Регенеративная газотурбодетандерная установка

Изобретение относится к энергетике. Регенеративная газотурбодетандерная установка компрессорной станции магистральных газопроводов с газотурбинными газоперекачивающими агрегатами, снабженными утилизационными подогревателями теплоносителя, содержит магистральный газопровод высокого давления, подогреватель газа высокого давления, турбодетандер с регулируемым сопловым аппаратом, компрессор, камеру сгорания, газовую турбину, электрогенератор, подогреватель топливного газа, регулятор, газопровод топливного газа высокого давления, сепаратор топливного газа высокого давления, подогреватель топливного газа среднего давления, регенеративный воздухоподогреватель, причем подогреватель топливного газа среднего давления и газопровод топливного газа высокого давления используют для подогрева топливного газа всех камер сгорания газотурбинных агрегатов компрессорной станции, при этом ротор турбодетандера соединен общим валом с ротором компрессора, ротор газовой турбины связан с ротором электрогенератора, а утилизационные подогреватели теплоносителя связаны трубопроводами с подогревателем топливного газа высокого давления и с подогревателем топливного газа среднего давления. Изобретение позволяет повысить экономичность компрессорной станции. 2 ил.

 

Изобретение относится к газотурбинным установкам и может быть использовано при создании экономичных газотурбодетандерных энергетических установок на компрессорных станциях магистральных газопроводов с газотурбинными газоперекачивающими агрегатами, обеспечивающих электроснабжение собственных нужд компрессорных станций и внешних потребителей.

Известна газотурбодетандерная энергетическая установка, применяемая для электроснабжения собственных нужд газораспределительных станций (ГРС) и газорегуляторных пунктов. Она состоит из газопровода высокого давления, теплообменника, подогрева газа высокого давления, турбодетандера с регулируемым сопловым аппаратом, газотурбинного авиационного двигателя с воздушным компрессором, камерой сгорания, газовой турбиной, понижающего редуктора, электрогенератора, системы управления. Газопровод природного газа высокого давления через теплообменник подогрева газа высокого давления связан с входом турбодетандера, снабженного регулируемым сопловым аппаратом (РСА), его выход через газопровод топливного газа соединен с камерой сгорания. Вал авиационного двигателя связан общим валом с валом турбодетандера и через понижающий редуктор с валом электрогенератора. Газовая турбина авиадвигателя через теплообменник подогрева газа высокого давления связана с атмосферой. Природный газ высокого давления подогревают в теплообменнике подогрева газа высокого давления за счет теплоты выхлопных газов авиадвигателя и подают на вход турбодетандера. Суммарная полезная работа авиационного газотурбинного двигателя и турбодетандера используется для выработки электроэнергии. (Патент РФ №2091592, F01K 27/00, приоритет 27.09.1994. "Способ работы газотурбодетандерной установки".) Наиболее близкой по технической сущности к изобретению является газотурбодетандерная установка, применяемая на ГРС и ГРП, содержащая редукционное устройство, турбодетандер с регулируемым сопловым аппаратом (РСА), авиационный газотурбинный двигатель с газогенератором и силовой газовой турбиной, теплообменник-утилизатор, теплообменник-регенератор предварительного подогрева газа, электрогенератор. Магистральный газопровод высокого давления соединен через поверхности нагрева теплообменника-регенератора и теплообменника-утилизатора с входом турбодетандера, а также через редукционное устройство с выходной газовой магистралью. Теплообменник-утилизатор установлен в выхлопном газоходе газовой турбины. Выход турбодетандера связан через теплообменник-регенератор с выходной газовой магистралью, а также непосредственно с камерой сгорания авиационного газотурбинного двигателя. Силовая газовая турбина газотурбодетандерной установки и турбодетандер связаны общим валом с электрогенератором. При изменении давления газа в магистральном газопроводе высокого давления с помощью РСА поддерживают постоянное давление газа в выходной газовой магистрали и в камере сгорания авиадвигателя. (Патент РФ №2096640, F02C6/18, приоритет 30.11.1994. "Способ работы газотурбодетандерной установки".) Данное техническое решение принято за прототип предлагаемого изобретения.

В то же время прототип имеет недостатки:

- он предназначен для установки на ГРС и ГРП с давлением газа в выходной газовой магистрали 0,6-1,2 МПа и не может быть применен на компрессорных станциях магистральных газопроводов с газотурбинным приводом газоперекачивающих агрегатов (ГПА), так как давление топливного газа в их камерах сгорания составляет 2,5-3 МПа;

- прототип имеет недостаточно высокую тепловую экономичность.

Задачей предлагаемого изобретения является создание высокоэкономичной регенеративной газотурбодетандерной установки для обеспечения энергоснабжения собственных нужд компрессорных станций магистральных газопроводов и для повышения экономичности ее газоперекачивающих агрегатов. Расширенный в турбодетандере природный газ используется как топливный газ для газотурбодетандерной установки и для газоперекачивающих агрегатов компрессорной станции.

Поставленная задача решается за счет того, что регенеративная газотурбодетандерная установка компрессорной станции магистральных газопроводов с газотурбинными газоперекачивающими агрегатами, снабженными утилизационными подогревателями теплоносителя, содержащая магистральный газопровод высокого давления, подогреватель газа высокого давления, турбодетандер с регулируемым сопловым аппаратом, компрессор, камеру сгорания, газовую турбину, электрогенератор, подогреватель топливного газа, регулятор, при этом магистральный газопровод высокого давления через подогреватель газа высокого давления связан с входом турбодетандера, выход которого через газопровод топливного газа связан с камерой сгорания газотурбодетандерной установки, регулятор соединен импульсными линиями с регулируемым сопловым аппаратом турбодетандера и с камерой сгорания газотурбодетандерной установки, причем она дополнительно снабжена газопроводом топливного газа высокого давления, сепаратором топливного газа высокого давления, подогревателем топливного газа среднего давления, регенеративным воздухоподогревателем, причем сепаратор топливного газа высокого давления, подогреватель топливного газа высокого давления, турбодетандер с регулируемым сопловым аппаратом, подогреватель топливного газа среднего давления и газопровод топливного газа высокого давления используют для подогрева топливного газа всех камер сгорания газотурбинных агрегатов компрессорной станции, при этом ротор турбодетандера соединен общим валом с ротором компрессора, ротор газовой турбины связан с ротором электрогенератора, а утилизационные подогреватели теплоносителя связаны трубопроводами с подогревателем топливного газа высокого давления и с подогревателем топливного газа среднего давления.

Сравнение предлагаемой регенеративной газотурбодетандерной установки с прототипом и другими техническими решениями позволило сделать вывод, что предлагаемые в ней технические решения соответствуют критерию "новизна". С учетом признаков, отличающих заявляемое изобретение от прототипа, можно сделать вывод, что оно соответствует критерию "существенные отличия".

На Фиг.1 приведена блок-схема регенеративной газотурбодетандерной установки, на Фиг.2 приведена тепловая схема регенеративной газотурбодетандерной установки.

Блок схема содержит два блока - блок регенеративной газотурбодетандерной установки 1 и блок газоперекачивающих агрегатов компрессорной станции 2. Тепловая схема содержит: магистральный газопровод высокого давления 3, газопровод топливного газа высокого давления 4, сепаратор топливного газа высокого давления 5, подогреватель топливного газа высокого давления 6, турбодетандер 7 с регулируемым сопловым аппаратом, компрессор 8, выхлопной газоход 9, газовую турбину 10, электрогенератор 11, регулятор 12, общий вал 13, газопровод среднего давления 14, регенеративный воздухоподогреватель 15, камеру сгорания 16 газотурбодетандерной установки, трубопровод подогретого теплоносителя 17, трубопровод охлажденного теплоносителя 18, подогреватель топливного газа среднего давления 19, газопроводы топливного газа среднего давления 20, утилизационные подогреватели теплоносителя 21, камеры сгорания газоперекачивающих агрегатов 22.

Магистральный газопровод высокого давления 3 соединен газопроводом топливного газа высокого давления 4 через сепаратор высокого давления топливного газа 5 и подогреватель топливного газа высокого давления 6 с входом турбодетандера 7, выход которого связан газопроводом среднего давления 14 через подогреватель топливного газа среднего давления 19, газопроводы топливного газа среднего давления 20 с камерой сгорания 16 регенеративной газотурбодетандерной установки и с камерами сгорания 22 газоперекачивающих агрегатов. Регулятор 12 соединен импульсными линиями с РСА турбодетандера 7 и с газопроводами топливного газа среднего давления 20. Газопроводы топливного газа среднего давления 20 соединены с камерой сгорания 16 регенеративной газотурбодетандерной установки и с камерами сгорания 22 газоперекачивающих агрегатов. Утилизационные подогреватели теплоносителя 21 связаны трубопроводом подогретого теплоносителя 17 и трубопроводом охлажденного теплоносителя 18 с подогревателем топливного газа среднего давления 19 и с подогревателем топливного газа высокого давления 6. Ротор турбодетандера 7 соединен общим валом 13 с ротором компрессора 8, выход которого связан через воздуховод, регенеративный воздухоподогреватель 15, камеру сгорания 16 регенеративной газотурбодетандерной установки, с входом газовой турбины 10, ротор которой соединен валом с ротором электрогенератора 11. Выход газовой турбины 10 через выхлопной газоход 9 и регенеративный воздухоподогреватель 15 связан с атмосферой.

Регенеративная газотурбодетандерная установка работает следующим образом.

Природный газ из магистрального газопровода высокого давления 3 по газопроводу топливного газа высокого давления 4 поступает в сепаратор топливного газа высокого давления 5, где производится его очистка от примесей, затем через подогреватель топливного газа высокого давления 6 его подают в турбодетандер 7, снабженный РСА, расширяется со снижением давления и далее по газопроводу среднего давления 14 его подают через подогреватель топливного газа среднего давления 19 в газопроводы топливного газа среднего давления 20. После подогревателя топливного газа среднего давления 19 газ направляют в камеру сгорания 16 регенеративной газотурбодетандерной установки и в камеры сгорания газоперекачивающих агрегатов 22. Подогрев газа в подогревателе топливного газа высокого давления 6 и в подогревателе топливного газа среднего давления 19 производят теплоносителем, который подводят в них по трубопроводу 17 подогретого теплоносителя и отводят по трубопроводу 18 охлажденного теплоносителя. При этом подогрев теплоносителя производят в утилизационных подогревателях теплоносителя 21 за счет теплоты уходящих газов газоперекачивающих агрегатов компрессорной станции.

Полезную работу турбодетандера 7 передают по общему валу 13 компрессору 8 и используют ее для сжатия атмосферного воздуха. Сжатый в нем атмосферный воздух направляют через регенеративный воздухоподогреватель 15 в камеру сгорания 16 газотурбодетандерной установки, куда также подают газ по газопроводу топливного газа среднего давления 20. Продукты сгорания газа расширяют в газовой турбине 10 и через выхлопной газоход 9 и регенеративный воздухоподогреватель 15 сбрасывают в атмосферу. Полезную работу газовой турбины 10 используют для привода электрогенератора 11 и выработки электроэнергии. В регенеративном воздухоподогревателе 15 подогревают воздух, сжатый в компрессоре 8 за счет теплоты выхлопных газов газовой турбины 10.

При изменении давления в магистральном газопроводе 3 и соответственно в газопроводе топливного газа высокого давления 4 регулятором 12 за счет воздействия на сопловой регулирующий аппарат турбодетандера 7 поддерживают постоянное давление в газопроводе топливного газа среднего давления 20, в камере сгорания 16 регенеративной газотурбодетандерной установки и в камерах сгорания 22 газоперекачивающих агрегатов.

Применение регенеративного воздухоподогревателя позволяет повысить экономичность регенеративной газотурбодетандерной установки.

Соединение общим валом высокооборотного турбодетандера с компрессором позволяет уменьшить число ступеней в компрессоре и снизить его стоимость.

Привод электрогенератора от вала газовой турбины при 3000 об/мин позволяет отказаться от использования понижающего редуктора и повысить надежность установки.

Применение в газоперекачивающих агрегатах утилизационных подогревателей теплоносителя позволяет понизить температуру уходящих газов и повысить их тепловую экономичность.

Использование теплоносителя для подогрева газа высокого давления и топливного газа позволяет увеличить мощность турбодетандера, мощность и расход воздуха через компрессор, за счет чего повысится мощность и электрический КПД газотурбодетандерной установки.

Регенеративная газотурбодетандерная установка компрессорной станции магистральных газопроводов с газотурбинными газоперекачивающими агрегатами, снабженными утилизационными подогревателями теплоносителя, содержащая магистральный газопровод высокого давления, подогреватель газа высокого давления, турбодетандер с регулируемым сопловым аппаратом, компрессор, камеру сгорания, газовую турбину, электрогенератор, подогреватель топливного газа, регулятор, при этом магистральный газопровод высокого давления через подогреватель газа высокого давления связан с входом турбодетандера, выход которого через газопровод топливного газа связан с камерой сгорания газотурбодетандерной установки, регулятор соединен импульсными линиями с регулируемым сопловым аппаратом турбодетандера и с камерой сгорания газотурбодетандерной установки, отличающаяся тем, что она дополнительно снабжена газопроводом топливного газа высокого давления, сепаратором топливного газа высокого давления, подогревателем топливного газа среднего давления, регенеративным воздухоподогревателем, причем сепаратор топливного газа высокого давления, подогреватель топливного газа высокого давления, турбодетандер с регулируемым сопловым аппаратом, подогреватель топливного газа среднего давления и газопровод топливного газа высокого давления используют для подогрева топливного газа всех камер сгорания газотурбинных агрегатов компрессорной станции, при этом ротор турбодетандера соединен общим валом с ротором компрессора, ротор газовой турбины связан с ротором электрогенератора, а утилизационные подогреватели теплоносителя связаны трубопроводами с подогревателем топливного газа высокого давления и с подогревателем топливного газа среднего давления.



 

Похожие патенты:

Использование: энергетические газотурбодетандерные установки с использованием избыточного давления топливного газа могут быть применены для электроснабжения компрессорных станций (КС) магистральных газопроводов.

Изобретение относится к энергетике, а именно к системам преобразования тепловой энергии. .

Изобретение относится к теплоэнергетике и может быть использовано для трансформации тепловой энергии в механическую путем перемещения и нагнетания жидкостей. .

Изобретение относится к энергетике, в частности к способам преобразования энергии. .

Изобретение относится к комбинированным газотурбинным установкам (ГТУ) и может быть использовано в области энергетики. .

Изобретение относится к области энергетики. .

Изобретение относится к теплоэнергетике, в частности к способам, использующим рабочую среду в газообразной или жидкой фазах для получения механической энергии из теплоты внешнего источника, предпочтительно низкотемпературного источника.

Изобретение относится к энергетике, а более конкретно к тепловым двигателям: поршневым, паровым и газотурбинным силовым установкам с использованием в них углеводородного топлива и концентрированных водных растворов сильных электролитов в качестве водородокислородного топлива.

Изобретение относится к детандер-генераторным агрегатам и касается детандерных установок для производства электроэнергии при утилизации избыточного давления природного газа, транспортируемого в трубопроводах и может быть применено на газораспределительных станциях и газоредуцирующих пунктах.

Способ и устройство предназначены для работы тепловых двигателей. Способ реализуется на основе устройства, состоящего из двух резервуаров, соединенных между собой каналом, внутри резервуаров размещено подвижное рабочее тело, источника поля, выполненного с возможностью намагничивания рабочего тела. В одном резервуаре установлена подвижная диафрагма с функцией изменения объема резервуара, соединенная кинематической связью с источником поля, и установлен регулятор подвижности диафрагмы, выполненный с возможностью устанавливать режим работы диафрагмы, при этом этот резервуар выполнен подвижным. Все элементы двигателя размещены внутри внешнего контейнера, заполненного внешним газом. Технический результат изобретения выражается в расширении арсенала тепловых двигателей. 3 н. и 14 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике. Система получения энергии включает работающий на диоксиде углерода цикл Ренкина для извлечения тепла, объединенный с циклом абсорбционного холодильника. Цикл Ренкина включает конденсатор и десорбер. Конденсатор цикла Ренкина объединен с испарителем цикла абсорбционного холодильника. Цикл Ренкина и цикл абсорбционного холодильника объединены в десорбере. Изобретение позволяет повысить эффективность получения энергии. 3 н. и 5 з.п. ф-лы, 3 ил.

Изобретение относится к энергетике и может быть использовано для энергоснабжения собственных нужд компрессорных станций магистральных газопроводов. Установка содержит газопровод топливного газа высокого давления, сепаратор, подогреватель топливного газа высокого давления, турбодетандер с входным направляющим аппаратом, компрессор, регенеративный воздухоподогреватель, камеру сгорания, газовую турбину, электрогенератор, газопровод топливного газа среднего давления, газопровод топливного газа, подогреватель топливного газа, регулятор. Газопровод топливного газа высокого давления через сепаратор и подогреватель топливного газа высокого давления связан с входом турбодетандера, выход которого через газопровод топливного газа среднего давления, подогреватель топливного газа и газопровод топливного газа связан с камерами сгорания регенеративной газотурбодетандерной установки и газотурбинных газоперекачивающих агрегатов. Ротор турбодетандера соединен общим валом с ротором компрессора, ротор газовой турбины связан с ротором электрогенератора. Газоперекачивающие агрегаты снабжены утилизационными подогревателями теплоносителя, соединенными трубопроводами теплоносителя с подогревателем топливного газа высокого давления и с подогревателем топливного газа. Регулятор соединен импульсными линиями с регулируемым входным направляющим аппаратом турбодетандера и с газопроводом топливного газа. Установка дополнительно снабжена газоохладителем, установленным в магистральном газопроводе природного газа после нагнетателей газотурбинных газоперекачивающих агрегатов и аппаратов воздушного охлаждения, а по топливному газу газоохладитель установлен в газопроводе топливного газа среднего давления между выходом турбодетандера и входом подогревателя топливного газа. Преимущества - обеспечение энергоснабжения собственных нужд компрессорных станций, повышение экономичности и возможность охлаждения природного газа, сжатого в нагнетателе ГПА. 1 ил.

Изобретение относится к способу и установке для получения жидкого топлива из углеводородного газа. Заявлен способ получения жидкого топлива из углеводородного газа и выработки энергии, в котором осуществляют риформинг углеводородного газа для получения газа риформинга путем реакции парового риформинга углеводородного газа; осуществляют синтез бензина, диметилового эфира или дизельного топлива из газа риформинга через метанол; извлекают тепло термической энергии газа риформинга для получения насыщенного водяного пара, имеющего температуру не более 180°C, до использования указанного газа риформинга на стадии синтеза; осуществляют перегревание указанного насыщенного водяного пара с использованием теплового источника, имеющего температуру по меньшей мере 200°C, образовавшегося в указанном способе, чтобы получить перегретый водяной пар; и осуществляют выработку энергии с использованием указанного перегретого водяного пара, причем в качестве теплового источника для перегревания на стадии перегревания используют водяной пар, образовавшийся за счет экзотермической реакции на стадии синтеза. Технический результат - эффективная выработка энергии путем использования низкотемпературного отходящего тепла процесса. 2 н.п. ф-лы, 1 табл., 4 ил.
Наверх