Способ получения транс-фукоксантинола

Изобретение относится к способу получения транс-фукоксантинола из кристаллического фукоксантина, который включает применение липазы, полученной из поджелудочной железы свиньи, растворение фукоксантина в этиловом спирте до полного растворения, введение альбумина и хлористого кальция в раствор, выдерживание смеси 5-10 часов при последующем соотношении компонентов, г:

Спиртовой 10%-ный раствор кристаллического фукоксантина 0,8-8,0 Липаза, выделенная из поджелудочной железы свиньи 0,01-0,5 4%-ный раствор хлористого кальция 1,0-10,0 Альбумин 0,01-0,1 Фосфатный буфер 105-525

 

Изобретение относится к области биохимии и биотехнологии и предназначено для получения фукоксантинола.

Фукоксантин и фукоксантинол - природные каротиноиды с уникальными химическими формулами, включающие практически все функциональные группы (алленовую, эпокси-, кето-, окси-, ацетатную (фукоксантин), карбоксильную (фукоксантинол), сопряженные и несопряженные двойные, связи). Фукоксантин - самый массовый на планете пигмент, входящий в состав бурых водорослей, многие виды которых являются съедобными. Фукоксантинол - основной метаболит фукоксантина, образующийся под действием ферментов в организме, обладает в 1,5 - 2 раза большей биологической активностью, чем исходный каротиноид [1-3]. Фукоксантинол, в отличие от фукоксантина, практически не содержится в природных источниках, поэтому его получают искусственным путем из фукоксантина.

Известен способ получения фукоксантинола из фукоксантина [4], предусматривающий четыре стадии. На первой стадии 0,5 г фукоксантина растворяют в 300 мл метанола, добавляют 2,5 г таурохелата до полного растворения. На второй стадии образовавшийся раствор упаривают досуха. Далее (третья стадия), остаток растворяют в 500 мл 0,1 M калий-фосфатного буфера, добавляют 10 г липазы, полученной из панкреазы, и образующийся раствор выдерживают при температуре 37°С в течение 2 часов. Образующийся фукоксантинол очищают с помощью колоночной хроматографии. Процесс получения фукоксантинола достаточно длительный и содержит много стадий, что может приводить к потерям пигментов. Так, упаривание 300 мл раствора фукоксантинола с таурохелатом на 2-й стадии известного способа должно происходить в вакууме; в противном случае, возможны значительные потери лабильного к нагреванию фукоксантина и его изомеризация. Кроме того, авторы патента не указывают, какой из изомеров фукоксантина был использован, и какие изомеры фукоксантинола и с каким выходом образуются в результате.

В основу изобретения "Способ получения транс-фукоксантинола" поставлена задача детального уточнения технологии и обеспечения высокого выхода конечного продукта.

Поставленная задача решается следующим образом. В предлагаемом способе исходный фукоксантин получают из черноморской цистозиры в соответствии с известной методикой [5]. После перекристаллизации из диэтилового эфира - гексана, по данным HPLC, UV-VIS, H'MR, фукоксантин состоит на 93,3% из транс-фукоксантина и 6,7% цис-фукоксантина. Кристаллический фукоксантин подвергают гидролизу, используя липазу, полученную из поджелудочной железы свиньи, в качестве эмульгатора применяют альбумин и хлористый кальций. В результате получают транс-фукоксантинол, состоящий на 100% из транс-изомера, выход - 72,82%. В разработанном авторами способе стадия упаривания образовавшегося раствора не предусматривается, что в целом упрощает технологию. Кроме того, способ получения фукоксантинола из кристаллического фукоксантина отличается высоким выходом и применим к работе с отечественным сырьем и реактивами.

Экспериментальными исследованиями, выполненными авторами, установлено, что:

- использование липазы из поджелудочной железы свиньи целесообразно · в границах 0,01-0,5 г;

- кристаллический фукоксантин в интервале 0,8-8,0 следует растворять в этиловом спирте до полного растворения;

- введение в раствор фукоксантина альбумина в интервале 0,01-0,1, хлористого кальция в интервале 1,0-10,0 с использованием фосфатного буфера в интервале 105-525, является оптимальным, а выдерживание смеси 5-10 часов является целесообразным.

Пример 1.

0,1 г кристаллического фукоксантина растворяли в 1 мл (0,8 г) этилового спирта в атмосфере аргона. К 100 мл (105 г) фосфатного буфера (0,1 М, рН 6,86) при перемешивании добавляли 0,01 г альбумина, 1,0 мл (1 г) 4% раствора хлористого кальция, 0,25 г липазы и спиртовой раствор фукоксантина. Смесь выдерживали при 37°С в течение 5 часов. Каротиноиды экстрагировали 2 раза по 50 мл хлороформом. Хлороформенный экстракт промывали водой и упаривали в вакууме при температуре ниже 30°С. Остаток хроматографировали на препаративных пластинках с силикагелем (толщина слоя 0,5 мм) в системе ацетон - гексан (1:1). Фракции фукоксантинола экстрагировали ацетоном, упаривали в вакууме и перекристаллизовывали из смеси диэтиловый эфир - ацетон - гексан. Выход составил 82%. По данным H'NMR полученный фукоксантинол состоит на 100% из транс-изомера.

Пример 2.

1,0 г кристаллического фукоксантина растворяли в 10 мл (8 г) этилового спирта в инертной атмосфере. К 500 мл (525 г) фосфатного буфера (0,1 М, рН 6,86) при перемешивании добавляли 0,1 г альбумина, 10 мл 4% раствора хлористого кальция, 0,5 г липазы и спиртовой раствор фукоксантина. Смесь выдерживали при t=37°C в течение 10 часов. Каротиноиды (смесь фукоксантина и фукоксантинола) экстрагировали 2 раза по 100 мл хлороформом. Хлороформенный экстракт промывали водой и упаривали в вакууме при температуре ниже 30°С. Остаток хроматографировали на препаративных пластинках с силикагелем (толщина слоя 0,5 мм) в системе ацетон - гексан (1:1). Фракцию фукоксантинола экстрагировали ацетоном и упаривали в вакууме. Остаток перекристаллизовывали из смеси ацетон -диэтиловый эфир - гексан. Выход составил 77%. По данным H'NMR полученный фукоксантинол состоял на 100% из транс-изомера.

Преимуществами способа получения транс-фукоксантинола "из кристаллического фукоксантинола является упрощение технологии и возможность использования отечественного сырья и реактивов для обеспечения высокого выхода конечного продукта. Источники информации, принятые во внимание.

1. Konishi I. Halocynthiaxanthin and fucoxanthinol isolated from Halocynthia roretzi induce apoptosis in human leukemia, breast and colon cancer cells / I. Konishi, M. Hosokawa, T. Sashima et al. // Сотр. Biochem. Physiol. С Toxicol. Pharmacol. - 2006. - 142(1-2). - P. 53 - 59.

2. Sachindra N. M. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites / N. M. Sachindra, E. Sato, H. Maeda et al. // J. Agrie Food Chem. - 2007. - 55(21). - P. 8516 - 8522.

3. Sugawara T. Antiangiogenic activity of brown algae fucoxanthin and its deacetylated product, flicoxanthinol / T. Sugawara, K. Matsubara, R. Akagi // J. Agrie. Food Chem. - 2006. - 54(26). - P. 9805 - 9810.

4. Pat. Int. Appl. No. PCT/JP2006/321659 Japan. Process for production of fucoxanthinol / Miyashita K., Hosokawa M., Sashima T., Sasaki T.; Nat. Univ. Corpor. Hokkaido Univ.; Priority data 2005-340997, 25.11.2005; Publ. data 31.05.2007, Pub. No. WO/2007/060811.

5. Пат. № 26996, UA, МПК C12P 23/00, C09B 61/00, C12R 1:89.Способ получения фукоксантина из водоросли цистозиры / Нехорошее М.В. (UA); заявитель Институт биологии южных морей им. А.О.Ковалевского НАН Украины (UA). - № 93007292; Заявл. 06.08.93, Опубл. 28.02.2000. Бюл. № 1.

Способ получения транс-фукоксантинола из кристаллического фукоксантина, включающий растворение фукоксантина, добавление раствора фукоксантина к буферному раствору и получение фукоксантинола с помощью фермента липазы, отличающийся тем, что применяют липазу, полученную из поджелудочной железы свиньи, фукоксантин растворяют в этиловом спирте до полного растворения, в раствор вводят альбумин и хлористый кальций в качестве эмульгатора, выдерживая смесь 5-10 ч при следующем соотношении компонентов, %:

Спиртовой 10%-ный раствор кристаллического фукоксантина 0,8-8,0
Липаза, выделенная из поджелудочной железы свиньи 0,01-0,5
4%-ный раствор хлористого кальция 1,0-10,0
Альбумин 0,01-0,1
Фосфатный буфер 105-525



 

Похожие патенты:

Изобретение относится к культивированию сине-зеленых микроскопических водорослей рода Spirulina с образованием водорослей желто-золотистого цвета с высоким содержанием каротиноидов.

Изобретение относится к биотехнологии и может быть использовано для выделения каротиноидов, в частности деиноксантина, который применяется для разработки новых антиоксидантных и радиопротекторных препаратов для повышения адаптационных возможностей человека и животных, профилактики и лечения заболеваний.

Изобретение относится к области микробиологии и микробной ферментации. .
Изобретение относится к области биотехнологии, а именно к получению биологически активного средства на основе ликопина. .
Изобретение относится к биотехнологии, в частности к микробиологии. .
Изобретение относится к биотехнологии. .

Изобретение относится к микробиологической промышленности. .
Изобретение относится к области биотехнологии, а именно к получению каротиноидных пигментов, и может быть использовано в микробиологической промышленности. .
Изобретение относится к области биотехнологии и касается производства витаминов и антиоксидантов, в частности производства ликопина, фосфолипидов, жирных кислот и эргостерина.

Изобретение относится к защите от окисления натуральных красителей посредством солюбилизата. Солюбилизат содержит по меньшей мере, один натуральный краситель, нерастворимый или трудно растворимый в воде, по меньшей мере, один эмульгатор с гидрофильно-липофильным балансом от 8 до 19, по меньшей мере, один водорастворимый антиокислитель и, по меньшей мере, один жирорастворимый антиокислитель.
Изобретение относится к пищевой промышленности, в частности к изготовлению пищевых концентратов полифенолов из выжимок винограда. Способ получения предусматривает смешивание виноградных выжимок с этиловым спиртом, отделение экстракта от твердой фазы и его концентрацию под вакуумом.

Изобретение относится к натуральным красителям из растительного природного окрашенного сырья, в частности к способу получения натурального каротиноидно-антоцианового красителя, предназначенного для окрашивания пищевых продуктов.

Изобретение может быть использовано в пищевой промышленности для производства натуральных антоциановых красителей. Способ получения антоцианового красителя из выжимок темных сортов ягод включает смешивание высушенного и измельченного сырья с экстрагентом - смесь воды и глицерина, взятых в массовом соотношении 1÷3, экстрагирование осуществляют при 90-98°С в течение 0,5-1 ч при перемешивании.
Изобретение относится к области пищевой промышленности, а именно к способу получения жирорастворимого пищевого красителя для окрашивания пищевых продуктов, а также к жирорастворимому пищевому красителю, полученному указанным способом.
Изобретение может быть использовано в пищевой промышленности, а именно в получении натуральной пищевой добавки - хлорофилла. Способ получения хлорофилла из высших водных растений включает мойку растительного сырья, измельчение, сушку сырья, экстракцию смесью гексана с этиловым спиртом, фильтрацию, отгонку растворителя, смешивание хлорофилла с маслом или с раствором NaOH в этаноле, и отделение хлорофилла в виде раствора.
Изобретение относится к красителям растительного происхождения, получаемым из окрашенной части растительных видов, клеточные ткани которой содержат иридисомы, ответственные за окрашивание указанной части.
Изобретение относится к пищевой промышленности, в частности к красящей композиции для продуктов, имитирующих крабовое мясо. .

Изобретение относится к способу получения стабильной композиции, обогащенной цис-ликопеном (Z-изомеры). .
Изобретение относится к пищевой промышленности. .
Изобретение относится к пищевой промышленности, в частности к пищевому красителю для окрашивания продуктов с большим содержанием воды в черные цвета. Пищевой краситель выполнен в форме дисперсионной системы, включающей частицы растительного угля, эмульгатор- Полисорбат 80 и водорастворимое вязкое вещество. Водорастворимое вязкое вещество имеет вязкость от 1400 Па·с до 4000 Па·с при 20°C и выбрается из глицерина, глюкозного сиропа и сахарного сиропа. Средний размер частиц растительного угля составляет 10-60 мкм. Описывается также способ получения указанного пищевого красителя перемешиванием компонентов красителя при скорости 2000-3000 оборотов в минуту в течение 20-30 минут. Изобретение обеспечивает улучшение потребительских характеристик пищевого красителя черного цвета, упрощение и эффективность окрашивания этим красителем продуктов. 2 н. и 3 з.п. ф-лы, 3 пр.
Наверх