Устройство для ионной обработки внутренних поверхностей изделий миллиметрового диапазона


H01J37/00 - Разрядные приборы с устройствами для ввода объектов или материалов, подлежащих воздействию разряда, например с целью их исследования или обработки (H01J 33/00,H01J 40/00,H01J 41/00,H01J 47/00,H01J 49/00 имеют преимущество; исследование или анализ поверхностных структур на атомном уровне с использованием техники сканирующего зонда G01N 13/10, например растровая туннельная микроскопия G01N 13/12; бесконтактные испытания электронных схем с использованием электронных пучков G01R 31/305; детали устройств, использующих метод сканирующего зонда вообще G12B 21/00)

Владельцы патента RU 2548016:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева" (СибГАУ) (RU)

Устройство для ионной обработки внутренних поверхностей изделий миллиметрового диапазона предназначено для нанесения внутреннего электропроводящего покрытия из дорогостоящих материалов с малым удельным сопротивлением, в котором толщина скин-слоя должна быть 3…4 мкм. Устройство содержит источник ионов (2), который размещен в образованном между обрабатываемым изделием (1) и торцевыми фланцами (5, 14) герметичном объеме. В торцевых фланцах (5) и (14) установлены переключатели реверса (16). Электроды электрической дуги (3) источника ионов снабжены насадками (4) из имплантируемого металла. В торцевом фланце (5) скользит шток (6), перемещающий источник ионов при помощи управляемого электропривода (7) равномерного перемещения, вход управления которого соединен с выходом блока сравнения (9), один вход которого соединен с блоком (8) электронной программы обработки, другой его вход соединен с выходом измерителя эквивалентного заряда (10), дифференциальные входы которого соединены с измерительным резистором (12), включенным между скользящими контактами (11), механически соединенными со штоком (6) и минусовой клеммой блока питания (13), плюсовая клемма которого соединена с одним электродом (3) электрической дуги и с одним из выводов переменного напряжения блока питания, другой вывод переменного напряжения через провод в виде спирали (15), размещенный во фланце (14), соединен с другим электродом электрической дуги. В процессе обработки изделия источник ионов (2) доходит до переключателя реверса (16) на фланце (5), включает его, в результате чего происходит реверс электропривода (7), и источник ионов 2 начинает движение в обратную сторону от фланца (5) к фланцу (14). Технический результат - повышение качества обработанных поверхностей за счет того, что электропривод обеспечивает равномерное перемещение источника ионов вдоль обрабатываемой поверхности. 1 ил.

 

Изобретение относится к ионно-лучевым приборам и устройствам, применяемым для нанесения электропроводящего покрытия из дорогостоящих материалов с малым удельным сопротивлением на внутренние поверхности изделий миллиметрового диапазона, в которых толщина скин-слоя должна быть 3…4 мкм.

Известно «Устройство для ионной обработки внутренних поверхностей объектов миллиметрового диапазона» [Заявка на изобретение №2011112582 RU от 01.04.2011, МПК H01J 37/30, опубликована 27.05.2013], принятое в качестве прототипа. Устройство содержит источник ионов, снабженный электродами электрической дуги, имеющий насадки из имплантируемого материала. Источник ионов через шток механически соединен с управляемым электроприводом пошагового перемещения, вход управления которым соединен с выходом блока сравнения, один вход которого соединен с блоком электронной программы обработки, другой вход блока сравнения соединен с выходом измерителя эквивалентного заряда, дифференциальные входы которого соединены с измерительным резистором катионного тока, включенным между механически соединенными со штоком скользящими контактами электрического поля, скрещенного с электромагнитным полем электрической дуги, и минусовой клеммой блока питания, плюсовая клемма которого соединена с одним выводом переменного напряжения блока питания и с одним электродом электрической дуги источника ионов, а другой электрод электрической дуги через выполненный в виде спирали провод соединен с другим выводом переменного напряжения блока питания.

Недостатком устройства является невысокое качество нанесенного электропроводящего покрытия. Пошаговое перемещение источника ионов вызывает в полученном покрытии появление неровностей - впадин и выступов, которые образуются из-за того, что размер покрытия, наносимого при каждом шаге, реально оказывается больше или меньше длины шага перемещения источника ионов. Такое покрытие будет существенно искажать электромагнитные волны и информацию, передаваемую изделием.

Задачей изобретения является повышение качества нанесенного на внутренние поверхности изделия электропроводящего покрытия путем обеспечения равномерного перемещения источника ионов вдоль обрабатываемой поверхности в процессе имплантации электропроводящего материала

Поставленная задача решена тем, что устройство для ионной обработки внутренних поверхностей изделий миллиметрового диапазона, содержащее источник ионов, снабженный электродами электрической дуги, на которых имеются насадки из имплантируемого материала, причем источник ионов через шток механически соединен с управляемым электроприводом перемещения, вход управления которым соединен с выходом блока сравнения, один вход которого соединен с блоком электронной программы обработки, другой вход блока сравнения соединен с выходом измерителя эквивалентного заряда, дифференциальные входы которого соединены с измерительным резистором катионного тока, включенным между механически соединенными со штоком скользящими контактами электрического поля и минусовой клеммой блока питания, плюсовая клемма которого соединена с одним выводом переменного напряжения блока питания и с одним электродом электрической дуги источника ионов, а другой электрод электрической дуги через выполненный в виде спирали провод соединен с другим выводом переменного напряжения блока питания, согласно изобретению дополнительно содержит реверсивные выключатели, выходы которых соединены с соответствующими входами управляемого электропривода равномерного перемещения, а выход блока сравнения соединен с управляющим входом блока питания.

Изобретение поясняется чертежом.

На чертеже представлена схема устройства для ионной обработки внутренних поверхностей изделий миллиметрового диапазона.

Устройство содержит помещенный в обрабатываемое изделие 1 источник ионов 2, выполненный на изоляционном жаропрочном основании, на котором закреплены электроды электрической дуги 3, изготовленные из тугоплавкого материала, с насадками 4 из имплантируемого материала. На торцах изделия устанавливают торцевой фланец 5 с вакуумным вентилем и вакуумным уплотнением и торцевой фланец 14. В торцевых фланцах 5 и 14 установлены переключатели реверса 16. В торцевом фланце 5 скользит шток 6, механически соединенный с источником ионов 2, равномерно передвигаемый управляемым электроприводом 7, вход управления которым соединен с выходом блока сравнения 9, а входы реверса электропривода соединены с соответствующими переключателями реверса 16. К одному входу блока 9 подключен выход блока 8 электронной программы обработки, к другому входу подключен выход измерителя эквивалентного заряда 10 имплантированных ионов, дифференциальные входы которого соединены с измерительным резистором 12 катионного тока, включенным между скользящими контактами 11 электрического (Е) поля, механически соединенными со штоком 6, и минусовой клеммой блока питания 13, в котором плюсовая клемма соединена с одним из выводов переменного напряжения и одним электродом 3. В торцевом фланце 14 расположен переключатель реверса 16 и гибкий провод 15 в виде спирали, соединенный с другим электродом 3 электродугового источника ионов и другим выводом переменного напряжения блока питания 13, вход управления которого соединен с выходом блока сравнения 9.

Работает устройство следующим образом. Обрабатываемый объект 1 герметично закрывают торцевыми фланцами 5 и 14. Источник ионов 2 устанавливают в упор с переключателем 16 на фланце 14 и вводят требуемую программу обработки в блок электронной программы 8. В образованном герметичном объеме создают разряжение порядка 10-6 кг/см2. Подают переменное напряжение от блока питания 13 через провод 15 в виде спирали на электроды 3 с насадками 4, между которыми происходит электрический разряд, ионизация разряженного газа, бомбардировка ионами газа насадок 4 и образование ионов имплантируемого материала. Под действием постоянного электрического (Е) поля, скрещенного с полем электрической дуги, между электродом 3, соединенным с плюсовой клеммой блока питания 13, и обрабатываемой поверхностью, находящейся под потенциалом минусовой клеммы блока питания, передаваемым через скользящие контакты 11 (Е) поля на обрабатываемые поверхности, катионы имплантируемого металла устремляются на обрабатываемую поверхность объекта 1, адгезируя с обрабатываемой поверхностью. Одновременно с нанесением покрытия производится равномерное перемещение источника ионов вдоль обрабатываемой поверхности от фланца 14 к фланцу 5 с помощью управляемого электропривода 7. Источник ионов 2 доходит до переключателя 16 на фланце 5, включает его, в результате этого происходит реверс электропривода 7, и источник ионов 2 начинает движение в обратную сторону от фланца 5 к фланцу 14. Через скользящие контакты 11, синхронно перемещаемые с источником ионов вдоль обрабатываемой поверхности, и измерительный резистор 12 катионного тока идет электрический ток, пропорциональный потоку катионов, имплантируемых на обрабатываемую поверхность. Напряжение (разность потенциалов) на резисторе 12, пропорциональное катионному току, подается на дифференциальные входы измерителя эквивалентного заряда 10, где умножается на временной интервал обработки поверхности. В результате получаем эквивалентный электрический заряд, пропорциональный количеству имплантированных ионов на обрабатываемую поверхность. Это количество сравнивается в блоке 9 с заданным количеством в электронном программном блоке 8. При равенстве значений измерительного и программного блока из блока сравнения 9 подается команда на остановку электропривода 7 и выключение блока питания 13.

Равномерное перемещение источника ионов вдоль обрабатываемой поверхности дает возможность имплантировать материалы на внутреннюю поверхность равномерно без образования впадин и выступов по всей длине изделия. Размеры источника ионов меньше размеров обрабатываемой поверхности изделия, что позволяет помещать источник ионов внутри изделия и обрабатывать его внутренние поверхности. Качество обработки внутренних поверхностей контролируется в процессе обработки по эквивалентному заряду, пропорциональному количеству имплантируемых катионов, путем измерения напряжения, создаваемого ионным током катионов, имплантированных на обрабатываемые поверхности, поэтому количество имплантированных катионов соответствует количеству заданному электронной программой.

Устройство для ионной обработки внутренних поверхностей изделий миллиметрового диапазона, содержащее источник ионов, снабженный электродами электрической дуги, на которых имеются насадки из имплантируемого материала, причем источник ионов через шток механически соединен с управляемым электроприводом перемещения, вход управления которым соединен с выходом блока сравнения, один вход которого соединен с блоком электронной программы обработки, другой вход блока сравнения соединен с выходом измерителя эквивалентного заряда, дифференциальные входы которого соединены с измерительным резистором катионного тока, включенным между механически соединенными со штоком скользящими контактами электрического поля и минусовой клеммой блока питания, плюсовая клемма которого соединена с одним выводом переменного напряжения блока питания и с одним электродом электрической дуги источника ионов, а другой электрод электрической дуги через выполненный в виде спирали провод соединен с другим выводом переменного напряжения блока питания, отличающееся тем, что дополнительно содержит переключатели реверса, выходы которых соединены с соответствующими входами управляемого электропривода равномерного перемещения, а выход блока сравнения соединен с управляющим входом блока питания.



 

Похожие патенты:

Изобретение относится к технике испытаний и может быть использовано при наземной экспериментальной отработке радиоэлектронной аппаратуры космических аппаратов в диапазоне давлений окружающей среды от атмосферного до соответствующего глубокому вакууму.

Изобретение относится к устройствам, предназначенным для обработки материалов в среде низкотемпературной плазмы газового разряда, а именно к индукционным генераторам плазмы, размещаемым внутри технологического объема (рабочей камеры).

Изобретение относится к устройствам подачи порошкообразного материала в плазму и может быть использовано для подачи порошковых проб при спектральном анализе. .

Изобретение относится к области электротехники, в частности к устройству подготовки поверхности образца и камеры для последующих воздействий и анализа, и может быть использовано в высоко- и сверхвысоковакуумных установках для анализа или исследования твердых тел.
Изобретение относится к металлургии высокочистых металлов, конкретно - к производству распыляемых металлических мишеней для микроэлектроники. .
Изобретение относится к области производства распыляемых металлических мишеней для микроэлектроники. .

Изобретение относится к области металлургии цветных металлов и может быть использовано при производстве распыляемых металлических мишеней для нанесения тонкопленочной металлизации СБИС различного назначения в микроэлектронике.

Изобретение относится к лесному хозяйству и может быть использовано в лесоводстве для подготовки семенного материала к посеву, в частности для стимулирования проращивания семян хвойных деревьев.

Изобретение относится к устройствам СВЧ плазменной обработки материалов и может быть использовано при создании твердотельных приборов микро- и наноэлектроники, мощных дискретных твердотельных электронных приборов, в производстве подложек для электронных приборов, работающих в экстремальных условиях. Технический результат - повышение эффективности введения энергии в кремниевую пластину, а значит улучшается управляемость процессом нагрева. Это достигается за счет использования плоской спиральной антенны для ввода в реакционно-разрядную камеру СВЧ-энергии для поджига плазмы и проведения с ее помощью технологических процессов. Устройство дополнительно содержит вторую плоскую спиральную СВЧ-антенну, используемую для нагрева обрабатываемой пластины.1 ил.

Изобретение относится к приборам для измерения содержания летучих веществ в воздухе, в частности к фотоионизационным газоанализаторам. Фотоионизационный газоанализатор содержит ионизационную камеру (1), лампу вакуумного ультрафиолетового излучения (4) с окном (5) для вывода излучения в ионизационную камеру, две газовые линии (8) и (9), одна из которых служит для подвода анализируемого газа, а вторая - для подвода агента, используемого для очистки ионизационной камеры от загрязнений, и электронный блок (10), служащий для настройки газоанализатора, измерения сигнала ионизационной камеры и формирования управляющих воздействий. Во второй газовой линии (9) установлен источник паров фтористого водорода, на выходе которого установлен запорный клапан (12). Технический результат - повышение чувствительности фотоионизационного детектора газоанализатора путем исключения загрязнений на окне и электродах ионизационной камеры, связанных с отложением кислородсодержащих соединений кремния. 4 з.п. ф-лы, 1 ил.

Изобретение относится к дефектоскопии и может быть использовано для обнаружения поверхностных и подповерхностных дефектов, например пор, раковин, трещин, волосовин, закатов, непроплава и т.д. Технический результат - упрощение процесса дефектоскопии и повышение производительности за счет высокой скорости перемещения катодных пятен. В способе дефектоскопии металлических изделий при их поверхностной обработке, заключающемся в нагреве поверхности изделий высокоэнергетическим источником тепла и визуальном ее осмотре, нагрев поверхности производят в вакууме за счет энергии, локализованной в перемещающихся по поверхности изделия катодных пятнах вакуумно-дугового разряда, горящего между изделием, являющимся катодом, и анодом. Использование вакуумно-дугового разряда позволяет производить в вакууме обработку стальных изделий различной геометрической формы. 4 ил.

Изобретение относится к области измерительной техники и может быть использовано для определения коэффициентов диффузии водорода в различных конструкционных материалах, используемых в космической и атомной технике, в изделиях, подвергаемых наводороживанию и облучению в процессе эксплуатации. Для управления электронным пучком в вакуумной камере расположены отклоняющие пластины, проходя которые, электронный пучок облучает с определенной частотой различные места поверхности металлической мембраны-образца. одна сторона которого, находящаяся в электролитической ячейке, насыщается водородом, диффундирующим к противоположной стороне образца-мембраны, встроенной герметично в торец вакуумной камеры и одновременно облучаемой отклоняемым пучком электронов от электронной пушки. Технический результат - повышение точности измерения. 2 н.п. ф-лы, 3 ил.

Изобретение относится к ионно-плазменной технике и предназначено для нанесения покрытий металлов и их соединений на поверхности тел вращения, в частности изделий цилиндрической формы в вакууме. Магнетронная распылительная система содержит вакуумную камеру, анод, протяженные катод, выполненный в виде полого цилиндра с возможностью вращения, и магнитную систему, причем магнитная система состоит из внутренней части магнитной системы, неподвижно расположенной внутри катода вдоль его оси и состоящей из магнитопровода с тремя параллельными рядами постоянных магнитов, периферийные ряды магнитов замкнуты на концах концевыми магнитами и имеют полярность, обратную полярности центрального ряда магнитов, и внешней части магнитной системы, которая неподвижно расположена равноудаленно от внутренней части магнитной системы, охватывая катод со стороны, противоположной зоне распыления, и состоит из магнитопровода с двумя параллельными рядами постоянных магнитов, имеющих полярность, одинаковую с полярностью периферийных рядов магнитов внутренней части магнитной системы. Технический результат - экономия материала катода и повышение производительности процесса нанесения покрытий на внешние поверхности тел вращения. 2 ил.

Изобретение относится к диагностике профилей (распределения плотности тока по сечению пучка) пучков ионов и атомов в мегаваттных квазистационарных (десятки и сотни секунд) инжекторах, предназначенных для нагрева плазмы и поддержания тока в термоядерных установках типа токамак. Способ измерения профиля стационарных мегаваттных пучков ионов и атомов в инжекторах путем измерения относительной плотности тока по сечению пучка, направленного на калориметр, выполненный из двух параллельно расположенных слоев водоохлаждаемых трубок, которые в каждом слое расположены относительно друг друга с зазором, меньшим диаметра трубки, а трубки второго слоя смещены относительно трубок первого слоя на величину, равную половине расстояния между осями трубок, при этом относительную плотность тока по сечению пучка определяют по измерению коллекторами тока ионно-эмиссионных электронов, образующихся в результате бомбардировки пучком ионов и атомов трубок калориметра, при этом коллекторы, расположенные между трубками калориметра второго слоя, устанавливают так, что трубки калориметра первого слоя перекрывают падающий на них пучок. Технический результат - измерение полного профиля стационарных пучков ионов и атомов, плотность мощности которых составляет десятки МВт/м2. 6 ил.

Изобретение относится к устройствам для нанесения покрытий в вакууме. Устройство содержит плоскую мишень, установленную на основании, первую магнитную систему, расположенную внутри корпуса с первым каналом водяного охлаждения, источник питания электрического разряда и источник ионов газа. Основание установлено на корпусе. Источник ионов газа содержит внутренний полюсный наконечник с первой стенкой, внешний полюсный наконечник со второй стенкой, кольцевой анод со вторым каналом водяного охлаждения, плиту с третьим каналом водяного охлаждения, вторую магнитную систему и высоковольтный источник питания. Первая стенка и вторая стенка расположены напротив друг друга и образуют выходную апертуру, расположенную со стороны плоской мишени, а внутренний полюсный наконечник и внешний полюсный наконечник охватывают корпус с внешней стороны и отделены от него изолятором. В результате снижается рабочее давление и повышается качество наносимых покрытий. 2 з.п. ф-лы, 4 ил.

Изобретение относится к способу и системе для нанесения покрытий на подложку. В системе узел нанесения покрытия расположен внутри вакуумной камеры. Узел нанесения покрытия включает источник паров, обеспечивающий наносимый на подложку материал, подложкодержатель, удерживающий подложку, на которую наносят покрытие, таким образом, чтобы они располагались перед источником паров, узел катодной камеры и удаленный анод. Узел катодной камеры включает катод, необязательный первичный анод и экран, изолирующий катод от вакуумной камеры. Указанный экран имеет отверстия для пропускания тока электронной эмиссии от катода в вакуумную камеру. Источник паров расположен между катодом и удаленным анодом, а удаленный анод соединен с катодом. Система включает первичный источник питания, присоединенный между катодом и первичным анодом, и вторичный источник питания, присоединенный между узлом катодной камеры и удаленным анодом. Способ включает генерирование первичной дуги в испускающем электроны катодном источнике между катодной мишенью и первичным анодом, генерирование удаленной дуги, удерживаемой в зоне нанесения покрытия между узлом катодной камеры и анодом, соединенным с катодной мишенью, и генерирование потока паров металла из источника паров металла по направлению к по меньшей мере одной подложке, предназначенной для нанесения покрытия. Получаемые покрытия имеют улучшенную адгезию, гладкость, сверхтонкую микроструктуру, высокую плотность, низкую концентрацию дефектов и пористость и, соответственно, высокие функциональные характеристики.2 н. и 34 з.п. ф-лы, 29 ил.

Изобретение относится к агрегату для переноса радикалов, например для удаления отложений загрязнения.. Агрегат включает генератор плазмы и направляющее тело. Генератор плазмы включает камеру (2), в которой может быть образована плазма. Камера имеет впуск (5) для приема вводимого газа и один или более выпусков (6) для удаления по меньшей мере одного из плазмы и радикалов, созданных в ней. Направляющее тело является полым и выполнено с возможностью направления радикалов, образованных в плазме, к области или объему, в котором отложение загрязнения подлежит удалению. Впуск камеры соединен с устройством (40) давления для обеспечения пульсирующего давления в камере так, чтобы создавать поток в направляющем теле. Технический результат - повышение эффективности удаления загрязнений. 3 н. и 18 з.п. ф-лы, 13 ил.
Наверх