Способ получения супермногослойных разнородных материалов с наноразмерной структурой слоев

Изобретение может быть использовано для изготовления супермногослойных листовых полуфабрикатов на основе разнородных материалов. В качестве исходных заготовок используют листы из сплавов разнородных металлов, взаимно растворимых друг в друге в интервале температуры нагрева при горячей обработке давлением. После мерной резки исходных заготовок из металлических листов проводят обработку их поверхностей и сборку нарезанных заготовок в пакет. Сборку осуществляют с расположением между листами из металлов с более низкой температурой плавления листа металла с более высокой температурой плавления, который при нагреве служит барьером для прохождения рекристаллизации в пределах толщины одного слоя для формирования наноразмерной структуры. Осуществляют горячую обработку давлением пакета путем его нагрева и прокатки в диапазоне температур прохождения рекристаллизации, соответствующем материалу с наименьшей температурой плавления. Повторяют упомянутые технологические операции до получения многослойного листа с заданным числом слоев и требуемой толщины. Способ обеспечивает получение многослойных листовых материалов с наноразмерной структурой без использования операции вакуумирования.

 

Изобретение относится к области обработки металлов давлением и может быть использовано для изготовления супермногослойных листовых полуфабрикатов с наноразмерной структурой на основе разнородных материалов с требуемыми прочностными характеристиками и необходимой структурой в процессе горячего пластического деформирования.

Известен способ получения супермногослойных разнородных материалов с наноразмерной структурой слоев, включающий мерную резку исходных заготовок из листов, обработку их поверхностей, сборку нарезанных заготовок в пакет, горячую обработку давлением пакета путем его нагрева и прокатки с последующим повторением данных технологических операций по получению супермногослойного листа с заданным числом слоев и требуемой толщиной (см., напр., патент РФ №2380234, B32B 15/00, опубл. 27.01.2010).

Существенным недостатком известного способа является проведение технологической операции вакуумирования, значительно усложняющей из-за своих технических особенностей и занимающей большую продолжительность всего цикла обработки.

В основу изобретения поставлена задача усовершенствования известного способа для получения супермногослойных разнородных материалов с наноразмерной структурой слоев с одновременным исключением операции вакуумирования.

Поставленная задача решается тем, что в способе получения супермногослойных разнородных материалов с наноразмерной структурой слоев, включающем мерную резку исходных заготовок из листов, обработку их поверхностей, сборку нарезанных заготовок в пакет, горячую обработку давлением пакета путем его нагрева и прокатки с последующим повторением данных технологических операций по получению супермногослойного листа с заданным числом слоев и требуемой толщиной, в качестве исходных заготовок используют листы из сплавов разнородных материалов, взаимно растворимых друг в друге в интервале температур горячей обработки давлением, которые укладывают в пакет с расположением слоев в следующей последовательности таким образом, что лист материала с высокой температурой плавления, который служит барьером для прохождения рекристаллизации в пределах толщины одного слоя, благодаря чему возможно формирование наноразмерной структуры, располагают между листами из материалов с низкой температурой плавления, причем пакет содержит не менее трех слоев этих материалов, при этом пластическую деформацию пакета проводят в диапазоне температур прохождения рекристаллизации по одному из материалов, имеющих наименьшую температуру плавления.

Поскольку в качестве исходных заготовок используют листы из сплавов разнородных материалов, взаимно растворимых друг в друге в интервале температур горячей обработки давлением, которые укладывают в пакет с расположением слоев в следующей последовательности таким образом, что лист материала с высокой температурой плавления, который служит барьером для прохождения рекристаллизации к пределах толщины одного слоя, благодаря чему возможно формирование наноразмерной структуры, располагают между листами из материалов с низкой температурой плавления, причем пакет содержит не менее трех слоев этих материалов, при этом пластическую деформацию пакета проводят в диапазоне температур прохождения рекристаллизации по одному из материалов, имеющих наименьшую температуру плавления, обеспечивается получение супермногослойных разнородных материалов с наноразмерной структурой слоев с одновременным исключением операции вакуумирования.

Способ получения супермногослойных разнородных материалов с наноразмерной структурой слоев осуществляют в общем виде следующим образом.

Из исходных листовых материалов вырезают мерные заготовки с одинаковыми размерами в плане. Обработку поверхности проводят для удаления технологической смазки, поверхностных загрязнений, оксидных пленок и могут осуществлять как механическими, химическими способами, так и их комбинацией. После обработки поверхности осуществляют сборку нарезанных листов в пакет. Листы в пакете закрепляются при помощи заклепок.

После сборки пакета его нагревают в печи до температуры, при которой активно протекают процессы рекристаллизации в материале с низкой температурой плавления. При сборке пакетов из материалов, подверженных сильному окислению при нагреве, пакеты следует нагревать в технологической оболочке, например, из алюминиевой фольги. Затем нагретый пакет пластически деформируют в валках прокатного стана до толщины, равной или меньшей толщины слоя, входящего в пакет. Минимально возможная толщина ограничена теплофизическими свойствами прокатываемого материала и зависит от его способности сохранять заданный интервал температуры за время деформирования.

При достижении конечной толщины прокатанную заготовку режут на мерные части с удалением боковых кромок и очищают от окислов. Вновь сформированный пакет, состоящий из полученных многослойных листовых заготовок, повторно (возможно неоднократно) подвергают описанному циклу обработки.

Результатом многократно повторенного технологического цикла является плоская заготовка заданного размера, в поперечном сечении которой расположены чередующиеся слои требуемой толщины в определенной последовательности твердый-мягкий-твердый (Т-М-Т) или мягкий-твердый-мягкий (М-Т-М), отличающиеся друг от друга характером проработки структуры и глубиной проникновения диффузии относительно зоны контакта. При этом полученный супермногослойный композиционный материал на завершающей стадии можно подвергнуть комплексной термической обработке (закалке и искусственному старению), тем самым упрочнить границы в зоне сварного соединения разнородных материалов (М-Т) и повысить пластические характеристики в местах контакта однородных слоев композиции (М-М).

Данный способ позволяет снизить количество повторяющихся циклов прокатки многослойного композитного материала за счет использования сборной пакетной заготовки, не требует применения специального оборудования и инструмента, имеет более низкую себестоимость, а качество полученных изделий весьма высоко.

Пример осуществления способа. Для изготовления многослойного листового материала толщиной 1 мм в качестве исходных заготовок используются металлические карточки толщиной 0,5 мм из меди M1 и 2 мм - технически чистого алюминия АД1. Карточки в количестве 3 шт., из которых две из АД1, после очистки и промывки укладывают в пакет по симметричной схеме АД1-M1-АД1, после чего пакет помещают в технологическую оболочку из фольги и нагревают до температуры 375°С. Нагретый пакет прокатывают на листовом прокатном стане до толщины 1 мм с деформацией за первый проход 50-75%. Затем полученную полосу разрезают на карточки и, поочередно, собирают их в новый пакет. Пакет аналогичным способом нагревают и деформируют. Для превращения слоя, составляющего пакет (1 мм), в нанометрический слой на практике достаточно до 10…12 циклов.

Таким образом, в предложенном способе в качестве заготовок используют определенную комбинацию листов с разной объемной долей из сплавов разнородных материалов, имеющих взаимную растворимость друг в друге в интервале температур горячей обработки давлением. В исходном состоянии используемые сплавы при нормальных условиях могут иметь как одинаковые, так и различные кристаллические решетки, но при этом они должны быть взаимно растворимыми для возможности их дополнительного упрочнения при термической обработке, и горячую обработку давлением должны осуществлять в диапазоне температур прохождения рекристаллизации у сплава с наименьшей температурой плавления.

Способ получения многослойного разнородного материала с наноразмерной структурой слоев, включающий мерную резку исходных заготовок из металлических листов, обработку их поверхностей, сборку нарезанных заготовок в пакет, горячую обработку давлением пакета путем его нагрева и прокатки с последующим повторением данных технологических операций до получения многослойного листа с заданным числом слоев и требуемой толщины, отличающийся тем, что в качестве исходных заготовок используют листы из сплавов разнородных металлов, взаимно растворимых друг в друге в интервале температуры нагрева при горячей обработке давлением, при этом сборку нарезанных заготовок в пакет осуществляют с расположением между листами из металлов с более низкой температурой плавления листа металла с более высокой температурой плавления, который при нагреве служит барьером для прохождения рекристаллизации в пределах толщины одного слоя для формирования наноразмерной структуры, а прокатку нагретого пакета проводят в диапазоне температур прохождения рекристаллизации, соответствующем материалу с наименьшей температурой плавления.



 

Похожие патенты:
Изобретение относится к способам удаления формальдегида путем каталитического окисления кислородом и может быть использовано для очистки сточных вод в нефтехимической, медицинской, химической и фармацевтической промышленности.
Изобретение относится к химической промышленности и может быть использовано при получении стабильных дисперсий в органических растворителях и изготовлении полимерных композитов.

Изобретение относится к обработке металлов давлением и может быть использовано для получения интенсивной пластической деформации (ИПД) заготовки. Способ включает осадку и последующее кручение заготовки с обеспечением деформации сдвига.

Изобретение относится к области получения наноразмерных частиц серебра и может быть использовано в технологиях, связанных с применением ультрадисперсных порошков серебра.

Изобретение относится к области химии, а именно к полимерным порошковым композициям для супергидрофобного покрытия и способам получения супергидрофобных покрытий.

Изобретение относится к области химии высокомолекулярных соединений, конкретно к нано- и гибридным функциональным материалам. Мембрана получена из полимерного материала с преобладающей проницаемостью для метанола.

Изобретение относится к технологии изготовления слоев пористого кремния, выполненных на поверхности монокристаллического кремния, которые могут быть использованы в оптике и оптоэлектронике.

Изобретение может быть использовано в химической промышленности. Способ синтеза наноразмерных частиц порошка диоксида титана включает газофазную реакцию галогенида титана и кислорода в канале плазменного реактора и последующее охлаждение продуктов реакции в закалочном узле.

Изобретение может быть использовано для изготовления элементов аппаратов высокого давления, материалов с высокой износостойкостью, режущих инструментов, инструментов для бурения.

Изобретение относится к измерительной технике и может быть использовано в технологии изготовления малогабаритных тонкопленочных датчиков механических величин, работоспособных в широком диапазоне температур.

Изобретение относится к машиностроению, в частности к защитным покрытиям на стали, полученным методом химического осаждения. Покрытие содержит, по меньшей мере, шесть компонентов - никель, кобальт, фосфор, химические соединения никеля с фосфором состава Ni3P, Ni5P2, Ni2P, и состоит из нескольких чередующихся слоев, при этом нечетные слои являются твердым раствором фосфора в никеле, а четные - твердым раствором фосфора в кобальте, причем взаимосвязь чередующихся слоев осуществлена за счет сращивания матрицы последующего слоя с матрицей предыдущего слоя.
Изобретение относится к области нанотехнологии, а именно к элементам электроники, состоящих из слоев и содержащих наноматериалы в своей конструкции. Технический результат - снижение размеров элементов электроники.

Изобретение относится к получению покрытий на металлических поверхностях. В способе на стальную поверхность наносят многослойное покрытие, в котором в качестве нечетных слоев наносят слои никель-фосфор, а в качестве четных кобальт-фосфор.
Изобретение относится к технологии получения вспененного композитного элемента. Способ включает стадию обеспечения покровного слоя, нанесение на покровный слой слоя адгезивного средства и нанесение на слой адгезивного средства слоя пеноматериала, содержащего полиуретан и/или полиизоцианурат.

Группа изобретений относится к защитным элементам, применяемым для защиты от подделки документов, ценных бумаг, полиграфической продукции и других изделий. Защитный элемент содержит внешнюю прозрачную полимерную основу с присоединенным к ней прозрачным лаковым слоем, на поверхности которого выполнен микрорельеф с нанесенными тонкими слоями отражающего и магнитного материалов.

Изобретение относится к области металлургии. Для повышения коррозионной стойкости стального листового изделия и обеспечения хорошей свариваемости осуществляют предварительное покрытие стальной полосы или листа алюминием, или алюминиевым сплавом, резку указанной стального листа или полосы с предварительным покрытием для получения стальной заготовки с предварительным покрытием, нагрев заготовки в предварительно нагретой печи до температуры и в течение времени согласно диаграмме в соответствии с толщиной заготовки при средней скорости нагрева Vc в температурном диапазоне от 20 до 700°C, составляющей от 4 до 12°C/с и при скорости нагрева Vc' в температурном диапазоне от 500 до 700°C, составляющей от 1,5 до 6°C/с, затем перемещение указанной нагретой заготовки к штамповочному прессу, горячую штамповку нагретой заготовки в штамповочном прессе для получения горячештампованного стального листового изделия, охлаждение нагретой заготовки от температуры на выходе из печи до температуры 400°C при средней скорости охлаждения, по меньшей мере, 30°C/с.
Изобретение относится к способам получения композиционных материалов для теплоотводящих оснований полупроводниковых приборов, в частности, композиционного материала Al-SiC, имеющего металлическое покрытие, и изделиям, полученным с использованием этих материалов.

Изобретение относится к химическим аспектам изготовления многослойных антикоррозионных конструкций и касается способа производства многослойного изделия. .

Изобретение относится к производству подкровельных покрытий в виде плоских конструктивных элементов, располагающихся под водоотводящим кровельным покрытием. .

Изобретение может быть использовано при изготовлении сваркой давлением плакированных фасонных слоистых композиционных металлических изделий, преимущественно на стальной основе.
Наверх