Тепловая машина с внешним подводом тепла

Изобретение относится к тепловой энергетике. Тепловая машина с внешним подводом тепла содержит четыре сильфона на горячей стороне машины, соединенные с нагревателями, и четыре сильфона на холодной стороне машины, соединенные с охладителями. Внутреннее пространство сильфонов образует полости переменного объема для сжатия и расширения газообразного рабочего тела. Нагреватель через канал теплообменника соединен трубопроводом с охладителем. Нижний торец сильфона толкателем опирается на эксцентриковый кулачок. Эксцентриковые кулачки на горячей и холодной сторонах сдвинуты по фазе относительно друг друга на 180°. Вторые эксцентриковые кулачки сдвинуты по фазе относительно первых эксцентриковых кулачков на 90°. Третьи эксцентриковые кулачки сдвинуты по фазе относительно вторых эксцентриковых кулачков на 90°. Четвертые эксцентриковые кулачки сдвинуты по фазе относительно третьих эксцентриковых кулачков на 90°. Четыре эксцентриковых кулачка на горячей стороне машины закреплены на первом общем валу, имеющем первую шестерню связи. Четыре эксцентриковых кулачка на холодной стороне машины закреплены на втором общем валу, имеющем вторую шестерню связи. Первая и вторая шестерни связи соединены цепной передачей. Изобретение направлено на увеличение ресурса при сохранении мощности машины. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области тепловой энергетики, в частности к тепловым многоцилиндровым машинам с внешним подводом тепла, и предназначено для использования в качестве силовой установки автономной системы выработки тепловой и электрической энергии при использовании местных топлив и возобновляемых источников энергии.

Известна тепловая машина (авторское свидетельство СССР №1460382, МПК F02G 1/00, 1/04, опубл. 23.02.89, бюл. №7), содержащая две группы вертикально установленных цилиндров, частично заполненных несжимаемой жидкостью с находящимся над ней газообразным рабочим телом, газовые полости каждой пары цилиндров соединены между собой через нагреватель, регенератор и холодильник, а жидкостные полости соединены с полостями объемной гидромашины. Недостатком известной машины является привнесение в энергетический баланс машины гидравлических потерь, возникающих при челночной перекачке жидкости для осуществления термодинамического цикла Стерлинга.

Наиболее близкой по технической сущности является многоцилиндровая тепловая машина с внешним подводом тепла (Г. Ридер, Ч. Хупер Двигатели Стирлинга, Москва, изд. «Мир», 1986 г., стр.72, рис.1.65), содержащая группу цилиндров и поршней, к внутренним полостям которых подводится тепло, и группу цилиндров и поршней, от внутренних полостей которых тепло отводится, соединенные шатунами с общим коленчатым валом. Внутренние полости цилиндров и поршней на горячей стороне соединены через нагреватель, регенератор и охладитель с внутренними полостями цилиндров и поршней на холодной стороне многоцилиндровой тепловой машины.

Недостатком известной тепловой машины является потери газообразного рабочего тела через поршневые кольца цилиндров, что влечет за собой потери давления рабочего тела в цилиндрах и, как следствие, уменьшение ресурса и падение удельной мощности машины.

Техническим результатом изобретения является увеличение ресурса при сохранении мощностных показателей машины.

Техническая задача достигается за счет исключения скользящего уплотнения в цилиндро-поршневых группах и использования сильфонов на горячей и холодной сторонах тепловой машины с кулачковым механизмом, реализуется за счет того, что в тепловой машине с внешним подводом тепла, содержащей четыре сильфона на горячей стороне машины, соединенных каналами для газообразного рабочего тела с жестко закрепленными в корпусе тепловой машины четырьмя нагревателями, четыре сильфона на холодной стороне машины, соединенных каналами для газообразного рабочего тела с жестко закрепленными в корпусе тепловой машины четырьмя охладителями, внутреннее пространство сильфонов образует полости переменного объема для сжатия и расширения газообразного рабочего тела, а внутреннее пространство нагревателей и охладителей предназначено для нагрева и охлаждения газообразного рабочего тела, первый нагреватель через первый канал первого теплообменника соединен трубопроводом со вторым охладителем, второй нагреватель через первый канал второго теплообменника соединен трубопроводом с третьим охладителем, третий нагреватель через второй канал первого теплообменника соединен трубопроводом с четвертым охладителем, четвертый нагреватель через второй канал второго теплообменника соединен трубопроводом с первым охладителем, нижний торец первого сильфона на горячей стороне первым толкателем опирается на эксцентриковый кулачок, нижний торец первого сильфона на холодной стороне первым толкателем опирается на первый эксцентриковый кулачок на холодной стороне, первые эксцентриковые кулачки на горячей и холодной сторонах сдвинуты по фазе относительно друг друга на 180°, нижний торец второго сильфона на горячей стороне вторым толкателем опирается на второй эксцентриковый кулачок, нижний торец второго сильфона на холодной стороне вторым толкателем опирается на второй эксцентриковый кулачок на холодной стороне, вторые эксцентриковые кулачки сдвинуты по фазе относительно положения первых эксцентриковых кулачков на 90°, нижний торец третьего сильфона на горячей стороне третьим толкателем опирается на третий эксцентриковый кулачок, нижний торец третьего сильфона на холодной стороне третьим толкателем опирается на третий эксцентриковый кулачок на холодной стороне, третьи эксцентриковые кулачки сдвинуты по фазе относительно положения вторых эксцентриковых кулачков на 90°, нижний торец четвертого сильфона на горячей стороне четвертым толкателем опирается на четвертый эксцентриковый кулачок, нижний торец четвертого сильфона на холодной стороне четвертым толкателем опирается на четвертый эксцентриковый кулачок на холодной стороне, четвертые эксцентриковые кулачки сдвинуты по фазе относительно положения третьих эксцентриковых кулачков на 90°, четыре эксцентриковых кулачка на горячей стороне машины с сохранением фазовых сдвигов неподвижно закреплены на первом общем валу, имеющем первую шестерню связи, четыре эксцентриковых кулачка на холодной стороне машины с сохранением фазовых сдвигов неподвижно закреплены на втором общем валу, имеющем вторую шестерню связи, первая и вторая шестерни связи соединены цепной передачей с сохранением фазовых сдвигов между эксцентриковыми кулачками на горячей и холодной сторонах машины, эксцентриковые кулачки имеют круговую образующую, на которую посажен подшипник.

Сущность изобретение поясняется чертежами, где на фиг.1 приведена функциональная схема тепловой машины, на фиг.2 показан эксцентриковый кулачок с внешним подшипником.

Тепловая машина с внешним подводом тепла содержит четыре сильфона 1-1, 1-2, 1-3 и 1-4 на горячей стороне машины, соединенные каналами для газообразного рабочего тела с жестко закрепленными в корпусе тепловой машины четырьмя нагревателями 2-1, 2-2, 2-3 и 2-4, четыре сильфона 3-1, 3-2, 3-3 и 3-4 на холодной стороне машины, соединенные каналами для газообразного рабочего тела с жестко закрепленными в корпусе тепловой машины четырьмя охладителями 4-1, 4-2, 4-3 и 4-4, внутреннее пространство сильфонов образует полости переменного объема для сжатия и расширения газообразного рабочего тела, а внутреннее пространство нагревателей и охладителей предназначено для нагрева и охлаждения газообразного рабочего тела, первый нагреватель 2-1 через первый канал первого теплообменника 5 соединен трубопроводом со вторым охладителем 4-2, второй нагреватель 2-2 через первый канал второго теплообменника 6 соединен трубопроводом с третьим охладителем 4-3, третий нагреватель 2-3 через второй канал первого теплообменника 5 соединен трубопроводом с четвертым охладителем 4-4, четвертый нагреватель 2-4 через второй канал второго теплообменника 6 соединен трубопроводом с первым охладителем 4-1, нижний торец первого сильфона 1-1 на горячей стороне первым толкателем 7-1 опирается на эксцентриковый кулачок 8-1, нижний торец первого сильфона 3-1 на холодной стороне первым толкателем 9-1 опирается на первый эксцентриковый кулачок 10-1 на холодной стороне, эксцентриковые кулачки 8-1 и 10-1 сдвинуты по фазе на 180°, нижний торец второго сильфона 1-2 на горячей стороне вторым толкателем 7-2 опирается на эксцентриковый кулачок 8-2, нижний торец второго сильфона 3-2 на холодной стороне вторым толкателем 9-2 опирается на второй эксцентриковый кулачок 10-2 на холодной стороне, эксцентриковые кулачки 8-2 и 10-2 сдвинуты по фазе относительно положения кулачков 8-1 и 10-1 на 90°, нижний торец третьего сильфона 1-3 на горячей стороне третьим толкателем 7-3 опирается на эксцентриковый кулачок 8-3, нижний торец третьего сильфона 3-3 на холодной стороне третим толкателем 9-3 опирается на третий эксцентриковый кулачок 10-3 на холодной стороне, эксцентриковые кулачки 8-3 и 10-3 сдвинуты по фазе относительно положения кулачков 8-2 и 10-2 на 90°, нижний торец четвертого сильфона 1-4 на горячей стороне четвертым толкателем 7-4 опирается на эксцентриковый кулачок 8-4, нижний торец четвертого сильфона 3-4 на холодной стороне четвертым толкателем 9-4 опирается на четвертый эксцентриковый кулачок 10-4 на холодной стороне, эксцентриковые кулачки 8-4 и 10-4 сдвинуты по фазе относительно положения кулачков 8-3 и 10-3 на 90°, четыре эксцентриковых кулачка 8-1, 8-2, 8-3 и 8-4 на горячей стороне машины с сохранением фазовых сдвигов неподвижно закреплены на первом общем валу 11, имеющем первую шестерню связи 12, четыре эксцентриковых кулачка 10-1, 10-2, 10-3 и 10-4 на холодной стороне машины с сохранением фазовых сдвигов неподвижно закреплены на втором общем валу 13, имеющем вторую шестерню связи 14, первая и вторая шестерни 12 и 14 связи соединены цепной передачей 15 с сохранением фазовых сдвигов между эксцентриковыми кулачками 8-1, 8-2, 8-3 и 8-4 и 10-1, 10-2, 10-3 и 10-4, эксцентриковые кулачки имеют круговую образующую, на которой посажен подшипник 16.

Тепловая машина с внешним подводом тепла работает следующим образом.

В начальный момент времени тепловая машина неподвижна, т.е. неподвижна механическая часть машины и не происходят термодинамические процессы с газообразным (гелий, давление от 10 до 20 мПа) рабочим телом - постоянны объемы, давления и температуры во всех газонаполненных частях машины. При подводе тепла к нагревателям 2-1, 2-2, 2-3 и 2-4 (показано стрелками на фиг.1) давление газа в сильфонах на горячей стороне машины повышается и создаваемое суммарное усилие четырех сильфонов на горячей стороне машины превосходит суммарное усилие четырех сильфонов на холодной стороне машины. Эти усилия через толкатели 7-1, 7-2, 7-3, 7-4 и 9-1, 9-2, 9-3, 9-4 создают вращательный момент на эксцентриковых кулачках 8-1, 8-2, 8-3 и 8-4, что, в свою очередь, заставляет вращаться первый вал 11 и посредством цепной передачи 15 второй вал 13, который жестко связан с эксцентриковыми кулачками 10-1, 10-2, 10-3 и 10-4 на холодной стороне машины. Эксцентриковые кулачки, находящиеся в одном ряду, например 8-1 и 10-1, имеют разворот по фазе 180°. При вращении сопряженных цепной передачей валов 11 и 13 сильфон 1-1 на горячей стороне машины увеличивает свой объем, а сильфон 3-1 на холодной стороне машины уменьшает, а затем наоборот. Однако противофазно изменяющиеся объемы рабочего тела не могут образовать эффективный цикл Стирлинга (Г. Ридер, Ч. Хупер Двигатели Стирлинга, Москва, изд. «Мир», 1986 г., стр.101, рис.1.85), поэтому холодный объем для первого сильфона на горячей стороне берется со второго ряда, где разворотом эксцентриковых кулачков на 90° относительно положения эксцентриковых кулачков первого ряда обеспечивается требуемое для идеального цикла Стирлинга фазовые соотношения изменения объемов. В результате получается, что четыре цикла Стирлинга образуются внутренними объемами сильфонов 1-1 и 3-2, 1-2 и 3-3, 1-3 и 3-4, 1-4 и 3-1, важно отметить, что эти четыре цикла сдвинуты относительно друг друга на четверть цикла.

Для повышения мощности и КПД в традиционных двигателях Стирлинга горячие и холодные объемы соединяются через регенератор, в предлагаемом устройстве вместо четырех регенераторов используются два теплообменника, каналы которых включены в циклы Стирлинга, находящиеся в противоположных фазах. Первый канал первого теплообменника 5 соединяет сильфоны 1-1 и 3-2, второй канал первого теплообменника 5 соединяет сильфоны 1-3 и 3-4. Аналогичный принцип используется и для двух других циклов Стирлинга. Первый канал второго теплообменника 6 соединяет сильфоны 1-2 и 3-3, второй канал второго теплообменника 6 соединяет сильфоны 1-4 и 3-1. В результате в тепловой машине реализовано четыре цикла Стирлинга, образующие крутящий момент на валу отбора мощности, в качестве которого можно использовать второй вал 13 на холодной стороне машины. Усилие, создаваемое в термодинамическом цикле, через толкатели и эксцентриковые кулачки передается первому и второму валам 11 и 13. При этом эксцентриковые кулачки трутся о нижнюю поверхность толкателей. Для уменьшения трения образующая эксцентриковых кулачков 8-1, 8-2, 8-3, 8-4 и 10-1, 10-2, 10-3, 10-4 выполнена круговой и на нее посажен подшипник 16.

Изменение объемов с рабочим телом создается за счет сжатия или растяжения гофр сильфонов, при этом отсутствуют скользящие уплотнения неизбежные в цилиндро-поршневых парах. Сильфонные объемы могут быть полностью герметизированы пайкой или сваркой, и за счет этого исключены потери рабочего тела через уплотнения.

Использование изобретения позволяет исключить потери рабочего тела, следовательно, продлить ресурс тепловой машины и исключить уменьшение мощности.

1. Тепловая машина с внешним подводом тепла, содержащая четыре сильфона на горячей стороне машины, соединенные каналами для газообразного рабочего тела с жестко закрепленными в корпусе тепловой машины четырьмя нагревателями, четыре сильфона на холодной стороне машины, соединенные каналами для газообразного рабочего тела с жестко закрепленными в корпусе тепловой машины четырьмя охладителями, внутреннее пространство сильфонов образует полости переменного объема для сжатия и расширения газообразного рабочего тела, а внутреннее пространство нагревателей и охладителей предназначено для нагрева и охлаждения газообразного рабочего тела, отличающаяся тем, что первый нагреватель через первый канал первого теплообменника соединен трубопроводом со вторым охладителем, второй нагреватель через первый канал второго теплообменника соединен трубопроводом с третьим охладителем, третий нагреватель через второй канал первого теплообменника соединен трубопроводом с четвертым охладителем, четвертый нагреватель через второй канал второго теплообменника соединен трубопроводом с первым охладителем, нижний торец первого сильфона на горячей стороне первым толкателем опирается на эксцентриковый кулачок, нижний торец первого сильфона на холодной стороне первым толкателем опирается на первый эксцентриковый кулачок на холодной стороне, первые эксцентриковые кулачки на горячей и холодной сторонах сдвинуты по фазе относительно друг друга на 180°, нижний торец второго сильфона на горячей стороне вторым толкателем опирается на второй эксцентриковый кулачок, нижний торец второго сильфона на холодной стороне вторым толкателем опирается на второй эксцентриковый кулачок на холодной стороне, вторые эксцентриковые кулачки сдвинуты по фазе относительно положения первых эксцентриковых кулачков на 90°, нижний торец третьего сильфона на горячей стороне третьим толкателем опирается на третий эксцентриковый кулачок, нижний торец третьего сильфона на холодной стороне третьим толкателем опирается на третий эксцентриковый кулачок на холодной стороне, третьи эксцентриковые кулачки сдвинуты по фазе относительно положения вторых эксцентриковых кулачков на 90°, нижний торец четвертого сильфона на горячей стороне четвертым толкателем опирается на четвертый эксцентриковый кулачок, нижний торец четвертого сильфона на холодной стороне четвертым толкателем опирается на четвертый эксцентриковый кулачок на холодной стороне, четвертые эксцентриковые кулачки сдвинуты по фазе относительно положения третьих эксцентриковых кулачков на 90°, четыре эксцентриковых кулачка на горячей стороне машины с сохранением фазовых сдвигов неподвижно закреплены на первом общем валу, имеющем первую шестерню связи, четыре эксцентриковых кулачка на холодной стороне машины с сохранением фазовых сдвигов неподвижно закреплены на втором общем валу, имеющем вторую шестерню связи, первая и вторая шестерни связи соединены цепной передачей с сохранением фазовых сдвигов между эксцентриковыми кулачками на горячей и холодной сторонах машины.

2. Тепловая машина с внешним подводом тепла по п.1, отличающаяся тем, что эксцентриковые кулачки имеют круговую образующую, на которую посажен подшипник.



 

Похожие патенты:

Изобретение относится к роторно-поршневой машине, включающей корпус, два рабочих вала, центральное неподвижное зубчатое колесо и выходной вал с эксцентриком. Рабочие валы оснащены лопастными поршнями и рычагами.

Изобретение относится к области энергетики. .

Изобретение относится к области тепловой энергетики. .

Изобретение относится к области двигателестроения. .

Изобретение относится к машиностроению, в частности к машинам, работающим по циклам Стирлинга. .

Изобретение относится к двигателям внешнего сгорания. Техническим результатом изобретения является увеличение мощности на единицу массы двигателя и, как следствие, повышение экономической эффективности. Сущность изобретения заключается в том, что двигатель включает нагреватель, рабочий цилиндр с поршнем, штоком и шатуном; цилиндр компрессора с поршнем, штоком и шатуном; коленчатый вал, регенератор надпоршневого пространства, регенератор подпоршневого пространства, охладитель, впускной клапан надпоршневого пространства, впускной клапан подпоршневого пространства, выпускной перекидной клапан надпоршневого пространства, выпускной перекидной клапан подпоршневого пространства. Рабочий цилиндр может иметь также нагрев, а цилиндр компрессора - охлаждение. Диаметр рабочего цилиндра больше диаметра цилиндра компрессора. Заявляемый двигатель - двойного действия с замкнутым тепловым циклом, подобным циклу классического двигателя Эриксона с теоретическим коэффициентом полезного действия до 70%. Замкнутый тепловой цикл позволяет использовать в качестве рабочего тела азот, диоксид углерода, инертные газы, их смеси и другие газы. Нагрев рабочего тела производится в общем котле-нагревателе и рабочем цилиндре, а охлаждение в общем охладителе и цилиндре компрессора по замкнутому тепловому циклу с начальным давлением рабочего тела, газа выше атмосферного. 1 ил.

Тепловой двигатель относится к двигателям объемного вытеснения с цилиндрами и предназначен для преобразования теплоты нагретой жидкости во вращательное движение коленчатого вала. Двигатель содержит две пары цилиндров, расположенных оппозитно коленчатому валу. Штоки цилиндров взаимодействуют с коленчатым валом. Рабочее тело, например воздух, поступает из питателя в теплообменник первой пары, выход которого соединен с полостью первого рабочего цилиндра. Выход полости первого рабочего цилиндра соединен с охладителем. Полость нагнетательного цилиндра первой пары имеет входное отверстие, соединенное с выходом охладителя и выходное отверстие, соединенное с входом теплообменника второй пары цилиндров. Выход второго теплообменника соединен с входом рабочего цилиндра второй пары. Связанный с ним через коленчатый вал нагнетательный цилиндр второй пары имеет входное отверстие, соединенное с выходом охладителя и выходное отверстие, соединенное с входом теплообменника первой пары. Обеспечивается стабильная циркуляция рабочего тела в замкнутой системе, что повышает надежность работы двигателя. Можно использовать двигатель в условиях ограниченного потребления или исключения притока воздуха и способствует повышению экологичности за счет отсутствия выхлопа. 2 ил.
Наверх