Способ испытания турбин и стенд для его реализации

Изобретение относится к области машиностроения и предназначено для проведения испытаний турбин. Испытания паровых и газовых турбин энергетических и энергодвигательных установок на автономных стендах являются эффективным средством опережающей отработки новых технических решений, позволяющим сократить объем, стоимость и общие сроки работ по созданию новых энергоустановок. Технической задачей, решаемой предлагаемым изобретением, является исключение необходимости удаления отработавшей в гидротормозе во время испытаний рабочей жидкости; снижение периодичности регламентных работ с гидротормозом; создание возможности изменения характеристик испытываемой турбины в широком диапазоне во время проведения испытаний. Способ осуществляется с помощью стенда, содержащего испытываемую турбину с системой подачи рабочего тела, гидротормоз с трубопроводами подачи и отведения рабочей жидкости, в котором согласно изобретению используется емкость с системой заправки рабочей жидкостью, всасывающую и нагнетательную магистрали жидкостного нагрузочного насоса с вмонтированной в них системой датчиков, отградуированных на показания мощности испытываемой турбины, при этом в нагнетательной магистрали установлено дросселирующее устройство и/или пакет дросселирующих устройств, а в качестве гидротормоза используется жидкостный нагрузочный насос, вал которого кинематически связан с испытываемой турбиной, причем рабочая жидкость в жидкостный нагрузочный насос подается по замкнутому циклу с возможностью ее частичного сброса и подвода в контур во время проведения испытаний. 2 н. и 4 з.п. ф-лы, 1 ил.

 

Изобретение относится к области машиностроения и предназначено для проведения испытаний турбин.

Испытания паровых и газовых турбин энергетических и энергодвигательных установок на автономных стендах являются эффективным средством опережающей отработки новых технических решений, позволяющим сократить объем, стоимость и общие сроки работ по созданию новых энергоустановок.

Опыт создания современных энергоустановок свидетельствует о том, что большая часть экспериментальных работ переносится на поузловые испытания и их доводку.

Известен способ испытания турбин, основанный на поглощении и измерении мощности, развиваемой турбиной, с помощью гидротормоза, а частоту вращения ротора турбины в процессе испытаний, при заданных величинах параметров воздуха на входе в турбину, поддерживают путем изменения загрузки гидротормоза за счет регулирования количества подаваемой в балансирный статор гидротормоза воды, а заданное значение степени понижения давления турбины обеспечивают путем изменения положения дроссельной заслонки, установленной на выходном воздуховоде стенда (см. журнал Вестник ПНИПУ. Аэрокосмическая техника. №33, статья В.М. Кофман «Методика и опыт определения КПД турбин ГТД по результатам их испытаний на турбинном стенде» Уфимский Государственный авиационный университет 2012 г. - Прототип).

Недостатком известного способа является необходимость проведения частых переборок и промывок внутренних полостей гидротормоза вследствие выпадения гидроокиси из технической воды, используемой в качестве рабочей жидкости, необходимость удаления отработавшей в гидротормозе во время испытаний рабочей жидкости, возможность возникновения кавитации гидротормоза при регулировании его загрузки и, следовательно, поломки гидротормоза.

Известен стенд для испытания насосов, содержащий бак, систему трубопроводов, измерительные приборы и устройства (см. патент РФ №2476723, MПK F04D 51/00, по заявке №2011124315/06 от 16.06.2011 г.).

Недостатком известного стенда является отсутствие возможности проведения испытаний турбин.

Известен стенд для испытаний турбин в натурных условиях, содержащий гидротормоз, ресивер подвода сжатого воздуха, камеру сгорания, испытываемую турбину (см. краткий курс лекций «Испытания и обеспечение надежности авиационных ГТД и энергетических установок», Григорьев В.А., Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет» Самара 2011 г.)).

Недостатком известного стенда является необходимость проведения частых переборок и промывок внутренних полостей гидротормоза вследствие выпадения гидроокиси из технической воды, используемой в качестве рабочей жидкости, отсутствие возможности изменения характеристик испытываемой турбины в широком диапазоне во время проведения испытаний, необходимость удаления отработавшей в гидротормозе во время испытаний рабочей жидкости.

Известен стенд для испытания газотурбинных двигателей, содержащий испытываемый двигатель, состоящий из турбины и системы подачи рабочего тела, гидротормоз с трубопроводами подачи и отведения воды, регулируемую задвижку и рейтерные весы (см. методические указания «Автоматизированная процедура метрологического анализа системы измерения крутящего момента при испытаниях ГТД» Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Самарский государственный аэрокосмический университет имени академика СП. Королева (национальный исследовательский университет)» Самара 2011 г. - Прототип).

Недостатком известного стенда является необходимость проведения частых переборок и промывок внутренних полостей гидротормоза вследствие выпадения гидроокиси из технической воды, используемой в качестве рабочей жидкости, отсутствие возможности изменения характеристик испытываемой турбины в широком диапазоне во время проведения испытаний, необходимость удаления отработавшей в гидротормозе во время испытаний рабочей жидкости, возможность возникновения кавитации гидротормоза при регулировании его загрузки и, следовательно, поломки гидротормоза.

Технической задачей, решаемой предлагаемым изобретением, является:

- исключение необходимости удаления отработавшей в гидротормозе во время испытаний рабочей жидкости;

- снижение периодичности регламентных работ с гидротормозом;

- создание возможности изменения характеристик испытываемой турбины в широком диапазоне во время проведения испытаний.

Данная техническая задача решается тем, что при известном способе испытания турбин, основанном на измерении поглощаемой гидротормозом мощности, развиваемой турбиной, и поддержании частоты вращения ротора испытываемой турбины в процессе испытаний, при заданных величинах параметров рабочего тела на входе в испытываемую турбину, за счет регулирования количества подаваемой в гидротормоз рабочей жидкости, согласно изобретению в качестве гидротормоза используют кинематически связанный с испытываемой турбиной жидкостный нагрузочный насос, расход выходящей рабочей жидкости из которого дросселируют и/или регулируют, изменяя его характеристики, а функционирование жидкостного нагрузочного насоса осуществляют по замкнутому циклу с возможностью работы с частичным сбросом и подводом рабочей жидкости в контур во время проведения испытаний, причем характеристики испытываемой турбины определяют по измеряемым характеристикам жидкостного нагрузочного насоса.

Способ осуществляется с помощью стенда, содержащего испытываемую турбину с системой подачи рабочего тела, гидротормоз с трубопроводами подачи и отведения рабочей жидкости, в котором согласно изобретению используется емкость с системой заправки рабочей жидкостью, всасывающую и нагнетательную магистрали жидкостного нагрузочного насоса с вмонтированной в них системой датчиков, отградуированных на показания мощности испытываемой турбины, при этом в нагнетательной магистрали установлено дросселирующее устройство и/или пакет дросселирующих устройств, а в качестве гидротормоза используется жидкостный нагрузочный насос, вал которого кинематически связан с испытываемой турбиной, причем рабочая жидкость в жидкостный нагрузочный насос подается по замкнутому циклу с возможностью ее частичного сброса и подвода в контур во время проведения испытаний.

Помимо того, для реализации способа согласно изобретению в качестве источника рабочего тела для испытываемой турбины используется парогенератор с системой подачи компонентов топлива и рабочей среды, например водородно-кислородный или метаново-кислородный.

Также для реализации способа согласно изобретению в нагнетательном трубопроводе нагрузочного насоса установлен регулятор расхода рабочей жидкости.

Кроме того, для реализации способа согласно изобретению в качестве рабочей жидкости в жидкостном нагрузочном насосе используется химически подготовленная вода.

Дополнительно, для реализации способа согласно изобретению в систему заправки емкости рабочей жидкостью включен блок ее химической подготовки.

Указанная совокупность признаков проявляет новые свойства, заключающиеся в том, что благодаря ей появляется возможность снизить периодичность регламентных работ с жидкостным нагрузочным насосом, используемым в качестве гидротормоза, исключить необходимость удаления отработавшей в гидротормозе во время испытаний рабочей жидкости, создать возможность изменения в широком диапазоне характеристик испытываемой турбины за счет изменения характеристик жидкостного нагрузочного насоса.

Принципиальная схема стенда для испытания турбин показана на фиг.1, где

1 - система заправки рабочей жидкостью емкости;

2 - блок химической подготовки рабочей жидкости;

3 - емкость;

4 - система наддува емкости с рабочей жидкостью;

5 - клапан;

6 - всасывающая магистраль;

7 - нагнетательная магистраль;

8 - жидкостный нагрузочный насос;

9 - система подачи рабочего тела в испытываемую турбину;

10 - испытываемая турбина;

11 - парогенератор;

12 - система подачи компонентов топлива и рабочей среды;

13 - пакет дросселирующих устройств;

14 - регулятор расхода рабочей жидкости;

15 - датчик давления;

16 - датчик температуры;

17 - датчик регистрации расхода рабочей жидкости;

18 - датчик вибрации;

19 - фильтр;

20 - клапан.

Стенд для испытания турбин состоит из системы заправки рабочей жидкостью 1 с блоком химической подготовки рабочей жидкости 2, емкости 3, системы наддува емкости с рабочей жидкостью 4, клапана 5, всасывающей 6 и нагнетательной 7 магистралей, жидкостного нагрузочного насоса 8, системы подачи рабочего тела 9 в испытываемую турбину 10, парогенератора 11, системы подачи компонентов топлива и рабочей среды 12, пакета дросселирующих устройств 13, регулятора расхода рабочей жидкости 14, датчиков давления, температуры, регистрации расхода рабочей жидкости и вибрации 15, 16, 17, 18, фильтра 19 и клапана 20.

Принцип работы стенда для испытаний турбин заключается в следующем.

Работа стенда для испытаний турбин начинается с того, что по системе заправки рабочей жидкостью 1 с использованием блока 2 химически подготовленная вода, используемая в качестве рабочей жидкости, поступает в емкость 3. После заполнения емкости 3 через систему 4 проводится ее наддув нейтральным газом до необходимого давления. Затем при открытии клапана 5 проводится заполнение рабочей жидкостью всасывающей 6, нагнетательной 7 магистралей и жидкостного нагрузочного насоса 8.

В дальнейшем по системе 9 рабочее тело подается на лопатки испытываемой турбины 10.

В качестве устройства генерации рабочего тела испытываемой турбины используется парогенератор 11 (например, водородо-кислородный или метаново-кислородный), в который по системе 12 подаются компоненты топлива и рабочей среды. При сгорании компонентов топлива в парогенераторе 11 и добавлении рабочей среды образуется высокотемпературный пар, который используется в качестве рабочего тела испытываемой турбины 10.

При попадании рабочего тела на лопатки испытываемой турбины 10 ее ротор, кинематически связанный с валом жидкостного нагрузочного насоса 8, приходит в движение. Крутящий момент с ротора испытываемой турбины 10 передается на вал жидкостного нагрузочного насоса 8, последний из которых используется в качестве гидротормоза.

Давление химически подготовленной воды после жидкостного нагрузочного насоса 8 срабатывается с использованием пакета дросселирующих устройств 13. Для изменения расхода химически подготовленной воды через жидкостный нагрузочный насос 8 в нагнетательном трубопроводе 7 установлен регулятор расхода рабочей жидкости 14. Характеристики жидкостного нагрузочного насоса 8 определяются согласно показаниям датчиков 15, 16, 17. Вибрационные характеристики жидкостного нагрузочного насоса 8 и испытываемой турбины 10 определяют датчиками 18. Фильтрация химически подготовленной воды при работе стенда осуществляется через фильтр 19, а ее слив из емкости 3 выполняется через клапан 20.

Для предотвращения перегрева рабочей жидкости в контуре жидкостного нагрузочного насоса 8 при длительных испытаниях турбины возможен ее частичный сброс при открытии клапана 20, а также подвод дополнительной через систему заправки рабочей жидкостью 1 емкости 3 во время проведения испытания.

Таким образом, благодаря использованию изобретения исключается необходимость удаления рабочей жидкости после жидкостного нагрузочного насоса, используемого в качестве гидротормоза, появляется возможность сократить межпусковые регламентные работы на испытательном стенде и при проведении испытаний получить расширенную характеристику испытываемой турбины.

1. Способ испытания турбин, основанный на измерении поглощаемой гидротормозом мощности, развиваемой турбиной, и поддержании частоты вращения ротора испытываемой турбины в процессе испытаний, при заданных величинах параметров рабочего тела на входе в испытываемую турбину, за счет регулирования количества подаваемой в гидротормоз рабочей жидкости, отличающийся тем, что в качестве гидротормоза используют кинематически связанный с испытываемой турбиной жидкостный нагрузочный насос, расход выходящей рабочей жидкости из которого дросселируют и/или регулируют, изменяя его характеристики, а функционирование жидкостного нагрузочного насоса осуществляют по замкнутому циклу с возможностью работы с частичным сбросом и подводом рабочей жидкости в контур во время проведения испытаний, причем характеристики испытываемой турбины определяют по измеряемым характеристикам жидкостного нагрузочного насоса.

2. Стенд для реализации способа по п.1, содержащий испытываемую турбину с системой подачи рабочего тела, гидротормоз с трубопроводами подачи и отведения рабочей жидкости, отличающийся тем, что он содержит емкость с системой заправки рабочей жидкостью, всасывающую и нагнетательную магистрали жидкостного нагрузочного насоса с вмонтированной в них системой датчиков, отградуированных на показания мощности испытываемой турбины, при этом в нагнетательной магистрали установлено дросселирующее устройство и/или пакет дросселирующих устройств, а в качестве гидротормоза используется жидкостный нагрузочный насос, вал которого кинематически связан с испытываемой турбиной, причем рабочая жидкость в жидкостный нагрузочный насос подается по замкнутому циклу с возможностью ее частичного сброса и подвода в контур во время проведения испытаний.

3. Стенд по п.2, отличающийся тем, что в качестве источника рабочего тела для испытываемой турбины используется парогенератор с системой подачи компонентов топлива и рабочей среды, например водородно-кислородный или метаново-кислородный.

4. Стенд по п.2, отличающийся тем, что в нагнетательном трубопроводе жидкостного нагрузочного насоса установлен регулятор расхода рабочей жидкости.

5. Стенд по п.2, отличающийся тем, что в качестве рабочей жидкости в жидкостном нагрузочном насосе используется химически подготовленная вода.

6. Стенд по п.2, отличающийся тем, что в систему заправки емкости рабочей жидкостью включен блок ее химической подготовки.



 

Похожие патенты:

Изобретение может быть использовано в процессе определения технического состояния топливного фильтра (Ф) тонкой очистки дизеля. Способ заключается в измерении давления топлива в двух точках топливной системы дизеля, первое из давлений PТН измеряется на входе в Ф тонкой очистки топлива, второе давление PТД - на выходе из Ф.

Способ контроля технического состояния и обслуживания газотурбинного двигателя с форсажной камерой сгорания. Способ включает измерение давления топлива в коллекторе форсажной камеры сгорания двигателя, которое проводят периодически, сравнение полученного значения давления топлива в коллекторе форсажной камеры сгорания двигателя с максимально допустимым, которое предварительно задают для данного типа двигателей, и при превышении последнего проведения очистки коллектора и форсунок форсажной камеры, при этом среду из его внутренней полости принудительно откачивают с помощью откачивающего устройства, например вакуумного насоса, а давление, создаваемое откачивающим устройством, периодически изменяют.

Изобретение относится к радиолокации и может быть использовано для измерения амплитудных диаграмм обратного рассеяния авиационного турбореактивного двигателя. Стенд для измерения амплитудных диаграмм обратного рассеяния авиационных турбореактивных двигателей содержит поворотную платформу, приемное, передающее и регистрирующее устройства радиолокационной станции, измеритель углового положения платформы, переднюю и по крайней мере одну заднюю стойки с размещенным на них объектом исследования.

Изобретение относится к области диагностики, а именно к способам оценки технического состояния роторных агрегатов, и может быть использовано при оценке состояния подшипниковых узлов, например колесно-моторных блоков (КМБ) подвижного состава железнодорожного транспорта.

Изобретение может быть использовано в топливных системах двигателей внутреннего сгорания транспортных средств. Транспортное средство содержит топливную систему (31), имеющую топливный бак (32) и бачок (30), диагностический модуль, имеющий контрольное отверстие (56), датчик (54) давления, клапан-распределитель (58), насос (52) и контроллер.

Изобретение относится к техническому обслуживанию автотранспортных машин, в частности к способам определения экологической безопасности технического обслуживания автомобилей, тракторов, комбайнов и других самоходных машин.

Изобретение может быть использовано для диагностики двигателей внутреннего сгорания (ДВС). Способ заключается в записи шумов в цилиндре ДВС.
Изобретение может быть использовано для диагностики топливной аппаратуры высокого давления дизельных автотракторных двигателей в условиях эксплуатации. Способ определения технического состояния топливной аппаратуры дизельного двигателя, заключается в том, что на работающем двигателе получают зависимости изменения давления топлива в топливопроводе высокого давления и сравнивают эти зависимости с эталонными.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Газотурбинный двигатель выполнен двухконтурным, двухвальным.

Изобретение относится к испытательным стендам для определения характеристик и границы устойчивой работы компрессора в составе газотурбинного двигателя. Для смещения рабочей точки по характеристике ступени компрессора к границе устойчивой работы необходимо ввести рабочее тело (воздух) в межлопаточный канал направляющего аппарата исследуемой ступени компрессора. Рабочее тело подается непосредственно в межлопаточный канал исследуемой ступени с помощью струйной форсунки с косым срезом. Расход рабочего тела регулируется при помощи дроссельной заслонки. Также рабочее тело может подаваться в полую лопатку направляющего аппарата исследуемой ступени и выходить в проточную часть через специальную систему отверстий на поверхности профиля, вызывая отрыв пограничного слоя. Позволяет исследовать характеристики отдельных ступеней осевого компрессора в составе ГТД, производить исследование режимов работы ступени осевого компрессора на границе устойчивой работы без негативных воздействий на элементы исследуемого двигателя. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение может быть использовано для диагностирования работоспособности системы завихрения воздуха во впускном трубопроводе двигателя (1) внутреннего сгорания (ДВС). Способ заключается в определении положения подвижного вала (140) привода (ПВП) с использованием механического стопора (18) для действия на элемент (13) кинематической цепи, чтобы ограничить перемещение ПВП в первом направлении (А) в первом контрольном положении (СР1) и проверку с помощью детектирующего средства (141) определения положения, остановился ли ПВП в первом контрольном положении (СР1) или вышел за его пределы. Приведены дополнительные приемы способа. Описано устройство для реализации способа. Технический результат заключается в повышении точности диагностирования работоспособности. 2 н. и 12 з.п. ф-лы.

Изобретение может быть использовано для контроля угловых параметров газораспределительного механизма (ГРМ) двигателя внутреннего сгорания (ДВС) при обкатке на стенде отремонтированного ДВС и при ресурсном диагностировании в эксплуатации. Устройство для диагностирования ГРМ ДВС содержит угломер для измерения угла поворота коленчатого вала (КВ) от момента начала открытия впускного клапана первого опорного цилиндра (ПОЦ) до положения вала, соответствующего верхней мертвой точке (ВМТ) ПОЦ, диск с градуированной шкалой, соединенный с КВ ДВС, неподвижную стрелку-указатель (СУ), установленную так, чтобы острие СУ находилось напротив градуированной шкалы вращающегося диска. Устройство содержит датчик положения КВ, соответствующего ВМТ ПОЦ, и датчик положения клапана, стробоскоп, с высоковольтным трансформатором и разрядником, управляемыми через блок управления (БУ) датчиком положения КВ. Каждый датчик положения клапана посредством БУ подключается к блоку питания (БП) и обеспечивает при смене своего положения формирования светового импульса стробоскопа относительно неподвижной СУ. Разность фиксированных значений при работе датчика клапана и при работе датчика ВМТ соответствует числовому значению угла поворота КВ от момента начала открытия клапана до момента, соответствующего приходу в ВМТ поршня первого цилиндра. Технический результат заключается в уменьшении погрешности измерений. 1 ил.

Изобретение относится к машиностроению и может найти применение в испытательной технике, а именно в стендах для испытания машин, их агрегатов, углов и деталей. Механизм загрузки крутящим моментом (1) содержит узел зубчатой передачи (2) и узел исполнительного механизма (3). Узел зубчатой передачи (2) включает в себя внутреннюю часть (4) и наружные части (5) и (6). Внутренняя часть (4) содержит зубчатые колеса (17) и (18), которые в сборе друг с другом имеют резьбовые отверстия для специальных технологических винтов (66) и (67). Наружные части (5) и (6) содержат зубчатые колеса (29) и (31), в диафрагмах которых (28), (30) и (34) выполнены отверстия, которые позволяют разместить в них специальные технологические болты (70) с гайками (71) для жесткого крепления зубчатых колес (29) и (31) от вращения друг относительно друга с целью выполнения динамической балансировки. Достигается крутящий момент до 20000 Н·м при частоте вращения входного вала до 4500 об/мин с обеспечением низкого уровня вибрации. 3 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ТРД. На стадии доводки опытный ТРД подвергают испытанию по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний на стадии доводки опытных ТРД и расширении репрезентативности оценки ресурса и надежности работы ТРД в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 5 з.п. ф-лы, 2 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ГТД. Обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или несоответствующих требуемым параметрам модуль - от компрессора низкого давления до всережимного поворотного реактивного сопла, включающего регулируемое реактивное сопло и разъемно прикрепленное к форсажной камере сгорания поворотное устройство, ось вращения которого выполнена повернутой относительно горизонтальной оси на угол не менее 30°. В программу испытаний с последующей доводочной доработкой включают испытания двигателя на определение влияния климатических условий на изменение эксплуатационных характеристик опытного ГТД. Испытания проведены с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей, и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Технический результат состоит в повышении эксплуатационных характеристик ГТД, а именно тяги и надежности двигателя в процессе эксплуатации в полном диапазоне полетных циклов в различных климатических условиях, а также в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ГТД на стадии доводки опытного ГТД. 3 з.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным. Ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30° по часовой стрелке для правого двигателя и на угол не менее 30° против часовой стрелки для левого двигателя. Двигатель испытан по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5-6 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний и расширении репрезентативности оценки ресурса и надежности работы турбореактивного двигателя в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 8 з.п. ф-лы, 1 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ГТД. В программу испытаний с последующей доводочной доработкой включают испытания двигателя на определение влияния климатических условий на изменение эксплуатационных характеристик опытного ГТД. Испытания проведены с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Технический результат состоит в повышении эксплуатационных характеристик ГТД, а именно тяги, экспериментально проверенным ресурсом, и надежности двигателя в процессе эксплуатации в полном диапазоне полетных циклов в различных климатических условиях, а также в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ГТД на стадии доводки опытного ГТД. 3 з.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства газотурбинного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного регулируемого реактивного сопла. После сборки производят испытания двигателя по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний на этапе серийного производства и расширении репрезентативности оценки ресурса и надежности работы газотурбинного двигателя в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 2 н. и 11 з.п. ф-лы, 2 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ТРД. В программу испытаний с последующей доводочной доработкой включают испытания двигателя на определение влияния климатических условий на изменение эксплуатационных характеристик опытного ТРД. Испытания проводят с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Технический результат состоит в повышении эксплуатационных характеристик ТРД, а именно тяги, экспериментально проверенным ресурсом, и надежности двигателя в процессе эксплуатации в полном диапазоне полетных циклов в различных климатических условиях, а также в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ТРД на стадии доводки опытного ТРД. 3 з.п. ф-лы, 2 ил.
Наверх