Визуализация перфузии

Изобретение относится к медицинской технике, а именно к способам и устройствам визуализации перфузии. Способ включает определение двух зависящих от энергии компонент на основе проекционных данных от двух спектральных сканирований, не основанных на агенте. Первое из двух спектральных сканирований выполняют при первом напряжении эмиссии, а второе - при втором напряжении эмиссии. Первое и второе напряжения эмиссии различны. Далее определяют две зависящие от энергии компоненты и компоненту, основанную на агенте, на основе двух зависящих от энергии компонент. Посредством устройства разложения разлагают проекционные данные временного ряда, основанные на агенте, для объекта на одну компоненту, основанную на агенте, на основе двух зависящих от энергии компонент. Разложение осуществляют на основе проекционных данных временного ряда, основанных на агенте двух зависящих от энергии компонент. Устройство разложения проекционных данных содержит устройство разложения временного ряда, определяющее проекционные данные, основанные на агенте с использованием двух зависящих от энергии компонент. Устройство визуализации также включает компьютерно-читаемый носитель, содержащий инструкции, которые побуждают компьютер выполнять операции способа визуализации перфузии. Использование изобретения позволяет уменьшить артефакты увеличения жесткости пучка. 3 н. и 8 з.п. ф-лы, 3 ил.

 

Нижеследующее в общем относится к визуализации перфузии и находит конкретное применение в компьютерно-томографической перфузии (КТП). Однако оно также доступно для других применений для медицинской визуализации и для применений для немедицинской визуализации.

Визуализация методом компьютерно-томографической перфузии (КТП) предоставляет информацию, которая может быть использована для облегчения диагностирования пациентов с нарушением перфузии головного мозга, таких как пациенты с инсультом. В качестве примера, временной ряд изображений, полученных при таком сканировании, можно использовать для определения ишемической ткани и/или различения между необратимо поврежденной тканью (некротическая ткань или сердцевина инфаркта) и потенциально обратимо поврежденной тканью (ткань с повышенным риском или пенумбра инфаркта), например, у пациентов с инсультом.

Типичная процедура КТП включает в себя введение контрастного агента, и затем через несколько секунд после введения пациента сканируют в течение предварительно определенного интервала времени, и формируется временная серия изображений для интересующей области из собранных данных. Параметры перфузии извлекают из временного ряда изображений. Для этого подхода предполагается, что концентрация контрастного материала линейно зависит от улучшения контрастности на изображениях, т.е. от увеличения КТ-чисел над исходным уровнем.

Для вычисления региональных количественных параметров, таких как региональные мозговой кровоток (rCBF) и объем мозгового кровотока (rCBV), региональное улучшение контрастности сравнивают с улучшением контрастности в контрольной области (например, кровоснабжающей артерии). К сожалению, это может привести к ошибочным результатам, поскольку реконструированные изображения искажаются артефактами увеличения жесткости пучка; для реконструкции изображения в стандартных КТ-сканерах делается упрощающее предположение, что для получения изображений применяется моноэнергетический источник рентгеновского излучения, что не так в случае клинического КТ-сканера, и данное упрощение может приводить к артефактам увеличения жесткости пучка.

Артефакты увеличения жесткости пучка могут приводить к тому, что область однородной ткани на изображении выглядит неоднородной, особенно если вокруг данной области расположен значительный объем кости. На улучшение контрастности артефакт увеличения жесткости пучка также влияет. Например, артефакт увеличения жесткости пучка может приводить к тому, что улучшение контрастности выглядит неоднородным в области, в которой концентрация контрастного материала постоянна.

Аспекты настоящей заявки затрагивают вышеуказанные и другие вопросы.

В соответствии с одним аспектом, способ включает в себя разложение с помощью средства разложения основанных на агенте проекционных данных временного ряда для объекта или субъекта на по меньшей мере основанную на агенте компоненту.

В соответствии с другим аспектом средство разложения проекционных данных включает в себя средство разложения временного ряда, которое определяет основанные на агенте проекционные данные на основании основанных на агенте проекционных данных временного ряда на основании по меньшей мере двух зависящих от энергии компонент.

В соответствии с другим аспектом компьютерно-читаемый носитель информации, содержащий инструкции, которые, при выполнении компьютером, вынуждают компьютер выполнять этап определения основанной на агенте компоненты, основанных на агенте проекционных данных временного ряда с использованием по меньшей мере двух компонент основанной на агенте проекции временного ряда.

Изобретение может принимать форму различных компонент и расположений компонент и различных этапов и расположений этапов. Чертежи даны только для иллюстрирования предпочтительных вариантов осуществления и не должны рассматриваться как ограничивающие настоящее изобретение.

Фиг. 1 изображает примерную систему визуализации.

Фиг. 2 изображает примерное средство разложения проекционных данных.

Фиг. 3 изображает примерный способ.

Фиг. 1 изображает компьютерный томографический (КТ) сканер 100, который включает в себя неподвижный гентри 102 и вращающийся гентри 104, который поддерживается неподвижным гентри 102 с возможностью вращения. Вращающийся гентри 104 вращается вокруг исследуемой области 106 вокруг продольной оси или оси z.

Источник 110 излучения, такой как рентгеновская трубка, поддерживается вращающимся гентри 104 и вращается вместе с ним вокруг исследуемой области 106. Источник 110 излучения испускает излучение, а коллиматор коллимирует испущенное излучение и производит, как правило, веерный, клиновидный или конический пучок излучения, который пересекает исследуемую область 106.

Контроллер 112 источника излучения управляет средним напряжением эмиссии источника 110 излучения. В показанном варианте осуществления контроллер напряжения источника 112 излучения может переключать напряжение эмиссии между по меньшей мере двумя различными напряжениями. Это позволяет использовать систему 100 для многоэнергетических сборов, при которых источник 110 излучения образует первый пучок излучения с первым энергетическим спектром для первого сканирования и n-й пучок излучения с n-м другим энергетическим спектром для n-го второго сканирования.

Чувствительная к излучению матрица 114 детекторов также поддерживается вращающимся гентри 104 и стягивает дугу напротив источника 110 излучения напротив исследуемой области 106. Матрица 114 детекторов обнаруживает излучение, которое пересекает исследуемую область 106, и образует указывающие на него проекционные данные. Проекционные данные могут быть сохранены в запоминающем средстве 116.

Процессор или средство 118 разложения проекционных данных раскладывает проекционные данные на различные зависящие от энергии компоненты. Как более подробно описано ниже, в одном случае средство 118 разложения раскладывает проекционные данные на по меньшей мере две компоненты, такие как фотоэлектрическая и комптоновская компоненты, и для процедуры, основанной на агенте визуализации, средство 118 разложения может раскладывать проекционные данные на фотоэлектрическую, комптоновскую и связанную с введенным агентом компоненты.

Средство 120 реконструирования реконструирует одну или более из разложенных зависящих от энергии компонент (фотоэлектрическая, комптоновская и/или компонента введенного агента) и/или их комбинацию и формирует волюметрические данные изображения, указывающие на исследуемую область 106, включая область интереса объекта или субъекта, находящегося там. Это позволяет формировать основанные на агенте волюметрические данные изображения (например, данные изображения без анатомических структур), которые могут быть использованы для формирования количественной карты агента для временного ряда изображений. Артефакт увеличения жесткости пучка также может быть уменьшен или подавлен, поскольку зависимость от энергии известна.

Инжектор 122 сконфигурирован для введения одного или более веществ или агентов (например, контрастных агентов и т.д.) в объект или субъект для сканирования. Альтернативно, вещество может быть вручную введено клиницистом.

Компьютерная система 124 общего назначения служит в качестве консоли оператора. Резидентная часть программного обеспечения, установленного на консоли 124, предоставляет оператору возможность управлять работой системы 100, включая выбор протокола, основанного на агенте сканирования, который включает в себя два или более не основанных на агенте сборов при разных энергиях и один или более основанных на агенте временных рядов или сборов перфузии.

Опора 126 для пациента, такая как стол, поддерживает пациента во время сканирования.

Фиг. 2 изображает пример средства 118 разложения проекционных данных.

Первое или средство 202 спектрального разложения спектрально раскладывает проекционные данные от матрицы 114 детекторов. В показанном варианте осуществления средство 202 спектрального разложения спектрально раскладывает проекционные данные, полученные посредством по меньшей мере двух различных сканирований или сборов данных, выполненных с двумя различными эмиссионными напряжениями. Средство 202 спектрального разложения одновременно раскладывает зависящие от энергии проекционные данные на фотоэлектрическую и комптоновскую компоненты.

В одном случае средство 202 спектрального разложения спектрально раскладывает проекционные данные на основании уравнения 1:

Уравнение 1:

где MkVp представляет собой зависящее от энергии значение измерения интенсивности, RkVp представляет собой эмиссионный спектр, A1 представляет собой линейные интегралы для фотоэлектрического эффекта и A2 представляет собой линейные интегралы для эффекта Комптона. Для того чтобы определить A1 и A2, используют по меньшей мере два зависящих от энергии значения измерения интенсивности (MkVp1 и MkVp2).

Второе средство 204 разложения или средство 204 разложения временного ряда раскладывает основанные на агенте проекционные данные временного ряда, используя зависящие от энергии компоненты от вышеописанного спектрального разложения не основанных на агенте проекционных данных. Например, средство 204 разложения временного ряда может разложить основанные на агенте проекционные данные временного ряда для любого момента времени временного ряда с учетом A1 и A2, для того чтобы определить основанную на агенте компоненту в этот момент времени.

В одном случае средство 204 разложения временного ряда раскладывает основанные на агенте проекционные данные временного ряда, для того чтобы определить основанную на агенте компоненту на основании уравнения 2:

Уравнение 2:

где MkVp(ti) представляет собой зависящее от энергии значение измерения интенсивности в момент времени ti временного ряда, CA(ti) представляет собой линейный интеграл агента в момент времени ti, и fCA(E) представляет собой зависящее от энергии поглощение агента. A1 и A2 соответственно представляют собой линейные интегралы для фотоэлектрического эффекта и эффекта Комптона, как описано выше.

Средство 204 разложения временного ряда определяет CA(ti) из уравнения 2 с помощью A1 и A2, которые определены из уравнения 1. В одном случае A1 и A2 сначала определяют и затем используют, для того чтобы определить CA(ti). В другом случае A1, A2 и CA(ti) определяют одновременно. Напряжение эмиссии сбора данных временного ряда может быть тем же самым, что и при спектральном сборе данных, или иным.

Фиг. 3 изображает способ получения основанных на агенте проекционных данных из основанных на агенте проекционных данных временного ряда.

На этапе 302 выполняют первое не основанное на агенте сканирование интересующей области объекта или субъекта с первым напряжением эмиссии. На этапе 304 выполняют второе не основанное на агенте сканирование интересующей области со вторым другим напряжением эмиссии. Оба из вышеуказанных сканирований выполняют до введения агента, и их можно рассматривать как исходные сканирования.

В качестве не ограничивающего примера, одно из сканирований выполняют с напряжением эмиссии в диапазоне приблизительно 120-160 киловольт (кВ), таким как приблизительно 140 кВ, а другое сканирование выполняют с напряжением эмиссии в диапазоне приблизительно 60-100 киловольт (кВ), таким как приблизительно 80 кВ. Вышеуказанные диапазоны приведены с иллюстративной целью и не являются ограничивающими.

На этапе 306 выполняют основанное на агенте перфузионное сканирование временного ряда. Это может включать в себя введение агента, такого как контрастный агент, пациенту и затем после предварительно определенной задержки непрерывное сканирование интересующей области объекта или субъекта в течение предварительно определенного периода времени.

На этапе 308 определяют основанные на агенте проекционные данные, такие как основанная на агенте компонента для проекционных данных временного ряда на основании проекционных данных от двух не основанных на агенте сканирований. Основанные на агенте проекционные данные можно определить на основании уравнений 1 и 2, как описано более подробно выше, или иным образом.

На этапе 310 получают основанные на агенте волюметрические данные изображения из основанных на агенте проекционных данных. Основанные на агенте волюметрические данные изображения предоставляют количественные данные об агенте для сканирования временного ряда.

В одном случае основанные на агенте волюметрические данные изображения применяют, для того чтобы сформировать основанные на агенте изображения для сканирования временного ряда. Такие изображения можно показывать с помощью дисплея консоли 124 или другого вычислительного средства или пленки. Основанные на агенте изображения выделяют ткань с контрастным усилением, в то же время ослабляя или визуально подавляя ткань без контрастного усиления. Как отмечено выше, такие изображения можно использовать, для того чтобы получить количественную карту для агента для временного ряда, а из нее можно определить различные параметры, такие как мозговой кровоток (CBF) и объем мозгового кровотока (CBV) и т.д.

Вышеописанное можно реализовать в виде машиночитаемых инструкций, которые, когда выполняются компьютерным(и) процессором(ами), вынуждают процессоры(ы) выполнять действия, описанные в настоящем описании. В таком случае инструкции сохраняют на компьютерно-читаемом носителе информации, таком как память, связанная с соответствующим компьютером, и/или иным образом доступная ему.

Изобретение описано здесь со ссылкой на различные варианты осуществления. После прочтения настоящего описания кому-то могут прийти на ум модификации и изменения. Следует понимать, что настоящее изобретение следует интерпретировать как включающее в себя все такие модификации и изменения в той мере, в которой они попадают под объем формулы изобретения или ее эквивалентов.

1. Способ визуализации перфузии, содержащий:
определение по меньшей мере двух зависящих от энергии компонент на основе проекционных данных от по меньшей мере двух спектральных сканирований, не основанных на агенте, причем первое из упомянутых по меньшей мере двух спектральных сканирований выполняют при первом напряжении эмиссии, а второе из упомянутых по меньшей мере двух спектральных сканирований выполняют при втором напряжении эмиссии, причем первое и второе напряжения эмиссии различны; и затем определение указанных по меньшей мере двух зависящих от энергии компонент и компоненты, основанной на агенте, на основе упомянутых по меньшей мере двух зависящих от энергии компонент, и
разложение посредством устройства (118) разложения проекционных данных временного ряда, основанных на агенте, для объекта или субъекта на по меньшей мере одну компоненту, основанную на агенте, на основе упомянутых по меньшей мере двух зависящих от энергии компонент, причем разложение осуществляют на основе проекционных данных временного ряда, основанных на агенте, по меньшей мере двух зависящих от энергии компонент.

2. Способ по п. 1, дополнительно содержащий реконструкцию компоненты, основанной на агенте, для формирования волюметрических данных изображения, основанного на агенте, характеризующего объект или субъект.

3. Способ по п. 2, при этом объемные данные изображения, основанного на агенте, предоставляют собой количественные данные об агенте для проекционных данных временного ряда для агента.

4. Способ по п. 1, в котором упомянутые по меньшей мере две зависящие от энергии компоненты включают в себя фотоэлектрическую компоненту и комптоновскую компоненту.

5. Способ по п. 1, дополнительно содержащий одновременное определение упомянутых по меньшей мере двух зависящих от энергии компонент и основанной на агенте компоненты.

6. Компьютерный томографический сканер (100) для визуализации перфузии, содержащий
контроллер (112) источника излучения, сконфигурированный для переключения напряжения эмиссии между двумя различными напряжениями, для обеспечения многоэнергетических сборов,
инжектор (122), сконфигурированный для введения одного или более агентов в объект для сканирования,
чувствительную к излучению матрицу (114) детекторов, сконфигурированную для обнаружения излучения исходного сканирования до введения агента при первом и втором напряжении эмиссии, обнаружения излучения после введения агента и формирования основанных на агенте проекционных данных из основанных на агенте проекционных данных временного ряда;
процессор (118), сконфигурированный для определения проекционных данных, основанных на агенте, на основе проекционных данных временного ряда, основанных на агенте, используя по меньшей мере две зависящие от энергии компоненты для процедур основанной на агенте визуализации.

7. Компьютерный томографический сканер (100) по п. 6, в котором процессор (118) дополнительно сконфигурирован для определения упомянутых по меньшей мере двух зависящих от энергии компонент на основе проекционных данных, не основанных на агенте, из по меньшей мере двух сборов данных, выполненных с использованием двух различных эмиссионных напряжений.

8. Компьютерный томографический сканер (100) по любому из пп. 6 или 7, в котором упомянутые по меньшей мере две зависящие от энергии компоненты включают в себя фотоэлектрическую компоненту и комптоновскую компоненту.

9. Компьютерный томографический сканер (100) по любому из пп. 6 или 7, в котором проекционные данные, основанные на агенте, используются для реконструирования и получения волюметрических данных изображения, основанных на агенте.

10. Компьютерный томографический сканер (100) по п. 9, в котором объемные данные изображения, основанные на агенте, предоставляют количественную карту распределения агента.

11. Компьютерно-читаемый носитель информации, содержащий инструкции, которые, при выполнении компьютером, побуждают компьютер выполнять операции способа визуализации перфузии, заключающиеся в:
определении по меньшей мере двух зависящих от энергии компонент на основе проекционных данных от по меньшей мере двух спектральных сканирований, не основанных на агенте, причем первое из упомянутых по меньшей мере двух спектральных сканирований выполняют при первом напряжении эмиссии, а второе из упомянутых по меньшей мере двух спектральных сканирований выполняют при втором напряжении эмиссии, причем первое и второе напряжения эмиссии различны; и затем определении указанных по меньшей мере двух зависящих от энергии компонент и компоненты, основанной на агенте, на основе упомянутых по меньшей мере двух зависящих от энергии компонент, и
разложении посредством устройства (118) разложения проекционных данных временного ряда, основанных на агенте, для объекта или субъекта на по меньшей мере одну компоненту, основанную на агенте, на основе упомянутых по меньшей мере двух зависящих от энергии компонент, причем разложение осуществляют на основе проекционных данных временного ряда, основанных на агенте, по меньшей мере двух зависящих от энергии компонент.



 

Похожие патенты:
Изобретение относится к медицине, онкологии и может применяться для ранней диагностики опухолей позвонков. Проводят трехступенчатую диагностику всем больным с опухолевыми заболеваниями различной локализации.

Изобретение относится к медицине и может быть использовано для достоверной оценки уровня поражения, степени деформации тел позвонков и снижения их высоты у пациентов с воспалительными заболеваниями позвоночника, такими как остеомиелит, туберкулез.

Изобретение относится к медицинской технике, а именно к оптическим когерентным томографическим аппаратам. Аппарат содержит сканирующий модуль, вторую линзу, модуль разветвления оптического пути, разделяющий модуль, фокусирующую линзу для расположения между упомянутым разделяющим модулем и упомянутым сканирующим модулем на оптическом пути измерительного света и для регулировки сопряженного соотношения между упомянутым глазным дном и упомянутым источником света.

Изобретение относится к медицине и может быть использовано для диагностики гиперинфляции легких. Способ включает определение превышения экспираторной воздухонаполненности легких путем анализа данных компьютерной томографии, выполненной в экспираторную фазу дыхания, с построением трехмерных моделей в денситометрическом диапазоне от -850 HU и ниже и измерением параметров экспираторной воздухонаполненности правого (ЭВП) и левого легкого (ЭВЛ) в вокселях (vox).

Изобретение относится к средствам реконструкции изображения. Техническим результатом является компенсация размытия изображения при его реконструкции.

Изобретение относится к области формирования медицинских изображений. Техническим результатом является обеспечение динамического сглаживания обнаруженных проекционных данных больших градиентов.

Группа изобретений относится к медицинской технике, а именно к системам и способам ядерной медицинской визуализации. Система ядерной медицинской визуализации, в которой применяются модули детектора излучения с пикселизированными сцинтилляционными кристаллами, включает в себя детектор рассеяния, выполненный с возможностью обнаружения и маркирования, обнаруженных рассеянных и нерассеянных событий излучения, сохраняемых в памяти в режиме списка.

Изобретение относится к обработке медицинских изображений. Техническим результатом является повышение точности оценки движения интересующей ткани.

Изобретение относится к визуализации перфузии. Техническим результатом является уменьшение взаимодействия с пользователем, а также увеличение скорости обработки данных визуализации перфузии.

Изобретение относится к медицине, травматологии, ортопедии, касается изучения плотности корковой пластинки диафиза длинных костей у больных с заболеваниями и повреждениями опорно-двигательной системы, а также контроля состояния корковой пластинки в процессе дистракционного остеосинтеза.

Изобретение относится к медицине, сосудистой хирургии, лучевой диагностике. Проводят мультиспиральную компьютерную томографию-флебографию нижних конечностей при варикозной болезни вен, для чего катетеризируют подкожные вены стопы исследуемой нижней конечности с введением в них неионной рентгенконтрастной смеси. Выполняют сканирование с последующим созданием трехмерного изображения вен с помощью автоматических протоколов объемного рендеринга, заложенных в мультиспиральном компьютерном томографе. При этом сканирование выполняют последовательно в две ступени, где первую ступень сканирования запускают на 20-й секунде от введения рентгенконтрастной смеси, с 30-секундной задержкой дыхания пациентом, а вторую степень сканирования - на 60-й секунде при свободном дыхании пациента. При этом первое сканирование направлено от стопы к тазовой области, а второе - от тазовой области к стопе. Способ обеспечивает повышение эффективности диагностики анатомии венозной сети нижних конечностей за счет облегчения интерпретации полученных результатов исследования, визуализации, улучшения качества 3D-реконструкции изображения вен при достаточном и равномерном заполнении венозного русла нижней конечности рентгенконтрастом. 1 ил., 1 пр.

Изобретение относится к области медицины, а именно к хирургической стоматологии, и предназначено для использования при выполнении челюстно-лицевых операций. Последовательно выполняют конусно-лучевую объемную томографию челюстно-лицевой области. На созданную 3D-компьютерную модель черепа наносят скелетные и мягко-тканные цефалометрические точки. По их совокупности осуществляют 3D-цефалометрический анализ костных и мягких тканей. При этом в перечень цефалометрических точек включают Basion (Ва) и ряд других стандартных точек. Дополнительно к ним включают три скелетные точки в правой части черепа: Tuber (Tub) R - точку в области сочленения правого бугра верхней челюсти с крыловидным отростком на уровне 1 мм выше небного корня последнего моляра (при отсутствии моляра самая задняя точка в области дна верхнечелюстного синуса), Alare (Al) R - наиболее латеральную точку в области апертуры носа справа на уровне точки ANS, Palatinum (Pal) R - точку в области передней стенки правого отверстия большого небного канала, расположенного на нижней поверхности горизонтальной пластинки небной кости. Также в перечень цефалометрических точек включают аналогичные вышеуказанным три скелетные точки в левой части черепа. Способ позволяет упростить и снизить трудоемкость планирования ортогнатической хирургической операции, повысить качество операции. 2 ил., 2 табл., 3 пр.

Изобретение относится к медицине, а именно к хирургической онкологии и радионуклидной диагностике, и может использоваться при биопсии сигнальных лимфоузлов (СЛУ) у больных раком молочной железы. Способ проводят с помощью оптической навигационной системы с внутриопухолевым введением меченого коллоидного радиофармпрепарата (РФП), для чего через 3-5 мин после введения РФП производят динамическое сцинтиграфическое исследование подмышечных, парастернальных, над- и подключичных лимфоузлов со стороны локализации опухоли молочной железы. Причем повторяют его в течение 20-30 мин с интервалом 5-10 мин. Выявляют момент появления первого лимфоузла, накапливающего РФП, и рассматривают его в качестве СЛУ. В момент появления сцинтиграфического изображения СЛУ на кожные покровы больной накладывают 4-5 маркеров меток, которые используют при регистрации навигационной системы и располагают: первый маркер - в районе головки плечевой кости, второй - по lin. ах. anterior так, чтобы он не мешал при выполнении биопсии, но при этом был доступен для регистрации перед началом операции, третий - у основания рукоятки грудины, четвертый - на 3-5 см ниже третьего. В случае фиксации пятого маркера его положение жестко не регламентируют. Одновременно устанавливают топографию СЛУ с помощью ОФЭКТ-КТ - эмиссионной компьютерной томографии с последующей рентгеновской компьютерной томографией. При невозможности экспорта объемных зон интереса на ОФЭКТ-КТ изображениях устанавливают топографию СЛУ по отношению к прилегающим анатомическим структурам и полученную информацию переносят в оптическую навигационную систему для идентификации и точного нахождения СЛУ при выполнении биопсии. Способ позволяет идентифицировать истинный СЛУ, определить его точную топографию и с помощью оптической навигационной системы произвести его удаление, избежав неоправданного удаления лимфоузлов второго и третьего порядка. 1 ил., 1 пр.

Изобретение относится к системам визуализации медицинских данных. Техническим результатом является повышение точности реконструкции изображения всего визуализируемого объекта, за счет осуществления реконструкции изображения объекта, полученного посредством сбора данных визуализации от детектора, смещенного от центра вращения. Предложен способ формирования медицинского изображения объекта с использованием медицинского устройства визуализации, содержащего детектор. Способ содержит этап, на котором сдвигают детектор в течение сбора данных визуализации, начиная от первого смещенного положения, в котором детектор смещен от центра вращения и охватывает приблизительно первую половину ширины объекта, так чтобы детектор находился во втором смещенном положении в заключение сбора данных, причем второе смещенное положение отличается от первого смещенного положения. Причем во втором смещенном положении детектор смещен от центра вращения и охватывает, в основном, оставшуюся половину ширины объекта, которая не была охвачена детектором в первом смещенном положении. Далее, согласно способу, собирают данные визуализации с помощью детектора и реконструируют их для получения реконструированного изображения объекта. 2 н. и 6 з.п. ф-лы, 22 ил.

Изобретение относится к медицинской технике, а именно к средствам получения диагностической информации. Устройство содержит модуль получения данных части анатомической структуры человека, модуль планирования, задающий со ссылкой на пространственное положение и ориентацию примерной анатомической структуры последовательность этапов сканирования, пользовательский интерфейс для настройки параметров формирования изображения на выбранном этапе сканирования. Пользовательский интерфейс отображает для каждого этапа выбранной последовательности этапов сканирования заранее заданные параметры сканирования, относящиеся к примерной анатомической структуре, и сконфигурирован с возможностью пользовательского выбора действительных параметров формирования изображения со ссылкой на трехмерный обследованный объем действительной анатомической структуры. Способ получения диагностической информации заключается в использовании устройства. Использование изобретения позволяет облегчить планирование для пользователей. 2 н. и 10 з.п. ф-лы, 2 ил.
Изобретение относится к медицине, а именно к неврологии. Проводят нейровизуализационное исследование головного мозга, определяют коэффициент коморбидности Cirs и коэффициент коморбидности Kaplan-Feinstein, выявляют кохлеовестибулярный синдром, глазодвигательные расстройства, тип сахарного диабета. Рассчитывают значение дискриминантной функции (D). При значении D больше нуля диагностируют последствия ишемического мозгового инстульта (ИМИ), перенесенного с гипергомоцистеинемией (ГГ), при D меньше нуля - последствия ИМИ, перенесенного без ГГ. Способ позволяет повысить достоверность диагностики последствий ИМИ, что достигается за счет комплексного анализа указанных выше показателей. 2 пр.

Изобретение относится к устройствам для компьютерной томографии без гентри. Установка КТ содержит туннель сканирования, стационарный источник рентгеновских лучей, расположенный вокруг туннеля сканирования и содержащий множество фокусных пятен, испускающих излучение, и множество стационарных модулей детектора, расположенных вокруг туннеля сканирования напротив источника рентгеновского излучения. Одна часть модулей из множества модулей детектора расположена в первом направлении, а вторая часть модулей из множества модулей детектора расположена во втором направлении, и схема расположения этих частей модулей детектора имеет L-образную форму. Первое направление образует прямую линию, формируемую путем соединения центральных точек поверхностей приема пучков излучения одной части модулей детектора. Второе направление образует вторую прямую линию, формируемую путем соединения центральных точек поверхностей приема пучков излучения другой части модулей детектора, которые пересекаются в некоторой точке, если рассматривать в плоскости, пересекающей туннель сканирования. Поверхности приема пучков излучения одной части модулей детектора наклонены относительно первого направления и обращены в сторону источника рентгеновского излучения, а поверхности приема пучков излучения другой части модулей детектора наклонены относительно второго направления и обращены в сторону источника рентгеновского излучения. Стационарная установка КТ без гентри по настоящему изобретению имеет небольшие размеры и высокую точность идентификации данных. 17 з.п. ф-лы, 3 ил.

Изобретение относится к медицине, медицинской радиологии и может быть применено для оценки всасывательной функции тонкой кишки с использованием динамической абсорбционной энтеросцинтиграфии с зондовым способом введения 99mTc-пертехнетата. Способ включает введение в тонкую кишку через назоэнтеральный зонд 99mTc-пертехнетата из расчета 1,0-14 МБк/кг, разведенного до объема 20 мл физиологическим раствором. Сразу после этого проводят динамическую сцинтиграфию с помощью двухдетекторной ротационной гамма-камеры в течение 60 мин с установкой детектора гамма-камеры над проекцией кишечника и печени. По итогам исследования рассчитывают коэффициент всасывания радиофармпрепарата (К), после чего сцинтиграфию продолжают в режиме «Все тело», по итогам которой определяют процент абсорбированного из просвета кишки радиофармпрепарата (А). При показателе коэффициента всасывания менее 3 и абсорбции менее 50% введенного радиофармпрепарата определяют нарушение всасывательной способности тонкой кишки. При этом К определяют по сцинтиграмме с наиболее четким изображением печени, на которой в области печени выделяют зону интереса размером 100 pxls и формируют кривую «активность-время». Рассчитывают К как тангенс угла наклона кривой к оси абсцисс, используя первые 4 минуты линейного подъема кривой по формуле: К=(y2-y1)/(t2-t1)×60, где К - коэффициент всасывания, t1 и t2 - временные интервалы в секундах, y1 - количество импульсов во временном интервале t1, y2 - количество импульсов во временном интервале t2. Для расчета А на сцинтиграмме выделяют область, включающую все тело пациента, и область с захватом визуализирующихся петель тонкой кишки. Расчет производят по формуле: А=(n(т)-n(к))/n(т)×100%, где n(т) - общий счет импульсов, зафиксированный с области всего тела; n(к) - общий счет импульсов, зафиксированный с области тонкой кишки. Способ обеспечивает высокую информативность исследования за счет комплексного анализа параметров функции тонкой кишки в ранние сроки после операций. 2 з.п. ф-лы, 3 ил., 1 пр.
Изобретение относится к медицине, гепатопанкреатобилиарной хирургии и абдоминальной рентгенорадиологии. Проводят введение рентгеноконтрастного препарата в кровеносное русло и мультиспиральную компьютерно-томографическую МСКТ-артериографию с одномоментной возвратной мультиспиральной компьютерно-томографической МСКТ-портографией. Одновременно выполняют селективную катетеризацию чревного ствола (ЧС) и верхнебрыжеечной артерии (ВБА), первую порцию контрастного препарата вводят в ВБА в объеме 25,0-35,0 мл со скоростью 1-2 мл/с под давлением 200 PSI. Спустя 13-17 с в ЧС и ВБА вводят вторую порцию контрастного препарата в объеме по 12,0-18,0 мл со скоростью 3-5 мл/с под давлением 200 PSI. Сканирование осуществляют в одну фазу спустя 2-4 с после введения второй порции контрастного препарата, направление сканирования - кранио-каудальное или каудо-краниальное, параметры сканирования: толщина среза - 1,5 мм, скорость вращения трубки - 0,5 с, 100-140 kV (киловольт), 250-350 mA (миллиампер). Верифицируют опухолевую инвазию сосудов по состоянию контуров сосудистой стенки на полученных изображениях. Способ обеспечивает достоверное определение инвазии сосудов опухолью на дооперационном этапе, с хорошей визуализацией как наружных, так и внутренних контуров сосудистой стенки одновременно контрастированных артериальных и венозных сосудов, минимизацией лучевой нагрузки на организм с максимальной информативностью, расширение арсенала средств диагностики у больных с опухолями билиопанкреатодуоденальной зоны (опухоли поджелудочной железы, терминального отдела холедоха и большого сосочка двенадцатиперстной кишки). 1 пр.

Изобретение относится к медицинской технике, а именно к средствам получения изображений движения, например, с помощью позитронно-эмиссионной томографии. Способ обнаружения движения во время получения изображений с помощью медицинской системы содержит этапы, на которых получают изображение субъекта, чтобы сформировать данные получения изображений, включающие в себя времяпролетные данные, контролируют времяпролетные данные во время получения изображений, анализируют времяпролетные данные для обнаружения движения. Способ оценки дыхательного движения в данных получения изображений содержит этапы, на которых дополнительно получают электрокардиограмму субъекта во время получения изображений и используют ее для стробирования данных изображений, чтобы сформировать кардиосинхронизированные данные, после чего делят кардиосинхронизированные данные на подинтервалы времени, чтобы получить синхронизированные по дыханию изображения сердца, определяют центр активности в синхронизированных по дыханию изображениях сердца и сравнивают центры активности в разных синхронизированных по дыханию изображениях сердца, чтобы сформировать векторы дыхательного движения. Во втором варианте способа оценки используют электрокардиограмму для разделения данных получения изображений на сердечные циклы, определяют центр активности в сердечных циклах и сравнивают центры активности в разных сердечных циклах, чтобы сформировать векторы дыхательного движения. Использование изобретения позволяет снизить вероятность ошибок при синхронизации исследования с дыхательными движениями. 3 н. и 12 з.п. ф-лы, 9 ил.
Наверх