Способ контроля износа щеток и работы щеточно-коллекторного узла электрической машины

Изобретение относится к автоматизированному контролю и диагностике коллекторных электрических машин и обеспечивает расширение функциональных возможностей путем организации непрерывного контроля остаточного ресурса и определения качества работы щеточно-коллекторного узла и повышение надежности контроля. В процессе работы электрической машины (2) непрерывно производится моделирование работы щеточно-коллекторного узла на основании измеренных тока, угловой скорости и полного времени работы щеток от момента начала эксплуатации и вычисление остаточного ресурса щеток по математической зависимости. Одновременно производится контроль рабочей длины щеток с помощью встроенного датчика (6). При уменьшении длины щетки до предельного значения происходит формирование контрольного сигнала. При этом с помощью контроллера (7) фиксируется значение полного времени работы щеток, при котором произошло исчерпание ресурса их работы. Техническим результатом является повышение надежности контроля. 2 ил.

 

Предлагаемое изобретение относится к автоматизированному контролю и диагностике коллекторных электрических машин.

Известны способы контроля износа щеток и работы щеточно-коллекторного узла электрической машины, при которых сравнивают длину щеток с предельным значением, при достижении которого формируется контрольный сигнал и производится замена щеток (авт. свид. СССР №860187, МПК H01R 39/58, 1981; авт. свид. СССР №1809481, МПК H01R 39/58, 1993). При использовании известных способов рабочая длина щетки измеряется с помощью специального встроенного датчика предельного износа электрической щетки.

Известные способы позволяют контролировать рабочую длину щеток электрической машины и принимать меры по их замене при достижении предельного износа. При этом не производится определение остаточного ресурса щеток в процессе работы и качества работы щеточно-коллекторного узла.

Следовательно, недостатками известных способов являются ограниченные функциональные возможности и низкая надежность контроля.

Из известных технических решений наиболее близким к предлагаемому по достигаемому результату является способ контроля износа щеток и работы щеточно-коллекторного узла электрической машины, при котором сравнивают длину щеток с предельным значением, при достижении которого формируют контрольный сигнал (Siemens. DC motors. Catalog DA 12. 2008. - Nurnberg, Germany. - 2008, p. 2/6).

При реализации известного способа во время работы машины непрерывно производится сравнение рабочей длины щеток с предельным значением, при достижении которого формируется контрольный сигнал. При формировании контрольного сигнала допускается работа машины с установленными щетками в течение 500…1000 часов. При этом не производится оценивание качества работы щеточно-коллекторного узла, также не производится определение остаточного ресурса щеток в течение всего времени их работы.

Таким образом, недостатками известного способа являются ограниченные функциональные возможности и низкая надежность контроля.

Цель предлагаемого изобретения - расширение функциональных возможностей путем организации непрерывного контроля остаточного ресурса щеток и повышение надежности контроля.

Поставленная цель достигается тем, что в известном способе контроля износа щеток и работы щеточно-коллекторного узла электрической машины, при котором сравнивают длину щеток с предельным значением, при достижении которого формируют контрольный сигнал, дополнительно измеряют полное время τ работы щеток с начала эксплуатации, ток якорной обмотки i и угловую скорость ротора Ω, вычисляют остаточный ресурс щеток по формуле

где Т0 - номинальный ресурс щеток, k1, k2 и k3 - весовые коэффициенты, равные расчетным коэффициентам ресурсного изнашивания щеток, i0 - ток холостого хода электрической машины,

и фиксируют время полной работы щеток до формирования контрольного сигнала.

По сравнению с наиболее близким аналогичным техническим решением предлагаемое решение имеет следующие новые признаки:

- измеряют полное время τ работы щеток с начала эксплуатации;

- измеряют ток якорной обмотки i;

- измеряют угловую скорость ротора Ω;

- вычисляют остаточный ресурс щеток по формуле

где Т0 - номинальный ресурс щеток, k1, k2 и k3 - весовые коэффициенты, равные расчетным коэффициентам ресурсного изнашивания щеток, i0 - ток холостого хода электрической машины,

- фиксируют время полной работы щеток до формирования контрольного сигнала.

Следовательно, заявляемое техническое решение соответствует требованию «новизна».

По каждому из отличительных признаков проведен поиск известных технических решений в области электротехники, автоматики, контроля и диагностики.

Операция измерения полного времени τ работы щеток с начала эксплуатации, тока якорной обмотки i и угловой скорость ротора Q в известных способах аналогичного назначения не обнаружена.

Операция вычисления остаточного ресурса щеток по формуле

где Т0 - номинальный ресурс щеток, k1, k2 и k3 - весовые коэффициенты, равные расчетным коэффициентам ресурсного изнашивания щеток, i0 - ток холостого хода электрической машины,

в известных способах аналогичного назначения не обнаружена.

Операция: фиксируют время полной работы щеток до формирования контрольного сигнала, в известных способах аналогичного назначения не обнаружена.

Таким образом, указанные признаки обеспечивают заявляемому техническому решению соответствие требованию «существенные отличия».

При реализации предлагаемого технического решения обеспечивается расширение функциональных возможностей способа путем организации непрерывного контроля остаточного ресурса щеток электрической машины, а также повышение надежности контроля. В процессе работы электрической машины непрерывно производится моделирование работы щеточно-коллекторного узла на основании измеренных тока i, угловой скорости Ω и полного времени τ работы щеток от момента начала эксплуатации и вычисление их остаточного ресурса. Одновременно производится контроль рабочей длины щеток с помощью встроенного датчика. При уменьшении длины щетки до порогового значения происходит формирование контрольного сигнала. При этом фиксируется значение полного времени работы щеток, за которое был исчерпан ресурс их работы.

Следовательно, заявляемое техническое решение соответствует требованию «положительный эффект».

Сущность предлагаемого изобретения заключается в следующем. В процессе работы электрической машины непрерывно производится моделирование работы щеточно-коллекторного узла на основании измеренных тока i, угловой скорости Ω и полного времени τ работы щеток от момента начала их эксплуатации и вычисление их остаточного ресурса. Одновременно производится контроль рабочей длины щеток с помощью встроенного датчика. При уменьшении длины щетки до порогового значения происходит формирование контрольного сигнала и фиксация времени полной работы щеток до формирования контрольного сигнала.

Износ щеток определяется двумя составляющими - механической и электрической.

Механический износ щеток вызывается трением истирания или «отрыва» частиц с поверхности контакта. Трение пропорционально силе, перпендикулярной к поверхности контакта. В случае если эта сила постоянна, механический износ щеток пропорционален интегралу от угловой скорости ротора электрической машины.

Электрический износ является результатом сопротивления скольжению между углеродной щеткой и контактной поверхностью. Если окисная пленка загрязнена пылью, маслом, частицами дыма или коррозионно-активными веществами, причем все они обладают плохой проводимостью, контактное сопротивление щетка - коммутатор увеличивается. Отделение воздухом, с высоким сопротивлением, щетки от поверхности контакта является наиболее очевидным условием причины износа и электрической дуги. Независимо от причины протекание тока через высокое сопротивление приведет к высокой энергии, высокой температуре разрушительной дуги и, тем самым, к быстрому износу щетки и контактной поверхности. Степень износа непосредственно связана с потерями i2R в переходном сопротивлении щетка - коллектор. Важно отметить, что в то время как механическое изнашивание является главной причиной истирания материала щетки, износ также состоит в эрозии как щетки, так и контактной поверхности. Поэтому электрический износ может вызвать более серьезные проблемы, вплоть до пробоев и прогорания с высокой стоимостью ущерба.

Другой причиной износа щеток является недостаточная загрузка машины. Если машина загружена недостаточно, температура ротора остается невысокой. То же самое происходит в случае интенсивного обдува при нормальной нагрузке. В таких случаях патина является плохо проводящей, и передача тока осуществляется, главным образом, по перемычкам спекания. Температура в этих маленьких перемычках настолько высока, что металл ротора начинает испаряться, и тончайшие металлические частицы оседают на поверхности щеток, и выглядят они как, так называемые, медные «узелки». Коэффициент трения при этом увеличивается (Лившиц П.С. Скользящий контакт электрических машин (свойства, характеристики, эксплуатация). - М., Энергия, 1974. - 272 с). Причиной образования бороздок являются катодные щетки, поскольку для возбуждения ионов меди играет роль направление электрических полей.

На фиг. 1 показан пример схемы контроля износа щеток и работы щеточно-коллекторного узла электрической машины (двигателя), при реализации предлагаемого способа. На фиг. 1 обозначено: 1 - датчик угловой скорости ротора; 2 - коллекторная электрическая машина; 3 - преобразователь напряжения; 4 - питающая электрическая сеть; 5 - датчик тока якорной обмотки; 6 - датчик предельного значения рабочей длины щетки; 7 - контроллер; 8 - шина данных; 9 - панель оператора; 10 - компьютер. Схема электропитания обмотки возбуждения электрической машины для упрощения чертежа не показана.

Работа схемы контроля износа щеток и работы щеточно-коллекторного узла электрической машины происходит следующим образом. Сигналы с датчиков угловой скорости ротора 1, тока якорной обмотки 5, датчика предельного значения длины щеток 6 и логического выхода преобразователя 3 поступают на входы контроллера 7.

Контроллер 7 выполняет следующие функции:

- аналого-цифровое преобразование сигналов угловой скорости и тока, поступающих с выходов соответствующих датчиков 1 и 5;

- вычисление полного времени работы электрической машины в соответствии с сигналом, поступающим от преобразователя 3;

- вычисление остаточного ресурса щеток по формуле

- при формировании контрольного сигнала с выхода датчика предельной длины щеток запоминает значения полного времени работы τ1, от начала эксплуатации до предельного износа щеток, и остаточного ресурса Т(τ1).

В формуле (1) для вычисления остаточного ресурса щеток слагаемые в правой части имеют следующий смысл:

- T0 - полный номинальный ресурс работы щеток, соответствующий техническим условиям;

- составляющая, характеризующая механическое изнашивание щеток;

- составляющая, характеризующая электрическое изнашивание щеток;

- составляющая, характеризующая изнашивание щеток при малых токах;

- k1 - коэффициент, характеризующий механический износ щетки вследствие трения при движении коллектора относительно щетки. Он определяется в соответствии с ГОСТом Р МЭК 773-96 и равен средней интенсивности линейного износа щеток (отношению линейного износа к длине пройденного щеткой пути по поверхности скольжения, м/м). Количественные данные интенсивности износа указываются в технических данных щеток и справочной литературе (например: Лившиц П.С.Скользящий контакт электрических машин (свойства, характеристики, эксплуатация). - М., Энергия, 1974. - 272 с);

- k2 - коэффициент, характеризующий электрический износ щетки вследствие протекания тока и коммутации. Износ щетки зависит от удельной мощности, выделяющейся на единице длины края щетки, и характеризуется показателем коммутационной напряженности машины. Приближенно этот коэффициент определяется по формуле

где eк - показатель коммутационной напряженности машины (Лившиц П.С. Щетки электрических машин. - М., Энергоатомиздат, 1989. - С. 25-28);

eк0 - минимальное значение показателя коммутационной напряженности;

Iн - номинальный ток якорной обмотки;

Tн - номинальный срок службы щеток.

В соответствии с формулой (2) при минимальной коммутационной напряженности электрический износ щеток практически отсутствует. При увеличении коммутационной напряженности износ щеток возрастает в 3…10 раз по сравнению с обычным механическим износом;

- k3 - коэффициент, характеризующий износ щетки вследствие увеличения коэффициента трения при малых токах. Он приближенно определяется как произведение коэффициента интенсивности износа щеток kи (м/с или мм/час) на разность коэффициента трения при токе холостого хода и номинальном токе Δkт, т.е. k3=kиΔkт. Коэффициент kи, характеризующий механический износ щеток при работе двигателя определяется по справочным данным (например: Лившиц П.С. Скользящий контакт электрических машин (свойства, характеристики, эксплуатация). - М., Энергия, 1974. - 272 с). Величина Δkт определяется также по справочным данным (например: Лившиц П.С. Скользящий контакт электрических машин (свойства, характеристики, эксплуатация). - М., Энергия, 1974. - С. 51-56).

Данные о полном времени работы τ, величине остаточного ресурса T(τ1) и моменте τ1, формирования контрольного сигнала по шине 8 передаются в компьютер 10 для регистрации и хранения и отображаются с помощью монитора 9.

На фиг. 2 показаны временные диаграммы работы системы. Здесь U1 - выходной сигнал устройства контроля длины щеток, U2 - выходной сигнал преобразователя 3, сигнализирующий о включенном состоянии электрической машины; Ue - сигнал, соответствующий уровню логической единицы; T(τ) - остаточный ресурс щеток. На диаграммах показан процесс контроля с учетом отключений электрической машины (U2=0).

При работе электрической машины 2 непрерывно происходит вычисление остаточного ресурса T(τ). Текущее значение регистрируется в памяти компьютера 10 и отображается на экране монитора 9. При срабатывании датчика предельной длины щеток происходит формирование контрольного сигнала. При этом в контроллере 7 запоминаются время полной работы щеток до исчерпания ресурса τ1 и расчетное значение остаточного ресурса Т(τ1) в момент формирования контрольного сигнала.

Время полной работы щеток до исчерпания ресурса τ1 и расчетное значение остаточного ресурса T(τ1) характеризуют работу щеточно-коллекторного узла. Если T(τ1)≈0 или T0≈τl это означает, что эксплуатация щеточно-коллекторного узла соответствует нормативным требованиям, износ щеток не превышает предусмотренного техническими условиями. Если T(τ1)>0 или Т01, это означает, что работа щеточно-коллекторного узла происходила с нарушениями нормативных требований, что привело к ускоренному износу щеток. Если T(τ1)<0 или Т01, это означает, что работа щеточно-коллекторного узла происходила в благоприятном режиме, способствовавшем сохранению щеток. Значения Т(τ1) или Т01, служат количественными характеристиками реального износа щеток по сравнению с нормативным.

Таким образом, предлагаемый способ обеспечивает расширение функциональных возможностей путем организации непрерывного контроля остаточного ресурса щеток и повышение надежности контроля.

Следовательно, использование в известном способе контроля износа щеток и работы щеточно-коллекторного узла электрической машины, при котором сравнивают длину щеток с предельным значением, при достижении которого формируют контрольный сигнал, операций по дополнительному измерению полного времени τ работы щеток от начала их эксплуатации, тока якорной обмотки i и угловой скорости ротора Ω, вычисления остаточного ресурса щеток по формуле

расширяет функциональные возможности способа путем организации непрерывного контроля остаточного ресурса щеток и повышает надежность контроля.

Использование предлагаемого способа в электроприводах, а также при автоматизированном контроле и диагностике коллекторных электрических машин будет способствовать повышению надежности и качества работы электрооборудования.

Способ контроля износа щеток и работы щеточно-коллекторного узла электрической машины, при котором сравнивают длину щеток с предельным значением, при достижении которого формируют контрольный сигнал, отличающийся тем, что дополнительно измеряют полное время τ работы щеток от начала эксплуатации, ток якорной обмотки i и угловую скорость ротора Ω, вычисляют остаточный ресурс щеток по формуле где Т0 - номинальный ресурс щеток, k1, k2 и k3 - весовые коэффициенты, равные расчетным коэффициентам ресурсного изнашивания щеток, i0 - ток холостого хода электрической машины, и фиксируют время полной работы щеток до формирования контрольного сигнала.



 

Похожие патенты:

Изобретение относится к электротехнике, в частности к устройствам для измерения давления щетки на коллектор электрических машин, и может быть использовано в ремонтном хозяйстве электротехнической, железнодорожной и других отраслях.

Изобретение относится к электротехнике, в частности к устройствам для измерения нажатий щетки на коллектор непосредственно на электрической машине в рабочем режиме.

Изобретение относится к электротехнике, в частности к устройствам, предназначенным для экспериментального исследования и контроля искрения на коллекторе электрической машины.

Изобретение относится к области электромеханики и может быть использовано для определения степени их искрения. .

Изобретение относится к электротехнике и предназначено для диагностики состояния щеточно-контактного аппарата электрических машин. .

Изобретение относится к области электротехники, а именно к устройствам для притирки щеток коллекторных электродвигателей. .

Изобретение относится к электротехнике и электромашиностроению и может быть использовано в промышленности и сельском хозяйстве для проведения ускоренных стендовых испытаний контактно-щеточных узлов.

Изобретение относится к электротехнике, преимущественно к измерениям характеристик электрических машин, и может быть использовано для постоянного контроля качества работы щеточно-контактных аппаратов в электрических машинах.

Изобретение относится к области электротехники и может быть использовано для контроля работы и настройки щеточно-контактных аппаратов крупных электрических машин.

Изобретение относится к электротехнике, а более конкретно к способам и устройствам измерения и испытания щеток электрических машин. .

Изобретение относится к области электротехники и может быть использовано для испытаний и настройки коммутации коллекторных электрических машин (КЭМ). Технический результат - повышение точности диагностики состояния коммутации КЭМ. В способе диагностики состояния коммутации при вращении коллектора во время прохождения коллекторной пластины с заранее нанесенной меткой мимо датчика положения коллектора световой поток от неепреобразуют датчиком в синхроимпульс с длительностью, равной времени прохождения коллекторной пластины под сбегающим краем щетки, который задерживают устройством для регулируемой задержки импульса до момента подхода исследуемой, предварительно промаркированной коллекторной пластины под сбегающий край щетки. В момент подхода исследуемой коллекторной пластины под сбегающий край щетки синхроимпульс подают на фотоэлектрический преобразователь, которым при помощи ПЗС-матрицы преобразуют световое излучение от искрения в сигнал, эквивалентный изображению щеточно-коллекторного узла и процесса искрения за время прохождения исследуемой пластины под сбегающим краем щетки. Полученные сигналы суммируют, фильтруют до получения результирующего сигнала, эквивалентного изображению искрения, интегрируют и визуализируют. Получают значения интенсивности искрения и отношения длины искрящего края щетки к полной длине края щетки, по которым устанавливают в баллах степень искрения на исследуемой коллекторной пластине так, как указано в материалах заявки. 1 ил.,1 табл.

Изобретение относится к угольной щетке с отключающим устройством. Угольная щетка (10) с отключающим устройством (20) имеет в полости (12) своего щеточного элемента (11) выполненный из электроизоляционного материала отключающий элемент (21) с предварительно сжатым, упруго нагружающим его нажимным упругим элементом (24). Нажимной упругий элемент (24) и/или отключающий элемент (21) выполнены/выполнен из полимерного материала и имеет на одном своем конце выполненное за одно целое с ним цилиндрическое продолжение, которое в виде запрессованной детали запрессовано в полость щеточного элемента и герметично удерживается в ней по прессовой посадке. Техническим результатом является снижение затрат на ее изготовление. 8 з.п. ф-лы, 7 ил.

Изобретение относится к электромашиностроению, преимущественно к электрическим машинам значительной мощности, и может быть использовано для токосъема с помощью групп параллельно включенных электрощеток. Техническим результатом является повышение надежности работы щеточно-контактного узла. Щеточно-контактный узел электрической машины содержит щеткодержатель с электрощеткой, которая выполнена с возможностью перемещения, вдоль оси щеткодержателя, пневмоцилиндр, изменяющий усилие нажатия на щетку, датчик перемещения и датчик давления, связанный с дросселирующим устройством, управляемым дистанционно, измеритель тока, установленный на клемме шины электрической машины, и датчик температуры, установленный в рабочей зоне щетки, при этом датчик давления установлен между дросселирующим устройством и пневмоцилиндром. 3 ил.

Способ проверки отсутствия перерывов контактирования между щетками и кольцами в коллекторном токоподводе и устройство для его реализации относятся к контрольно-измерительной технике и могут быть использованы при проверке отсутствия перерывов контактирования между кольцами коллектора и щетками в цепях коллекторного токоподвода (ТП). В способе проверки отсутствия перерывов контактирования между щетками и кольцами в коллекторном токоподводе (ТП), заключающемся в одновременном пропускании через электрические цепи вращающегося коллектора контрольных высокочастотных импульсов, регистрации контрольных импульсов и импульсов, прошедших через цепи ТП, определении разности между этими импульсами, по которой судят о исправности цепей, для чего формируют пары четных и нечетных цепей ТП с замкнутыми щетками, в указанных парах одними кольцами образуют входную группу, другими кольцами образуют выходную группу; на входную группу и эталонный счетчик подают контрольные импульсы, а с выходной группы прошедшие через ТП импульсы подают на соответствующие контрольные счетчики, выполняют вращение ТП, в счетчиках производят счет импульсов при совершении ТП не менее одного оборота, результаты счета подают в микропроцессор, в котором определяют разности между числом контрольных импульсов и числом импульсов, прошедших через ТП, если разности не превышают допустимую величину, соответствующие пары цепей ТП признают исправными, если разности превышают допустимую величину, то применяют иное формирование пар цепей и аналогично проверяют пары цепей ТП и по результатам проверки определяют неисправные цепи ТП в парах. Техническим результатом изобретения является возможность проверки различных ТП, в том числе и малогабаритных, работающих в режимах передачи микротоков, малые затраты времени на контроль, повышение надежности и достоверности результатов контроля путем автоматизации процесса испытаний, повышение технологичности, снижение номенклатуры используемого оборудования, упрощение схемы испытаний. 2 н.п. ф-лы, 2 ил.
Наверх