-4
натрий молибденовокислый 0,5-2
борная кислота 5-15

2. Способ по п. 1, отличающийся тем, что электролит дополнительно содержит 0,5-3 г/л натрия фосфорнокислого двузамещенного.



 

Похожие патенты:

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и других отраслях промышленности. .
Изобретение относится к электрохимическому формированию оксидных износостойких покрытий на алюминии и его сплавах. .

Изобретение относится к области цветной металлургии и может быть использовано в авиационной, машиностроительной и судостроительной промышленности. .
Изобретение относится к области двигателестроения, а именно к технологии упрочнения седел клапанов методом микродугового оксидирования, и может быть использовано для упрочнения седел клапанов двигателей внутреннего сгорания из алюминиевого сплава.
Изобретение относится к способу восстановления и упрочнения изношенных стальных деталей и направлено на восстановление ресурса деталей и повышение эффективности и надежности их последующей эксплуатации и может быть использовано в машиностроительной, металлургической и других отраслях промышленности.

Изобретение относится к области гальванотехники и может быть использовано для создания пар трения, стойких к изнашиванию. .

Изобретение относится к области нанотехнологии и наноэлектроники, в частности к получению пористых наноматериалов. .

Изобретение относится к электрохимической обработке поверхности металлов и сплавов для формирования на их поверхности коррозионно-, тепло- и износостойких покрытий и придания им защитных диэлектрических и декоративных свойств и может быть использовано в машиностроении, радиоэлектронике, химической промышленности, медицине, авиации.
Изобретение относится к электрохимической обработке изделий из алюминия и его сплавов, а именно к плазменно-электролитическому оксидированию, и может быть использовано в различных отраслях машиностроения и приборостроения.

Изобретение относится к области машиностроения и может быть использовано для повышения эксплуатационных свойств поверхностей изделий из алюминиевых, в том числе алюминиево-кремниевых сплавов.

Изобретение относится к электрохимической технологии формирования износостойких, диэлектрических, антикоррозионных и декоративных оксидных или оксидно-керамических покрытий на изделиях из алюминиевых сплавах, в частности для нанесения неорганических покрытий на детали, используемые в авиационной, машиностроительной, химической и строительной отраслях промышленности. Способ включает микродуговое оксидирование детали в щелочно-силикатном электролите при плотностях переменного тока от 8 до 40 А/дм2 микродугового оксидирования, при этом в электролит дополнительно вводят гексацианоферрат щелочного металла и гексаметафосфат щелочного металла при следующих содержаниях компонентов, г/л: щелочь 1-4, гесацианоферрат щелочного металла 5-10; гексаметафосфат щелочного металла 2-4, техническое жидкое стекло с содержанием cтжс=15/m ± 0,25, где m - модуль технического жидкого стекла, при этом после пропускания электричества через один литр электролита в количестве 7,5-8,5 А·ч в него добавляют гексацианоферрат щелочного металла в количестве cд, определяемом из соотношения cд=0,13·cг, где cг и cд - исходное и добавленное содержание гексацианоферрата щелочного металла в щелочно-силикатном электролите, при этом процесс микродугового оксидирования продолжают после окончания роста покрытия и прекращения горения микродуговых разрядов в течение времени τп, которое устанавливают по соотношению: τп=6000/(|i|·|t|)±1, мин, где |i|, |t| - абсолютные значения плотности заданного переменного тока в А/дм2 и температура электролита в °C соответственно. Технический результат - повышение равномерности покрытия по толщине, повышение коррозионной стойкости, адгезии, твердости покрытия и длительности работоспособности электролита при использовании простой установки и высокой производительности процесса. 3 з.п. ф-лы, 2 пр.
Изобретение относится к области формирования защитных антифрикционных износостойких покрытий на деталях из алюминия и его сплавов или на деталях с покрытием из алюминия и его сплавов. Способ включает микродуговое оксидирование детали в электролите, содержащем щелочь 1-4 г/л, жидкое стекло 3-12 г/л и дистиллированную воду - до 1 л, при последовательном чередовании положительных и отрицательных импульсов напряжения с частотой наложения импульсов 50 Гц переменного тока, при этом поверхность детали подвергают несквозной перфорации путем формирования на ней углублений в шахматном порядке диаметром 0,3-0,6 мм, глубиной 0,5-1,3 мм, на расстоянии 0,3-0,6 мм друг от друга, после чего осуществляют микродуговое оксидирование детали в электролите в течение 3-6 ч. Технический результат: повышение надежности и долговечности работы детали. 3 пр.
Изобретение относится к области гальванотехники и может быть использовано в авиастроении и других отраслях промышленности. Способ включает нанесение защитного оксидного покрытия на деталь в растворе электролита в два этапа, при этом нанесение покрытия проводят импульсным током в режиме микродугового оксидирования в электролите, содержащем карбонат натрия и дистиллированную воду. На первом этапе осуществляют подъем напряжения до 250 В в течение 5 минут, а на втором этапе выдерживают максимальное значение напряжения 250 В в течение 15 минут. Технический результат - повышение усталостной долговечности алюминиевых сплавов, повышение экологичности за счет применения при оксидировании водного раствора карбоната натрия, являющегося менее агрессивным, и сокращение подготовительных мероприятий промывки, осветления и травления. 1 пр.

Изобретение относится к области получения износостойких и коррозионно-стойких покрытий на изделиях из алюминия и его сплавов. Способ характеризуется тем, что изделие подвергают микродуговому оксидированию в анодно-катодном режиме при плотности тока 7-7,5 А/дм2 и соотношении анодного и катодного токов 1,0:0,9 в течение 70-75 мин в щелочном электролите, содержащем водные растворы гидроксида натрия и силиката натрия концентрацией 3,5-4 и 11,5-12 г/л соответственно, шлифуют до параметра шероховатости Ra 0,8-1,6, очищают от минеральных и органических загрязнений, пропитывают в ультразвуковой ванне в течение 10-13 мин суспензией политетрафторэтилена Ф-4Д, сушат и термически обрабатывают при температурах 40-50 и 290-300°С в течение 10-12 и 60-62 мин соответственно. Техническим результатом является повышение износостойкости и антифрикционных свойств покрытий. 3 ил., 1 табл., 1 пр.

Изобретение относится к области гальванотехники и может быть использовано в области электронной промышленности. Способ включает формирование анодным окислением алюминиевого образца слоя пористого анодного оксида, который удаляют селективно по отношению к алюминию, формирование анодным окислением алюминия основного слоя пористого анодного оксида алюминия, отличающийся тем, что формирование удаляемого и основного слоев проводят в гальваностатическом режиме при постоянной температуре 5-10°C и плотности тока 5-15 мА/см2 в электролите следующего состава, г/л: ортофосфорная кислота 58,8-176,0, янтарная кислота 4-6, молибдат аммония 1-4, глицерин 1-3. Технический результат заключается в повышении твердости пористого анодного оксида алюминия и упрощении процесса анодного окисления. 1 табл.
Наверх