Сцинтилляционный счетчик ионизирующего излучения

Изобретение относится к области измерения ядерных излучений, а именно к подсчету количества гамма квантов от различных источников излучения в диапазоне энергий от сотен кэВ до единиц МэВ с загрузкой до 109 имп./мин и может быть использовано для точной регистрации интенсивных потоков гамма излучения. Сцинтилляционный счетчик ионизирующего излучения содержит сцинтиллятор на основе ортогерманата висмута Bi4Ge3O12 (BGO), который через оптический герметик связан с кремниевым фотоэлектронным умножителем, который связан с источником питания, подключенным к усилителю дискриминатору, который соединен с микроконтроллером и делителем частоты, который подключен к микроконтроллеру, который подключен к персональному компьютеру. Технический результат - создание миниатюрного устройства, способное подсчитывать гамма кванты высокой интенсивности. 2 ил.

 

Изобретение относится к области измерения ядерных излучений, а именно к подсчету количества гамма квантов от различных источников излучения в диапазоне энергий от сотен кэВ до единиц МэВ с загрузкой до 109 имп./мин, и может быть использовано для точной регистрации интенсивных потоков гамма излучения.

Известен сцинтилляционный портативный счетчик [Каталог «Аппаратура радиационного контроля», НЛП «Доза», «Прогресс-Г(П)» на сайте компании http://www.doza.ru/docs/radiation_control/Progress_G_P.pdf], содержащий блок детектирования, который состоит из сцинтиллятора, соединенного с вакуумным фотоэлектронным умножителем и источником питания до 3кВ. В блоке детектирования используется детектор на основе сцинтиллятора NaI(Tl). Пульт управления состоит из аккумуляторного блока питания, линейного усилителя, амплитудно-цифрового преобразователя, микроконтроллера и запоминающего устройства. Блок детектирования связан с линейным усилителем и амплитудно-цифровым преобразователем. Диапазоны энергий регистрируемого фотонного излучения от 2·102 до 3·103 кэВ. Диапазоны измерения активности гамма излучения от 8 до 106 Бк. Габаритные размеры составных частей: длина блока детектирования 230 мм, и 180 мм пульта управления.

Основными недостатками этого счетчика являются: большие габариты; высоковольтный источник питания до нескольких 1000 В; сильная чувствительность к электромагнитным полям.

Известен полупроводниковый счетчик [«Спектрометр энергии гамма-излучения полупроводниковый ГАММА-1П» продукция компании «ЗАО НПЦ Аспект» http://aspect.dubna.ru/], основным элементом которого является полупроводниковый диод на основе германия. Полупроводниковый диод с усилителем в корпусе закреплен на штанге и в рабочем положении установлен в сосуд Дьюара. Блок управления мини крейт NIM состоит из высоковольтного блока питания, низковольтного блока питания, усилителя, соединенного с амплитудно-цифровым преобразователем, который соединен с устройством передачи информации в компьютер. Полупроводниковый диод соединен с высоковольтным и низковольтным источником питания, сигнальный выход диода подключен к усилителю мини крейта NIM.

Полупроводниковый счетчик обладает высокой надежностью, может работать в магнитных полях, но для работы требует наличие криогенного охлаждения, высоковольтный источник питания до 1000 В и в рабочем положении имеет большие размеры и массу до 600 кг.

Известен полупроводниковый детектор [«Спектрометр рентгеновского и гамма излучения X-123CdTe» каталог продукции компании «Amptek» http://www.amptek.com/].

В качестве детектора излучения использован кадмиево-теллуридный (CdTe) детектор.

Детектор смонтирован на термоэлектрическом охлаждающем модуле вместе с входным полевым транзистором и соединен с зарядочувствительным предусилителем. Блок управления миникрейт NIM состоит из низковольтного блока питания, усилителя, соединенного с амплитудно-цифровым преобразователем, который соединен с устройством передачи информации в компьютер. Кадмиево-теллуридный детектор соединен с низковольтным источником питания, сигнальный выход диода подключен к усилителю мини крейта NIM. Максимальная скорость счета 1·105имп/c. Габариты устройства 7×10×2,5 см, вес до 180 г.

Малая толщина рабочей области (порядка сотни микрометров) не позволяет использовать этот полупроводниковый детектор для измерения высокоэнергетических частиц более 150кэВ.

Известен сцинтилляционный детектор для регистрации ионизирующего излучения (RU 2088952 C1, МПК6 G01T1/20, G01T3/06, опубл. 27.08.1997), выбранный в качестве прототипа, который содержит датчик-сцинтиблок и блок электронной обработки сигналов. Датчик-сцинтиблок состоит из последовательно соединенных сцинтилляционного кристалла ортогерманата висмута Bi4Ge3O12, чувствительного к протонному, рентгеновскому, а также гамма-излучениям, и световода, выполненного из органического сцинтиллирующего вещества на основе стильбена или пластмассы (СН)n, чувствительного к быстрым нейтронам и фотоэлектронного умножителя. Блок электронной обработки сигналов включает схему временной селекции сцинтиимпульсов, поступающих в него как от сцинтиллятора Bi4Ge3O12 (длительностью 300 нc), так и от сцинтиллирующего под действием быстрых нейтронов световода (с длительностью сцинтилляций 5-7 нc).

Однако данный детектор содержит вакуумный фотоэлектронный усилитель, требующий высоковольтный источник питания до нескольких тысяч вольт.

Этот сцинтилляционный детектор имеет значительные размеры (длина 250 мм, диаметр 40 мм) и чувствителен к электромагнитным полям.

Задачей изобретения является разработка миниатюрного устройства, способного подсчитывать гамма кванты высокой интенсивности.

Поставленная задача решена за счет того, что сцинтилляционный счетчик ионизирующего излучения, также как в прототипе содержит сцинтиллятор на основе ортогерманата висмута Bi4Ge3O12 (BGO) и фотоэлектронный умножитель.

Согласно изобретению сцинтиллятор через оптический герметик связан с кремниевым фотоэлектронным умножителем, который связан с источником питания, подключенным к усилителю дискриминатору, который соединен с делителем частоты и микроконтроллером, который подключен к персональному компьютеру. Делитель частоты подключен к микроконтроллеру.

Излучение гамма квантов с энергией от сотни кэВ до нескольких МэВ и интенсивностью до 109 имп/мин регистрируется сцинтиллятором на основе ортогерманата висмута Bi4Ge3O12 (BGO), время высвечивания световой вспышки которого при комнатной температуре составляет 300 нс.

В заявленном сцинтилляционном счетчике ионизирующего излучения использован кремниевый фотоэлектронный умножитель, характеризующийся высоким коэффициентом усиления k=106 и квантовой эффективностью от 15 до 23%, имеет компактные размеры 6×6 мм2, нечувствителен к воздействию магнитных полей, работает от низкого напряжения - 30 В, обладает механической прочностью и невосприимчивостью к внешней засветке.

Использование в конструкции счетчика делителя частоты обеспечивает скорость счета до 109 имп/с с погрешностью не более 2%.

По сравнению с прототипом предложенное устройство обладает миниатюрными размерами: не более 5 см3.

На фиг. 1 представлена блок схема сцинтилляционного счетчика ионизирующего излучения.

На фиг. 2 представлена принципиальная схема источника питания.

Сцинтилляционный счетчик ионизирующего излучения содержит сцинтиллятор 1 (С), к которому при помощи силиконового герметика 2 (СГ) приклеен кремниевый фотоэлектронный умножитель 3 (ФЭУ), который связан с источником питания 4 (ИП), к которому подключен усилитель дискриминатор 5 (УД). Усилитель дискриминатор 5 (УД) соединен с микроконтроллером 6 (МК) и делителем частоты 7 (ДЧ), который связан с микроконтроллером 6 (МК), который соединен с персональным компьютером 8 (ПК).

В предлагаемом устройстве использован сцинтиллятор 1 (С) на основе ортогерманата висмута Bi4Ge3O12 (BGO) с радиационной длиной, равной 1,13 см, и размером 1 см3.

В качестве кремниевого фотоэлектронного умножителя 3 можно использовать детектор, поставляемый компанией SENSL [Ирландия http://www.sensl.com/downloads/ds/DS-MicroFM.pdf], который позволяет получать сигнал с временем нарастания фронта импульса около 100 пс и временем восстановления менее 1 нс.

Источник питания 4 (ИП) содержит генератор 9 (Г), выход которого через ограничительный резистор 10 подключен к базе транзистора 11, к коллектору которого подключен дроссель 12 и анод диода 13. Катод диода 13 соединен с конденсатором 14, сопротивлением делителя 15 и ограничивающим ток сопротивлением 16. Сопротивление 16 подключено к кремниевому фотоэлектронному умножителю 3 (ФЭУ) и через емкость 17 к усилителю дискриминатору 5 (УД). К сопротивлению 15 подключено сопротивление 18 и инверсный вход компаратора 19. К не инверсному входу компаратора 19 подключен делитель 20. Компаратор 19 связан с генератором 9 (Г). Дроссель 12, компаратор 19, одно плечо делителя 20 соединены со стабилизированным источником питания +5 В. Эмиттер транзистора 11, конденсатор 14, сопротивление 18 и второе плечо делителя 20 заземлены.

В качестве усилителя дискриминатора 5 (УД) использована классическая схема транзисторного усилителя.

В качестве микроконтроллера 6 (МК) можно использовать контроллеры компании Atmel [http://www.atmel.com/ru/ru/products/microcontrollers/avr/default.aspx].

В качестве делителя частоты 7 (ДЧ) можно использовать декадный счетчик, собранный на микросхемах HEF4016BT1 компании PHILIPS [http://pdf.datasheetcatalog.com/datasheet/philips/HEF4016BN.pdf].

В качестве генератора 9 (Г) может быть использована аналоговая интегральная микросхема NE555 компании Texas Instrument [http://www.ti.com/lit/ds/symlink/ne555.pdf].

Устройство работает следующим образом.

Сцинтилляционный счетчик ионизирующего излучения размещают рядом с интенсивным источником гамма квантов или рентгеновского излучения. Сцинтиллятор 1 (С) преобразует гамма кванты в вспышки света длительностью менее 300 нс. Вспышки света через силиконовый герметик 2 (СГ) поступают на кремниевый фотоэлектронный умножитель 3 (ФЭУ), который преобразует их в импульсы напряжения. Кремниевый фотоэлектронный умножитель 3 (ФЭУ) получает питание от источника питания 4 (ИП). Прямоугольные импульсы от генератора 9 (Г) через ограничивающий резистор 10 подаются на базу транзистора 11, нагрузкой которого является дроссель 12. При резком запирании этого транзистора в дросселе 12 наводится большая ЭДС самоиндукции. Полученные таким образом высоковольтные импульсы поступают на выпрямитель, построенный на диоде 13 и конденсаторе 14. Выходное напряжение регулируют при помощи компаратора 19. Через сопротивление делителя напряжения 15 и сопротивление 18 выходное напряжение поступает на инвертирующий вход компаратора 19 и сравнивается с опорным, поступающим на не инверсный вход. Меняя делителем 20 опорное напряжение, можно регулировать выход компаратора 19, связанный со сбросовым входом генератора 9 (Г). При превышении выходного выпрямленного напряжения порогового значения, установленного делителем 20, происходит подача низкого уровня на вход генератора 9 (Г) и генерация прекращается. Выпрямленное напряжение снижается, компаратор 19 переходит в состояние логической единицы и разрешает генерацию. Импульсы от кремниевого фотоэлектронного умножителя 3 (ФЭУ) длительностью 10-20 нс через емкость 17 поступают на усилитель дискриминатор 5 (УД). Импульсы большой амплитуды соответствуют детектируемым фотонам (квантам) света. Малые импульсы, которые возникают из-за шумов в самом кристалле кремниевого фотоэлектронного умножителя 3 (ФЭУ), отсекаются усилителем дискриминатором 5 (УД). С выхода усилителя дискриминатора 5 (УД) снимаются TTL импульсы длительностью 20-30 нс и подсчитываются в микроконтроллере 6 (МК). При превышении порога 500 тыс.имп/с, TTL импульсы проходят через делитель частоты 7 (ДЧ), делятся на 100 и поступают на микроконтроллер 6 (МК). Подсчитанное количество импульсов передается на персональный компьютер 8 (ПК).

Предложенное устройство обладает миниатюрными размерами (не более 5 см3) и способно подсчитывать гамма кванты с энергией от сотен кэВ до единиц МэВ с загрузкой до 109 имп/мин.

Сцинтилляционный счетчик ионизирующего излучения, содержащий сцинтиллятор на основе ортогерманата висмута Bi4Ge3O12 (BGO) и фотоэлектронный умножитель, отличающийся тем, что сцинтиллятор через оптический герметик связан с кремниевым фотоэлектронным умножителем, который связан с источником питания, подключенным к усилителю дискриминатору, который соединен с микроконтроллером и делителем частоты, который подключен к микроконтроллеру, который связан с персональным компьютером.



 

Похожие патенты:

Изобретение относится к системе измерения данных, пригодной для КТ (компьютерной томографии) и других способов формирования изображения. Система формирования изображения содержит источник излучения, который поворачивается вокруг центральной z-оси системы формирования изображения для выполнения формирующих изображения сканирований; и матрицу неорганических фотодетекторов, включающую в себя несколько дискретных неорганических фотодетекторов, расположенных на изогнутой подложке таким образом, что каждый ряд неорганических фотодетекторов ориентирован вдоль кривой изгиба изогнутой подложки, и каждый столбец неорганических фотодетекторов ориентирован параллельно центральной z-оси системы формирования изображения, причем изогнутая подложка содержит гибкий лист и токопроводящие пути, оперативно соединяющие каждый из неорганических фотодетекторов, по меньшей мере, с одним активным электронным компонентом, расположенным на изогнутой подложке, причем токопроводящие пути расположены на дистальной поверхности изогнутой подложки, которая, по существу, противоположна поверхности подложки, на которой расположены неорганические фотодетекторы, при этом система дополнительно содержит отверстия в подложке, заполненные проводящим материалом для электрического соединения токопроводящих путей с неорганическими фотодетекторами.

Изобретение относится к устройствам для регистрации гамма-излучения, предназначено для определения положения бурового инструмента относительно кровли и подошвы разбуриваемого пласта и может быть использовано в скважинных приборах телеметрических систем.

Изобретение относится к сбору данных и находит конкретное применение в компьютерной томографии (СТ). Сущность изобретения заключается в том, что детектор формирования изображения содержит матрицу (202) сцинтилляторов; матрицу (204) фотодатчиков, оптически сопряженную с матрицей (202) сцинтилляторов; преобразователь (314) тока в частоту (I/F), содержащий интегратор (302) и компаратор (310), который преобразует, во время текущего периода интегрирования, заряд, выведенный матрицей (204) фотодатчиков, в цифровой сигнал, имеющий частоту, указывающую на заряд; логику (312), которая устанавливает усиление интегратора (302) для следующего периода интегрирования на основе цифрового сигнала для текущего периода интегрирования, и переключатель (308) сброса, который сбрасывает интегратор (302) на основе усиления, установленного логикой (312), причем переключатель (308) сброса содержит, по меньшей мере, первый конденсатор (402) сброса с первой емкостью и второй конденсатор (406) сброса с второй отличающейся емкостью.

Изобретение относится к технологиям визуализации и, в частности, к системе измерения данных, пригодной для средств КТ (компьютерной томографической) и другой визуализации.

Изобретение относится к сбору информации, а также находит конкретное применение в компьютерной томографии (СТ). Сущность изобретения заключается в том, что детектор формирования изображения содержит матрицу (204) фотодетекторов, имеющую светочувствительную сторону и противоположную считывающую сторону; матрицу (202) сцинтилляторов, оптически соединенную со светочувствительной стороной матрицы (204) фотодетекторов; и обрабатывающие электронные схемы (208), электрически соединенные со считывающей стороной матрицы (204) фотодетекторов, причем матрица (204) фотодетекторов, матрица (202) сцинтилляторов и обрабатывающие электронные схемы (208) находятся в термическом контакте, а значение термического коэффициента обрабатывающих электронных схем (208) приблизительно равно отрицательному значению суммы термического коэффициента матрицы (204) фотодетекторов и термического коэффициента матрицы (202) сцинтилляторов.

Изобретение относится к способам нанесения люминесцентных покрытий на экраны, с помощью которых регистрируется и/или преобразуется изображение, в частности к способам формирования структурированного сцинтиллятора на поверхности фотоприемника, предназначенного для регистрации рентгеновского или гамма-излучения.

Изобретение относится к устройствам для регистрации ядерных излучений, в частности к криогенным детекторам на основе жидкого аргона, и может быть использовано при решении ряда фундаментальных физических задач, а также при регистрации ядерных излучений в системах ядерной энергетики, безопасности, медицины, неразрушающего контроля.

Группа изобретений относится к области регистрации ионизирующих излучений с помощью сцинтилляционных детекторов, а именно к регистрации формы импульсов рентгеновского и электронного излучений, в частности к области волоконно-оптической дозиметрии.

Изобретение относится к области диагностической визуализации. Сущность изобретения заключается в том, что модуль детектора излучения для использования в визуализации содержит множество детекторных пикселов, причем каждый детекторный пиксел включает в себя сцинтиллятор (35), оптически связанный с по меньшей мере одним сенсорным фотодиодом (34), работающим в режиме счетчика Гейгера; по меньшей мере один экранированный от света опорный фотодиод (36), который работает в режиме счетчика Гейгера при таких же условиях, что и по меньшей мере один сенсорный фотодиод (34); схему управления (42), которая измеряет напряжение (84) пробоя на опорном фотодиоде (36) импульсов (68) темнового тока, сгенерированных посредством опорного фотодиода (36) при пробое опорного фотодиода (36); регулирует напряжение (80) смещения на по меньшей мере одном опорном фотодиоде (36) и по меньшей мере одном сенсорном фотодиоде (34) для приведения импульсов (68) темнового тока, сгенерированных по меньшей мере одним опорным фотодиодом (36), по существу в равенство с предварительно выбранным характерным логическим уровнем (70) напряжения.

Изобретение относится в целом к детекторам излучения. В частности, изобретение относится к гибкому несущему механизму для элементов детектора излучения и к способу обслуживания детектора излучения.

Изобретение относится к области регистрации широких атмосферных ливней (ШАЛ) на поверхности Земли и может быть использовано для исследования первичных космических лучей. Сущность изобретения заключается в том, что устройство для определения направления прихода широких атмосферных ливней (ШАЛ) содержит множество пространственно разнесенных детекторов космических лучей, при этом детекторы входят в состав кластеров (1), выходы кластеров соединены через общую шину со входами блока сбора данных с кластеров (2), выход блока сбора данных с кластеров соединен с входом блока определения вектора направления ШАЛ (4), который оснащен блоком хранения локальных векторов (3), соединенным с ним общей шиной, выходы блока определения вектора направления ШАЛ (4) соединены с входами блока памяти (5) и блока визуализации данных (6), соединенными общей шиной; кластер включает в себя не менее трех детекторов (7), выходы которых соединены с входами блока временного анализа (8), выходы блока временного анализа (8) соединены с входами блока отбора событий (9), выходы блока отбора событий (9) соединены с входами блока определения локального направления (10), выходы блока определения локального направления (10) соединены с входами блока хранения и передачи данных (11). Технический результат - применение устройства для определения направления прихода широких атмосферных ливней вне зависимости от рельефа и иных особенностей местности. 6 з.п. ф-лы, 3 ил.

Изобретение относится к области ядерного приборостроения и может быть использовано при создании аппаратуры радиационного контроля для определения спектрометрических, радиометрических и дозиметрических параметров загрязненной среды при одновременной регистрации альфа-, бета- и гамма-излучений. Сущность изобретения заключается в том, что спектрометр-радиометр для одновременного анализа характеристик смешанных полей альфа-, бета- и гамма-излучений на основе комбинированного детектора, состоящего из полупроводникового «пролетного» детектора для регистрации альфа-излучения (в роли которого выступает кремниевый детектор толщиной 200-300 мкм), органического сцинтиллятора (в роли которого выступает паратерфенил толщиной 7 мм), и кристаллического сцинтиллятора NaI(Tl). Для регистрации бета-излучения используются сигналы кремниевого детектора и паратерфенила, регистрация гамма-излучений осуществляется с помощью сцинтиллятора NaI(Tl). Полупроводниковый кремниевый детектор расположен со стороны входного окна комбинированного детектора, вплотную к паратерфенилу. Сцинтиллятор NaI(Tl) расположен за паратерфенилом и крепится вплотную к ФЭУ. Между сцинтилляторами NaI(Tl) и паратерфенил установлено кварцевое стекло. Сборка паратерфенил, NaI(Tl), кварцевое стекло и фотоэлектронный умножитель представляет собой фосвич-детектор из двух сцинтилляторов. Технический результат - повышение эффективности разделения бета- и гамма-излучений. 3 ил.

Изобретение относится к технологии получения сцинтилляционных монокристаллов и может быть использовано при изготовлении чувствительных элементов детекторов гамма- и рентгеновского излучения Сцинтилляционные монокристаллы La(1-m-n)HfnCemBr(3+n), где m - мольная доля замещения La церием (0,0005≤m≤0,3), n - мольная доля замещения La гафнием (0≤n≤0,015), получают из смеси бромидов металлов. Шихту загружают в кварцевую ампулу с затравкой, ампулу вакуумируют, запаивают, устанавливают в ростовую установку, нагревают до расплавления шихты, выдерживают до установления в расплаве равновесного состояния, выращивают монокристалл путем создания в ампуле градиентного температурного участка и охлаждают, при этом используют многозонную ростовую установку с электродинамическим перемещением температурного градиента в продольно-осевом направлении. Для расплавления шихты температуру нагревателя установки в зоне затравки t1 выбирают из интервала 685°C<t1<720°C, температуру следующего нагревателя t2 - из интервала 770°C≤t2≤790°C. После расплавления шихты ампулу выдерживают не менее 10 часов, выращивание монокристалла осуществляют перемещением температурного градиента вдоль продольной оси установки со скоростью 0,3 мм/ч≤vтг≤0,5 мм/ч, при этом пограничные значения температур так называемых холодной tхз и горячей tгз зон градиентного участка выбирают из интервалов 720°C<tхз≤740°C и 790°C≤tгз≤820°C, а охлаждение ампулы осуществляют со скоростью не более 15°C/ч. Технический результат: точность поддержания температурных полей, стабильность их перемещения на всех этапах выращивания кристалла, строгий контроль температурных и временных параметров ростового процесса, получение с высоким выходом монокристаллов с заданными оптическими характеристиками и размерами. 1 з.п. ф-лы, 2 табл., 9 пр.

Изобретение относится к системам формирования изображения на основе излученной энергии. Система детектирования для детектирования электромагнитного излучения содержит корпус двухэкранного детектора, имеющий три смежные боковые стенки, которые образуют область передней стороны, область второй стороны и область третьей стороны, стенки трех сторон соединены одна с другой под углом, так что заключают в себе объем, имеющий форму треугольной призмы, и каждая боковая стенка имеет внутреннюю поверхность; подложку, расположенную на каждой из упомянутых внутренних поверхностей первой и второй боковых стенок, причем каждая подложка дополнительно содержит активную область для приема и преобразования электромагнитного излучения в свет, образуя тем самым экраны детектора; и фотодетектор, расположенный в непосредственной близости к третьей боковой стороне, при этом упомянутый фотодетектор имеет чувствительную к свету активную область. Технический результат - повышение эффективности детектирования излучения. 4 н. и 22 з.п. ф-лы, 13 ил.

Изобретение относится к детекторам рентгеновского излучения. Сущность изобретения заключается в том, что детектор (1) рентгеновского излучения содержит: устройство (3) обнаружения света для обнаружения света (R), падающего на его поверхность (12) обнаружения; сцинтилляционный слой (5) для преобразования падающих рентгеновских лучей (Х) в свет; отражательный слой (9) для отражения света (В), формируемого в пределах сцинтилляционного слоя, по направлению к устройству обнаружения света; светоизлучающий слой (7), заключенный между сцинтилляционным слоем и отражательным слоем, причем расстояние (d) между сцинтилляционным слоем и отражательным слоем меньше 50 мкм, и при этом светоизлучающий слой содержит ОСИД (8). Технический результат - повышение пространственной однородности излучения и разрешения. 2 н. и 9 з.п. ф-лы, 6 ил.

Изобретение может быть использовано в детекторах ионизирующего излучения в виде электромагнитных волн низких энергий, гамма-, рентгеновского излучения, космических лучей и частиц. Твердый сцинтилляционный материал характеризуется следующей общей формулой: La(1-n-m)CemA3 241Amn, где А представляет собой анион одного или нескольких галогенов, выбранных из группы, состоящей из брома, хлора и йода; катионы La и Се образуют вместе с анионами галогена А твердую матрицу; 241Am3+ представляет собой катион изотопа америция-241 (III); m - означает мольную долю замещения лантана церием и принимает значения от больше 0 до 0,3; n - означает мольную долю замещения лантана америцием-241 (III) и принимает значения от 2·10-12 до 2·10-10. Материал является кристаллическим или монокристаллическим, изготовленным по методу Бриджмена-Стокбаргера, Киропулоса или Чохральского. Технический результат - повышение точности измерений в системах с использованием метода стабилизации по реперному источнику за счет по существу равномерного распределения 241Am внутри сцинтилляционного материала. 12 з.п. ф-лы, 7 ил.

Изобретение относится к детектирующему устройству для фотонов или ионизирующих частиц. Детектирующее устройство для фотонов или ионизирующих частиц содержит детектирующую систему с несколькими детектирующими блоками, каждый из которых включает сцинтиллятор, соединенный со считывающей поверхностью считывателя электрического заряда, при этом сцинтиллятор выполнен с возможностью генерации ячейковых зарядов на считывающей поверхности при улавливании фотонов или ионизирующих частиц; коллиматор, присоединенный к сцинтиллятору напротив считывателя электрического заряда, выполненный с возможностью пропускания фотонов или ионизирующих частиц, имеющих направление движения, совпадающее с продольной осью коллиматора, и остановки фотонов или ионизирующих частиц (Р'), имеющих направление движения, отличающееся от направления продольной оси коллиматора; и несколько детектирующих систем, равномерно отстоящих друг от друга вокруг центральной оси детектирующей сборки, при этом детектирующее устройство сформировано в виде стопки из нескольких детектирующих сборок, каждая из которых повернута на угол вокруг центральной оси детектирующей сборки относительно соседней детектирующей сборки или соседних детектирующих сборок. Технический результат - повышение эффективности улавливания и детектирования фотонов. 9 з.п. ф-лы, 5 ил.

Способ по изобретению заключается в создании прочных тонких, механических поддерживающих структур для электромагнитного калориметра. Такими структурами являются ячеистые структуры из пропитанной эпоксидным связующим ткани из углеродного волокна. Техническим результатом, достигаемым при использовании способа по изобретению, является возможность изготовления механической структуры из углеродного волокна с высокой прочностью и точностью по толщине тонких стенок 20 мкм и плоскостности. Технический результат обеспечивается тем, что в отсутствии внешнего давления и автоклавов, для формирования нужных поверхностей и толщины стенок используются внешние формообразующие пластины и бруски сложной формы из высоколегированной стали, собранные в единую конструкцию высокопрочными винтами. Требуемые толщины и точность ячеистой структуры достигаются созданием при изготовлении формообразующих пластин и брусков гарантированных зазоров, задающих толщины стенки готового изделия с точностью 20 мкм, и качеством обработанной поверхности. Для осуществления способа по изобретению используется устройство, которое включает в себя детали формирования высокоточной внутренней и внешней геометрии тонкостенных сотовых структур, а также комплект дополнительных деталей, необходимых для сборки и перемещения устройства, и датчики системы контроля температуры оснастки в процессе изготовления ячеистых структур. Точность размеров изготавливаемых сотовых структур обеспечивается, прежде всего, за счет прецизионного позиционирования этих деталей относительно друг друга во время сборки пресс-формы, а также высокоточной обработки деталей оснастки. Для успешного создания требуемого образца в дальнейшем необходимо выполнить ряд стандартных операций, не относящихся к использованию данного устройства, а именно производится обрезка технологических и конструктивных элементов по краям альвеолы. Результатом создания устройства является возможность изготовления опорных ячеистых структур с толщиной стенки 200 мкм, точностью изготовления каждой ячейки 20 мкм и плоскостностью от 10 мкм. 1 з.п. ф-лы, 4 ил.

Изобретение относится к пикселированному детектору. Пикселированное детекторное устройство содержит матрицу детекторов, имеющую множество детекторных пикселей; и матрицу кристаллов, имеющую множество сцинтилляторных кристаллов и расположенную в геометрическом соответствии с матрицей детекторов; при этом упомянутые детекторные пиксели и упомянутые сцинтилляторные кристаллы сдвинуты в по меньшей мере одном измерении по отношению друг к другу на, по существу, половину размера сцинтилляторных кристаллов. Технический результат - уменьшение перекрестных помех между пикселями, повышение эффективности улавливания света. 2 н. и 7 з.п. ф-лы, 6 ил.

Изобретение относится к области регистрации ионизирующих излучений. Спектрометрический позиционно-чувствительный детектор содержит сцинтиллятор, состоящий из трех вложенных друг в друга наборов сцинтиллирующих элементов, расположенных параллельно оси устройства, внешний и средний наборы образованы сцинтиллирующими волокнами из материала, обеспечивающего регистрацию тепловых нейтронов, а сцинтиллирующие элементы внутреннего набора образуют цилиндр и выполнены в форме одинаковых по размеру угловых секторов и обеспечивают регистрацию гамма-излучения, количество угловых секторов составляет два и более, каждый угловой сектор снабжен спектросмещающим волокном, проходящим через центр углового сектора параллельно оси устройства, сцинтиллирующие элементы среднего набора помещены внутрь нейтронного замедлителя трубчатой формы, заполняющего пространство между внешним и внутренним наборами, на внешней поверхности нейтронного замедлителя расположен экран, поглощающий тепловые нейтроны, сцинтиллирующие элементы всех наборов и спектросмещающие волокна внутреннего набора снабжены светоотражающими оболочками, на поверхность сцинтиллирующих элементов нанесено светонепроницаемое покрытие, противоположные торцы каждого сцинтиллирующего элемента внешнего и среднего наборов, а также противоположные торцы каждого спектросмещающего волокна внутреннего набора соединены посредством оптических соединителей с двумя волоконными световодами, находящимися с противоположной стороны в оптическом контакте с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа сцинтиллирующих элементов. Технический результат - одновременная регистрация тепловых, эпитепловых нейтронов, а также гамма-излучения в одном месте на оси скважинного устройства. 1 ил.
Наверх