Регулятор расхода

Изобретение относится к системам гидравлической синхронизации движения исполнительных органов (ИО), испытывающих воздействие различных знакопеременных нагрузок, которые применяются в промышленных установках, в том числе на летательных аппаратах. Отличительной особенностью заявленного регулятора расхода является то, что кольцевой канал между внутренней поверхностью гильзы и поверхностью золотника между опорами сообщен с внутренней полостью золотника системой отверстий круглого сечения, часть из которых расположена напротив каждого из окон гильзы, а выбор диаметра и числа круглых отверстий в золотнике проводят по формуле:

{ 0,15 < i = 1 N S о т в i / S п о в < 0,22 ; 6 < l / h < 9,

где S о т в i - площадь i-го круглого отверстия в золотнике, N - количество круглых отверстий золотника, Sпов - площадь поверхности золотника между опорами без учета отверстий, l - длина кольцевого канала (расстояние между опорами), h - величина зазора между гильзой и золотником в кольцевом канале. Технический результат - обеспечение точности управления расходом рабочей жидкости в широком диапазоне изменений перепадов давлений на регуляторе (от 5 до 35 МПа) в зависимости от нагрузок на ИО. 2 ил.

 

Изобретение относится к системам гидравлической синхронизации движения исполнительных органов (ИО), испытывающих воздействие различных по модулю знакопеременных нагрузок, которые применяются в промышленных установках, в том числе на летательных аппаратах. Синхронизация ИО в таких системах осуществляется за счет обеспечения равенства их скоростей движения. Требование сохранения постоянной скорости движения ИО независимо от действующих на них нагрузок удовлетворяется использованием в таких системах регуляторов с высокой точностью поддержания постоянного расхода, функционирующих, как правило, в широком диапазоне перепадов давлений, определяемом значительным разбросом нагрузок на ИО. Однако (особенно при больших, более 10 МПа, перепадах давлений), в проточной части регулируемых сечений возникают гидродинамические силы, влияющие на динамику движения подвижного регулирующего элемента. Это выражается в виде заклинивания и разворота золотника относительно его продольной оси, что искажает расходно-перепадную характеристику регулятора расхода (РР). Наличие статизма (положительного и отрицательного) расходно-перепадной характеристики свойственен любому РР. Снижение статизма достигается совершенствованием конструкции элементов проточной части РР. Вместе с тем из опыта проектирования следует, что расходно-перепадная характеристика для РР такого типа не должна иметь отрицательного статизма для гарантированного устойчивого режима работы РР в системе (Гликман, Б.Ф. Автоматическое регулирование жидкостных ракетных двигателей / Гликман Б.Ф. М.: Машиностроение, 1974. - 396 с. на стр.246).

Известны РР, включающие в себя корпус со штуцерами входа и выхода, окна в корпусе, перекрываемые кромкой или отверстиями в цилиндрической части подпружиненного золотника, выполненного в форме стакана, калиброванный дроссель в торце золотника (Башта, Т.М. Гидропривод и гидропневмоавтоматика / Т.М. Башта. М.: Машиностроение, 1972, рис.78а). В качестве недостатков такой конструкции следует отметить, что точность поддержания заданного расхода нарушается из-за:

1) наличия пружины в проточной части РР перед регулируемыми окнами, вызывающей неравномерность течения рабочей жидкости (РЖ) и неравномерное распределение давления во внутренней полости золотника;

2) большой площади торцевой поверхности золотника, перекрывающей окна гильзы (отсутствие острой кромки), что приводит к возникновению осевой составляющей гидродинамической силы;

3) наличия перепада давлений между внутренней и внешней поверхностями золотника, что приводит к возникновению радиальной составляющей гидродинамической силы.

В конструктивной схеме, представленной на рис.78б, хотя пружина вынесена из зоны регулирования (отверстия a и c), отсутствие гидродинамических сил не гарантируется из-за недостатков, указанных в п.2) и 3).

Известен РР, предназначенный для поддержания настроечного расхода РЖ вне зависимости от изменения разности давлений (перепада давлений) в подводящем и отводящем трубопроводах (патент №2065198). Недостатком такого РР является то, что для уменьшения величины гидродинамической силы, действующей на золотник, в нем необходимо выполнить центральный канал, сокращающий эффективную площадь чувствительного элемента, для компенсации которой требуется увеличение наружного диаметра золотника, что приводит к увеличению габаритов и массы РР.

Целью изобретения является устранение недостатков известных РР и создание РР, позволяющего поддерживать с заданной точностью расход РЖ в заданном (от 5 до 35 МПа) широком диапазоне изменения перепадов давления на РР. Достижение цели обеспечивается тем, что в предложенном РР, включающем разъемный корпус со штуцерами входа и выхода, установленную в корпусе гильзу с окнами, подпружиненный золотник в форме стакана с двумя скользящими опорами на концах, одна из которых имеет острую кромку, скошенную вовнутрь золотника по набегающему на кромку потоку, размещенный в гильзе и перекрывающий острой кромкой проходные сечения окон гильзы калиброванный дроссель в торце золотника, стержень, установленный в пазах цилиндрической стенки золотника, закрепленный концами в гильзе и взаимодействующий со стенками пазов с возможностью перемещения золотника вдоль оси гильзы и препятствующий его повороту, отличающийся тем, что кольцевой канал между внутренней поверхностью гильзы и поверхностью золотника между опорами сообщен с внутренней полостью золотника системой отверстий круглого сечения, часть из которых расположена напротив каждого из окон гильзы.

Конструктивная схема предлагаемого РР представлена на фиг.1, на которой позициями обозначены: 1 - разъемный корпус (деталь 1), 2 - гильза, 3 - острая кромка золотника, 4 - окна, 5 - пазы, 6 - стержень, 7 - калиброванный дроссель, 8 - разъемный корпус (деталь 2), 9 - штуцер выхода, 10 - пружина, 11 - отверстия круглого сечения, 12 - кольцевой канал, 13 - золотник, 14 - штуцер входа.

РР работает следующим образом. Устройство имеет два последовательно расположенных дросселирующих сечения, из которых первое сечение (калиброванное 7) является нерегулируемым. Золотниковая пара - окна 4 гильзы 2 и острая кромка 3 золотника 13, являются вторым дросселирующим сечением, регулирующим расход РЖ в зависимости от перепада давления на РР. При отсутствии реактивных сил и сил трения (идеальный РР) принцип функционирования РР определяется соотношением сил - силы, создаваемой перепадом давления на калиброванном дросселе 7, и силы, создаваемой пружиной 10 на золотнике 13. Если перепад давления на РР повышается, то расход РЖ через него отклоняется от настроечного значения (расход увеличивается) и, следовательно, повышаются перепады давлений на калиброванном дросселе 7 и золотнике 13. Вследствие этого золотник 13 перемещается, сжимая пружину 10 и перекрывая острой кромкой 3 окна 4, уменьшая их проходное сечение, при этом расход РЖ снижается до настроечного значения. При снижении перепада давления РР восстанавливает настроечное значение расхода РЖ в соответствии с принципом действия, представленным выше.

Как указывалось ранее, при больших перепадах давления на РР в результате дросселирования потока РЖ в окнах 4 формируются струйные течения, которые вызывают появление гидродинамической силы (осевой и радиальной составляющих). Эта сила создает неравномерное распределение давления на цилиндрических поверхностях золотника 13, в результате чего возникают дополнительные силы трения, приводящие к торможению его движения. В предлагаемой конструкции РР кольцевой канал 12 сообщен с внутренней полостью золотника 13 системой отверстий 11. Часть из этих отверстий большего диаметра расположена напротив окон 4 гильзы 2 и способствует взаимной компенсации энергии истекающих из противоположных окон 4 струй РЖ. Другая часть отверстий предназначена для снижения перепада давления (разгрузки золотника) между внутренней полостью золотника 13 и кольцевым каналом 12 и уменьшения воздействия на него радиальной составляющей гидродинамической силы. Для фиксации взаимного (напротив друг друга) расположения окон 4 и отверстий 11 служит стержень 6, исключающий угловое перемещение золотника 13.

Совокупность острой кромки 3 (скошенной внутрь золотника 13 по набегающему на острую кромку потоку) в золотниковой паре и отверстий 11 в цилиндрической части золотника 13 позволяет существенно уменьшить осевые и радиальные составляющие гидродинамической силы предлагаемого РР, снизить положительный статизм его расходно-перепадной характеристики и улучшить, в конечном счете, параметры систем гидравлической синхронизации. В результате экспериментальных исследований заявленной конструкции РР установлено, что при выполнении соотношения:

{ 0,15 < i = 1 N S о т в i / S п о в < 0,22 ; 6 < l / h < 9,

где S о т в i - площадь i-го круглого отверстия в золотнике, N - количество круглых отверстий золотника, Sпов - площадь поверхности золотника между опорами без учета отверстий, l - длина кольцевого канала (расстояние между опорами), h - величина зазора между гильзой и золотником в кольцевом канале, обеспечивается динамическая разгрузка золотника от влияния радиальной составляющей гидродинамической силы. Расходно-перепадная характеристика РР, подтверждающая этот результат, представлена на фиг.2.

Регулятор расхода, включающий разъемный корпус со штуцерами входа и выхода, установленную в корпусе гильзу с окнами, подпружиненный золотник в форме стакана с двумя скользящими опорами на концах, одна из которых имеет острую кромку, скошенную вовнутрь золотника по набегающему на кромку потоку, размещенный в гильзе и перекрывающий острой кромкой проходные сечения окон гильзы калиброванный дроссель в торце золотника, стержень, установленный в пазах цилиндрической стенки золотника, закрепленный концами в гильзе и взаимодействующий со стенками пазов с возможностью перемещения золотника вдоль оси гильзы и препятствующий его повороту, отличающийся тем, что кольцевой канал между внутренней поверхностью гильзы и поверхностью золотника между опорами сообщен с внутренней полостью золотника системой отверстий круглого сечения, часть из которых расположена напротив каждого из окон гильзы, а выбор диаметра и числа круглых отверстий в золотнике проводят по формуле:
{ 0,15 < i = 1 N S о т в i / S п о в < 0,22 ; 6 < l / h < 9,
где S о т в i - площадь i-го круглого отверстия в золотнике, N - количество круглых отверстий золотника, Sпов - площадь поверхности золотника между опорами без учета отверстий, l - длина кольцевого канала (расстояние между опорами), h - величина зазора между гильзой и золотником в кольцевом канале.



 

Похожие патенты:

Изобретение относится к газо- и гидростатическим опорам повышенной жесткости. Регулятор состоит из корпуса (1) и крышки (2), между которыми защемлена упругая мембрана (3), которая совместно с корпусом (1) образует подмембранную полость (4) и с крышкой (2) - надмембранную полость (5).

Изобретение относится преимущественно к ракетной технике и используется для поддержания заданного расхода компонентов топлива при изменении давления на входе в двигатель.

Изобретение относится к к устройству для регулирования потока, в частности к устройству для регулирования потока, предназначенному для использования в канале подачи газа в процессе производства стали методом непрерывного литья.

Изобретение относится к гидротехнике и может быть использовано для стабилизации расхода воды на трубчатых и диафрагмовых водовыпусках. Регулятор расхода воды содержит водовыпускную трубу 1 прямоугольного сечения с седлом 2, имеющим профилированный вырез 3, который используется в качестве управляющего элемента.

Изобретение относится к гидротехнике и может быть использовано для стабилизации расхода воды на трубчатых и диафрагмовых водовыпусках. Регулятор расхода содержит водовыпускную трубу 1 прямоугольного сечения, формируемую гранями 2 с седлом 3 на нижней грани.

Изобретение относится к автоматическим устройствам для поддержания постоянного расхода текучих сред при различных перепадах давления и может быть использовано в двигателестроении.

Изобретение относится к средствам для регулирования потоков текучей среды, например газа, и направлено на упрощение установки в трубопроводе с текучей средой, уменьшение стоимости и сложности конструкции устройства, что обеспечивается за счет того, что изобретение представляет собой встроенное устройство консольного типа, имеющее вентиляционное окно, выполненное с возможностью изменения его положения, которое может быть расположено вблизи низшей точки контрольного устройства для обеспечения стока жидкостей, накапливающихся в устройстве из-за влажности и осадков.

Изобретение относится к ограничителю (1) расхода для ограничения объемного потока через трубопровод (2) для жидкости. .

Изобретение относится к области регулирования расхода жидкости или газа и может быть использовано в нефтегазодобывающей и химической промышленности. .

Изобретение относится к измерительной технике и предназначено для использования в качестве устройства для стабилизации расхода за счет профилирования поля скоростей потока жидкости в канале на входе теплоносителя в имитатор топливной кассеты активной зоны ядерной энергической установки (ЯЭУ), преимущественно серийного блока типа ВВЭР-1000 при подтверждении гидравлических параметров первого контура.

Изобретение относится к области гидротехники и предназначено для регулирования расхода воды на трубчатых и диафрагмовых водовыпусках. Регулятор расхода воды содержит водовыпускную трубу 2 прямоугольного сечения с седлом 4, перекрываемым запорным органом, выполненным в виде гибкой ленты 3. Последняя образует с корпусом водовыпускной трубы 2 управляющую полость 6, сообщенную с верхним бьефом и снабженную устройством для слива, на котором установлен клапан. Клапан соединен штоком 12 с мембраной мембранного корпуса 8, полость которого сообщена с верхним бьефом. Запорный орган в виде гибкой ленты 3 на участке ее примыкания к грани проходного сечения водовыпускной трубы 2, со стороны верхнего бьефа, снабжен консольно закрепленной гибкой вставкой 5. Ширина гибкой вставки 5 больше ширины щели при полностью закрытом запорном органе. Изобретение направлено на уменьшение нерегулируемых протечек регулятора расхода воды. 3 ил.

Настоящее изобретение относится к регулятору давления, содержащему демпфирующий вибрацию пружинный зажим. Заявленный блок управления для устройства управления потоком текучей среды, содержащий: управляющий элемент, выполненный с возможностью подвижного размещения в устройстве для управления потоком текучей среды и предназначенный для управления потоком текучей среды, нагрузочную пружину, смещающую управляющий элемент в предварительно заданное положение, и пружинный зажим, контактирующий с нагрузочной пружиной в нескольких местах для демпфирования вибраций, возникающих в нагрузочной пружине, причем пружинный зажим содержит корпусную пластину и первую и вторую противолежащие плечевые пластины, проходящие по направлению от корпусной пластины, причем каждая из первой и второй плечевых пластин содержит ближний конец, расположенный вплотную к корпусной пластине, дальний конец, расположенный на расстоянии от корпусной пластины, и палец, проходящий по направлению вверх от дальнего конца таким образом, что образует угол на пересечении между пальцем и дальним концом, при этом указанный угол содержит профилированный край для облегчения крепления нагрузочной пружины к пружинному зажиму. Технический результат заключается в демпфировании вибраций и уменьшении и/или устранении резонанса на высоких и низких частотах, вызванного текучей средой, протекающей через корпус клапана посредством управления потоком текучей среды, а также в сохранении рабочей целостности регуляторов. 3 н. и 18 з.п. ф-лы, 8 ил.

Изобретение относится к гидротехнике и может быть использовано для регулирования расхода воды на трубчатых и диафрагмовых водовыпусках. Для исключения нерегулируемых протечек в стабилизаторе расхода воды, содержащем водовыпускную трубу 2 прямоугольного сечения с седлом 4, перекрываемым запорным органом, выполненным в виде гибкой ленты 3, образующей с корпусом водовыпускной трубы 2 управляющую полость 6, сообщенную с верхним бьефом и снабженную сливным каналом 7, на котором установлен выполненный в виде втулки 18 с профилированными вырезами 19 клапан, установленный на мембране 16 второго мембранного корпуса 9, полость которого сообщена с управляющей полостью 6, и связанный посредством штока 12 с мембраной первого мембранного корпуса 8, полость которого сообщена с верхним бьефом, согласно изобретению, седло 4 со стороны верхнего бьефа на грани имеет порог 5, выполненный в виде водослива с вакуумным криволинейным профилем, повернутым в сторону контакта с гибкой лентой 3, а высота порога 5 тем больше, чем больше жесткость гибкой ленты 3. 3 ил.

Изобретение относится к вентиляции кондиционирования воздуха, в частности к клапанам для регулирования расхода воздуха в вентиляционных воздухопроводах. Заявленный регулятор расхода воздуха состоит из корпуса, на оси которого установлена заслонка, упругий элемент, выполненный в виде пластины, один конец которой жестко закреплен на оси, а другой расположен с возможностью контакта с профилированной выемкой опоры, в опоре по контуру профилированной выемки установлены соленоиды. В нижней части опоры может быть установлен датчик «Холла», соединенный через блок управления с соленоидами, а на свободном конце упругого элемента установлен магнит. Установка в опоре соленоидов усиливает притягивание упругого элемента к профилированной выемке опоры, снижая возможность вибрации. При установке в конечной части опоры датчика «Холла», связанного с блоком управления, и магнита на конце упругого элемента исключение вибрации заслонки будет обеспечиваться более надежно, что повышает точность и позволяет увеличить диапазон работы регулятора расхода воздуха. Технический результат - повышение точности регулирования расхода воздуха и увеличение диапазона работы регулятора. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области гидравлики и контрольно-измерительной техники и может быть использовано для определения гидравлических характеристик различных устройств: внутрипочвенных оросителей, капельниц, сужающих устройств, шайб, сопел, дросселей, жиклеров и т.д. Изобретение можно использовать и для проведения лабораторных работ. Целью изобретения является повышение эффективности и точности измерения и обеспечение возможности исследования гидравлических характеристик и сопротивлений различных устройств при больших напорах. Поставленная цель достигается тем, что напорный водяной бачок предварительно заполняется водой и имеет мерную шкалу. По мерной шкале можно определять объем воды в напорном водяном бачке, для этого он тарирован. Для создания напора гидравлическая установка оснащена автошиной с металлическим диском внутри. Для этого автошина с металлическим диском заполняется воздухом электронасосом до требуемого давления. Давление в напорном водяном бачке создает воздух из автошины, которая подключена к водяному напорному бачку с помощью воздушного напорного шланга. Напорный водяной бачок для удобства проведения исследований установлен на штативе, а воздушный напорный шланг имеет воздушный вентиль, которым регулируется подача воздуха. Исследуемый элемент подключен к напорному водяному бачку с помощью водяного напорного шланга. Для измерения давления воды установка снабжена манометром с водяными вентилями. Установка для гидравлических исследований позволяет создавать давление в системе до 8÷9 и более атмосфер и совершенно безопасна в работе. 3 з.п. ф-лы, 1 ил.

Изобретение относится к гидротехнике и мелиорации и может быть использовано для автоматического расхода воды потребителю, а также в самонапорных системах с промежуточными резервуарами. Устройство содержит резервуар 4, подводящий напорный трубопровод 1, разделенный в конце на две линии труб 2 и 3. Каждая линия труб 2 и 3 соединена с резервуаром 4 с перегородками 5 и 6, делящими резервуар 4 на две герметичные камеры 7 и 8 и одну общую камеру, выполненную в виде емкости 9. Перегородка 6 имеет выпускные отверстия 10 и 11, затворы 12 и 13. Трубы 2 и 3 с впускными отверстиями 18 и 19 связаны с напорными камерами 16 и 17, в дне которых выполнены отверстия 18 и 19 с клапанами 20 и 21, которые соединены шарнирно-рычажным механизмом, состоящим из рычагов 22, 23, 24, 25, соответственно со штоками 28 и 29 с поплавками 26 и 27. Поплавки 26 и 27 помещены в емкость 9 отделенными друг от друга замкнутыми перегородками 32 и 33, в средней части которых имеются выпускные отверстия 34 и 35 у дна емкости 9. Конструкция устройства направлена на обеспечение эффективности работы, упрощение и уменьшение металлоемкости. 2 з.п. ф-лы, 2 ил.

Изобретение представляет собой клапан и поверхности управления потоком для продвижения ламинарного потока через клапан и предназначено для проведения испытаний труб. Первый клапанный элемент имеет ось и первую поверхность седла с сужающимся контуром, обращенным аксиально вниз по потоку. Второй клапанный элемент имеет вторую поверхность седла с сужающимся контуром, обращенным аксиально вверх по потоку. Второй клапанный элемент имеет закрытое положение, в котором вторая поверхность седла упирается в первую поверхность седла, и имеет открытое положение, в котором вторая поверхность седла расположена на расстоянии аксиально ниже по потоку от первой поверхности седла. Второй клапанный элемент дополнительно имеет терминальный концевой участок, выполненный в виде носового конуса. Носовой конус может быть расположен полностью ниже по потоку от второй поверхности седла и может иметь полость с дренажным отверстием. 6 н. и 14 з.п. ф-лы, 12 ил.

Изобретение относится к области управления или регулирования расхода в текучей среде (жидкость, газ) и может быть использовано в различных гидравлических и пневматических системах, в которых необходимо регулировать параметры потоков рабочей среды при низких и средних давлениях, в том числе в качестве запорных органов гидравлических и пневматических машин периодического действия (например, в насосах и компрессорах). Заявленный гидравлический или пневматический диод содержит канал прямоугольного сечения для прохода жидкой или газообразной среды, в котором на двух его противоположных сторонах установлены друг против друга по крайней мере две жесткие пластины, наклоненные под углом в сторону прямого потока, при этом каждая жесткая пластина снабжена параллельно и вплотную к ней по плоскости установленной гибкой пластиной, размещенной со стороны обратного потока, с образованием пары пластин, причем эта гибкая пластина имеет длину в сторону оси канала, превышающую длину жесткой пластины. Технический результат заключается в повышении диодности гидропневматических диодов при работе на средних давлениях газа и жидкости. 2 з.п. ф-лы, 13 ил.

Гидравлический и пневматический диод (1) содержит канал (2) круглого сечения, в котором установлены не менее одной группы элементов, состоящих из колец (3), расстояние между верхушками фигур в сечении колец равно Δ. На входе и выходе гидропневматического диода установлены стабилизирующие решетки (4). Соосно каналу установлен стержень (5) с возможностью его перемещения и фиксации вдоль оси канала диода по резьбе, находящейся в стабилизирующих решетках. На стержне жестко закреплены рабочие элементы (6) на расстоянии Δ, равном расстоянию между верхушками фигур в сечении колец. При движении рабочей среды по каналу в прямом направлении, поток, огибая рабочие элементы и кольца, не встречает значительного сопротивления. При движении среды в обратном направлении, поток встречает сопротивление в виде рабочих элементов или колец, и сопротивление диода становится большим. Обеспечивается возможность настройки диодности путем изменения взаимного положения рабочих элементов диода и колец. 3 з.п. ф-лы, 7 ил.

Изобретение относится к оборудованию для заканчивания нефтяных и газовых скважин, в частности для регулирования притока скважинной жидкости на отдельном участке ствола скважины. Устройство содержит корпус, состоящий из верхней и нижней частей, соединенных между собой резьбовым соединением, осевой вход в корпус и радиально расположенные выходы, вход во вторичный канал в верхней части корпуса, выполненный в виде проточки, в которой расположен пористый элемент, систему капиллярных каналов в осевом направлении, выполненных в стенках корпуса, подвижный элемент, цангу и сопло малого диаметра. В нижней части корпуса капиллярные каналы объединены в полость между подвижным элементом и нижней частью корпуса. Повышается надежность работы устройства за счет упрощения конструкции и уменьшения ее высоты. 1 з.п. ф-лы, 2 ил.
Наверх