Способ измерения параметров газовых и жидких сред

Изобретение относится к измерительной технике и может быть использовано для измерения параметров потоков жидкостей и газов.

Техническим результатом изобретения является повышение точности измерения и расширение функциональных возможностей способа.

Способ измерения параметров газовых и жидких сред датчиком температуры с подогревом по периодической функции, на фоне постоянной составляющей, включает фиксацию температуры датчика и мощности подогрева, а также использование градуировочных зависимостей параметров среды от параметров датчика. Согласно изобретению выполняют по три отсчета температуры датчика и мощности нагрева на одном периоде функции подогрева и параметры датчика и температуру среды определяют по формулам для интегрального коэффициента теплообмена

для теплоемкости датчика

для температуры среды

где θ(t) и θ'(t) - мгновенная температура датчика и ее производная;

P(t) - мгновенная мощность нагрева;

α - коэффициент теплообмена датчика со средой;

S - площадь поверхности датчика;

m - масса датчика;

с - удельная теплоемкость материала датчика.

 

Изобретение относится к измерительной технике и может быть использовано для измерения параметров потоков жидкостей и газов.

Известны способы измерения параметров потока (например, скорости) одним датчиком температуры, с постоянным или переменным подогревом, фиксацией изменения температуры датчика во времени и определением скорости потока по градуировочным характеристикам скорости от температуры датчика при заданной мощности нагрева в статическом режиме или скорости от параметра термической инерции (постоянной времени) датчика в динамическом режиме [1,2].

Недостатком этих способов является ограниченная точность из-за изменчивости температуры среды, значение которой не контролируется и не учитывается, и погрешности значения теплоемкости датчика, которая имеет технологический разброс при изготовлении, может измениться в процессе эксплуатации за счет коррозии и обрастания и не контролируется в процессе работы.

Прототипом предлагаемого способа принят способ измерения параметров газовых и жидких сред [2], заключающийся в пропускании через помещенный в контролируемую среду термочувствительный элемент периодически изменяющегося по синусоидальной функции на фоне постоянной составляющей электрического тока, контроле температуры термочувствительного элемента и определении измеряемого параметра по разностям фаз между переменными составляющими сигналов температуры термочувствительного элемента и тока нагрева.

Недостатком прототипа является отсутствие раздельного контроля интегрального коэффициента теплообмена и теплоемкости датчика и контроля температуры среды.

Такие признаки прототипа, как использование датчика температуры с подогревом периодическим током на фоне постоянной составляющей, фиксация температуры датчика и мощности подогрева, а также использование градуировочных зависимостей параметров среды от параметров датчика, совпадают с существенными признаками заявленного изобретения.

В основу изобретения поставлено решение задачи измерения параметров газовых и жидких сред с помощью датчика с подогревом периодическим током, при котором период периодической функции подогрева принимается настолько малым, что в его продолжительности изменением температуры среды и коэффициента теплообмена датчика со средой можно пренебречь, причем фиксацией температуры датчика и мощности подогрева в три момента времени на протяжении одного периода функции подогрева обеспечивается одновременное и раздельное определение интегрального коэффициента теплообмена датчика со средой, теплоемкости датчика и температуры среды.

Это обеспечивает технический результат изобретения - повышение точности измерения и расширение функциональных возможностей способа.

Поставленная задача решается тем, что в способе измерения параметров газовых и жидких сред датчиком температуры с подогревом по периодической функции на фоне постоянной составляющей, включающем фиксацию температуры датчика и мощности подогрева и использование градуировочных зависимостей параметров среды от параметров датчика, согласно изобретению, выполняют по три отсчета температуры датчика и мощности нагрева на одном периоде функции подогрева и параметры датчика, и температуру среды определяют по формулам для интегрального коэффициента теплообмена

для теплоемкости датчика

для температуры среды

где θ(t) и θ'(t) - мгновенная температура датчика и ее производная;

Ρ(t) - мгновенная мощность нагрева;

α - коэффициент теплообмена датчика со средой;

S - площадь поверхности датчика;

m - масса датчика;

с - удельная теплоемкость материала датчика.

Суть способа состоит в следующем. Датчик температуры, имеющий теплоемкость тс (т - масса, с - удельная теплоемкость материала) и площадь поверхности S, помещен в поток с температурой θc(t) и подогревается изнутри мгновенной мощностью P(t).

Для такого датчика справедливо уравнение теплового баланса

где θ(t) - мгновенная температура датчика, θ'(t) - мгновенная производная температуры датчика;

α(t) - мгновенный коэффициент теплообмена датчика со средой.

Значения α(t) связаны со значением скорости потока ν(t) градуировочной характеристикой ν(t)=φ[α(t)].

Обеспечивается переменный режим нагрева P(t), например, по синусоидальному закону на фоне постоянной составляющей. При этом период функции нагрева принимается такой, чтобы изменением температуры среды θc(t) и интегрального коэффициента теплообмена α(t)S можно было бы пренебречь, а амплитуды функции было достаточно для изменения температуры датчика с необходимым разрешением. Если нет ограничений на мощность нагрева, такой режим всегда осуществим.

В принципе, вместо синусоидальной функции возможно использование любой другой периодической функции, например, прямоугольной.

Для трех моментов времени на периоде функции подогрева фиксируются значения температуры датчика θ(t), ее производной θ'(t) и мощности нагрева P(t).

Из уравнения (1) можно записать

Решаем эту систему уравнений относительно неизвестных θc, αS и mc. Вычитая из первого уравнения второе и третье, получим

Из решения системы уравнений (3) получим

Из первого уравнения системы 1 для температуры среды получим

Целесообразно вычислять среднюю температуру среды по формуле

Пакет трех последовательных отсчетов θ(t), θ'(t) может выполняться как скользящим со сдвигом на один или два отсчета, так и последовательно без пауз или с паузами. Выбор того или иного режима отсчетов зависит от требований к точности измерений, изменчивости параметров среды и возможностей аппаратуры.

Последовательность отсчетов производных температуры датчика θ'(t) вычисляется из последовательности отсчетов температуры θ(t) известным способом по двум или более точкам.

Таким образом в предлагаемом способе определения параметров газовых и жидких сред с одним подогреваемым датчиком одновременно определяются температура среды, интегральный коэффициент теплообмена датчика со средой и теплоемкость датчика. Это повышает точность и расширяет функциональные возможности.

Использованные источники

1. Короткое П.А., Лондон Т.Е. Динамические контактные измерения тепловых величин. Л. "Машиностроение". Л.О., 1974. - 224 с.

2. Патент РФ № 1814731 на изобретение, кл. G01 Р5/12, G01 F1/68. Приоритет 20.12.88. Опубл. в бюл. РФ "Изобретения" №17, 1993. Ю.Н.Кабанов, А.Н.Семенов. Способ измерения параметров газовых и жидких сред - прототип.

Способ измерения параметров газовых и жидких сред датчиком температуры с подогревом по периодической функции на фоне постоянной составляющей, включающий фиксацию температуры датчика и мощности подогрева и использование градуировочных зависимостей параметров среды от параметров датчика, отличающийся тем, что выполняют по три отсчета температуры датчика и мощности нагрева на одном периоде функции подогрева, и параметры датчика и температуру среды определяют по формулам для интегрального коэффициента теплообмена

для теплоемкости датчика

для температуры среды

где θ(t) и θ'(t) - мгновенная температура датчика и ее производная;
P(t) - мгновенная мощность нагрева;
α - коэффициент теплообмена датчика со средой;
S - площадь поверхности датчика;
m - масса датчика;
с - удельная теплоемкость материала датчика.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры в потоках газов и жидкостей. Предлагается устройство термоанемометра, в котором на одной оптической оси последовательно друг за другом расположены источник света, ТЧЭ в виде терморезистивной структуры с внешними электрическими выводами и пластина, выполняющая роль отражающей поверхности.

Изобретение относится к области приборостроения и может быть использовано при выполнении анемометрических измерений. Заявлен анемометрический зонд с проволочкой или с n (n≥1) проволочками, параллельными между собой, для измерения вблизи стенки, содержащий для каждой проволочки два стержня (4, 6) крепления проволочки.

Изобретение относится к устройству и способу измерения скорости, направления и ориентации течения газообразной текучей среды, такой, например, как воздух. .

Изобретение относится к области исследования скважин и может быть использовано при контроле разработки нефтяных месторождений. .

Изобретение относится к устройству измерения потока для определения направления потока флюида. .

Изобретение относится к устройству измерения потока для определения направления потока флюида. .

Изобретение относится к области исследования скважин и может быть использовано для определения скорости потока жидкости в скважинах при контроле разработки нефтяных месторождений.

Изобретение относится к технике приборостроения. .

Изобретение относится к способам определения скорости течения и может быть использовано в гидрологии. .

Изобретение относится к измерительной технике и может использоваться для определения скорости однофазного потока жидкости в стационарных и переходных режимах. .

Изобретение относится к термоанемометрическим средствам измерения скорости и направления потока жидкости или газа и может быть применено при исследовании различных сред, в том числе агрессивных, в любых водоёмах и в атмосфере. Технический результат каждого из изобретений, входящих в заявленную группу - повышение чувствительности. При этом обеспечивается значительное снижение энергозатрат на измерения. Сущность изобретения: используют расположенные в рабочей зоне измерителя в двух ортогональных плоскостях две пары подогреваемых датчиков температуры и вычисляют разность значений температур датчиков в каждой паре, измеряют температуру потока расположенным в рабочей зоне неподогреваемым датчиком, определяют скорость потока по разности среднеарифметического значения температур четырех подогреваемых датчиков и значения температуры неподогреваемого датчика, и определяют направление потока α в выбранной относительно плоскостей расположения пар датчиков системе координат по выражению при ΔТ2>0 α = 0°-180°; при ΔТ2<0 а=180°-360°, где Т1, Т2 и Т3, Т4 - значения температур подогреваемых датчиков соответственно в первой и второй парах. Сущность изобретения-устройства: термоанемометрический измеритель скорости и направления потока жидкости или газа содержит закрепленный в приборе (2) и имеющий контакт с потоком корпус (1) в виде тонкостенного полого цилиндра, который выполнен из теплопроводящего материала, наполнен заполнителем (3) в виде теплоизоляционного материала или воздуха и закрыт крышкой (10), которая выполнена куполообразной из теплоизоляционного материала. Расположенные в рабочей зоне измерителя в поперечной плоскости корпуса (1) в двух ортогональных плоскостях две пары подогреваемых датчиков температуры (4, 6 и 5, 7), которые имеют непосредственный тепловой контакт с внутренней стенкой корпуса (1), и выводы которых подключены к измерительному блоку прибора. Нагреватель (8), который имеет непосредственный тепловой контакт с корпусом (1). Закрепленный на оси крышки (9) расположенный в рабочей зоне и имеющий непосредственный контакт с потоком неподогреваемый датчик температуры (10), вывод которого подключен к измерительному блоку прибора. 2 н. п. ф-лы, 4 ил.

Изобретение может быть использовано для измерения скорости течений и ветра, а также расхода жидкостей и газа в трубопроводах. Технический результат - повышение точности, упрощение технической реализации способа измерения скорости потока и расширение областей применения. Сущность: для измерения скорости направленного потока используют первичный измерительный преобразователь меток в потоке с равномерно распределенной измерительной базой известной длины L, размещают измерительную базу в потоке под известным острым углом α к направлению потока, подают выходной сигнал R(t) первичного, измерительного преобразователя через вторичный измерительный преобразователь на спектроанализатор, вычисляют известным способом текущую за время Τ функцию спектральной плотности сигнала SR(f). В силу того, что распределенный первичный измерительный преобразователь осуществляет скользящее осреднение на базе L и на отрезке времени сигнала меток в потоке, функция SR(f) будет иметь минимумы (нули) на дискретных частотах fi в порядке возрастания , причем . Определяют частоты fi по функции SR(f), вычисляют среднюю за время T скорость потока по формуле При использовании в качестве меток в потоке неоднородностей температуры, коэффициента теплообмена (зависящего от пульсаций скорости, плотности, теплоемкости, теплопроводности, кинематической вязкости потока), пульсаций гидростатического давления, неоднородности удельной электропроводимости, коэффициентов ослабления света и звука - используют соответствующие распределенные первичные измерительные преобразователи меток в электрический сигнал. 17 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения физических параметров и скорости потоков жидкостей и газов. Техническим результатом изобретения является повышение точности измерения и повышение быстродействия способа. Суть способа состоит в том, что в потоке локально устанавливают три идентичных терморезисторных элемента с подогревом - охлаждением управляемыми контролируемыми источниками разной переменной мощности, измеряют сопротивления терморезисторных элементов во времени, определяют мгновенные значения температуры терморезисторных элементов и их производных, определянэт мгновенное значение параметра потока по градуировочной зависимости от интегрального коэффициента теплообмена a(t)S тер-морезисторного элемента со средой или по градуировочной зависимости от теплоемкости тс терморезисторного элемента, которые вычисляют.по формулам где θ1(t), θ2(t) и θ3(t) - мгновенные температуры первого, второго и третьего терморезисторных элементов; θ1'(t), θ2'(t) и θ3'(t) - мгновенные производные температур первого, второго и третьего терморезисторных элементов; Ρ1(t), Ρ2(t) и Ρ3(t) - мгновенные мощности нагрева первого, второго и третьего терморезисторных элементов, температуру потока θc(t) определяют по формуле.

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры потока неоднородных, химически агрессивных и абразивосодержащих газов. Предлагается устройство в виде тепловой микросистемы, выполненной из полупроводникового материала и состоящей из площадки круглой формы и конструктивно связанной с ней ножки, содержащей по крайней мере одно сквозное отверстие. Поверхность круглой площадки с двух сторон в пределах периметра содержит электропроводящий слой, в состав которого входят атомы Ni, Au, Ta, W, Al, Ti, Sb, Nb, Pt, Cr, Hf, Mo, Zr с внешними электрическими выводами и охранное кольцо в виде мезопланарной структуры. Также на ножке в пределах периметра содержится электропроводящий слой, в состав которого входят атомы Ni, Au, Ta, W, Al, Ti, Sb, Nb, Pt, Cr, Hf, Mo, Zr с внешними электрическими выводами и охранное кольцо в виде мезопланарной структуры. Кроме того, тепловая микросистема может содержать элементы электрической коммутации. Технический результат - повышение точности и достоверности получаемых результатов. 2 ил.
Наверх